

International Atomic Energy Agency

SMR.1744 - 15

SCHOOL ON ION BEAM ANALYSIS AND ACCELERATOR APPLICATIONS

13 - 24 March 2006

Accelerator mass spectrometry of heavy radioisotopes

Walter KUTSCHERA Institute of Isotope Research, University of Vienna, Austria

Accelerator Mass Spectrometry of Heavy Radioisotopes

Walter Kutschera

Institute for Isotope Research and Nuclear Physics University of Vienna

School on Ion Beam Analysis and Accelerator Applications Miramare – Trieste, 17 March 2006

Radioisotopes measured with AMS

Isotope	Half-life (year)
³ H	12
⁴⁴ Ti	60
⁶³ Ni	100
³² Si	140
³⁹ Ar	269
¹⁴ C	5 730
⁵⁹ Ni	75 000
⁴¹ Ca	104 000
⁸¹ Kr	230 000
³⁶ Cl	301 000
²⁶ Al	720 000
$^{10}\mathrm{Be}$	1 520 000
⁵³ Mn	3 600 000
$^{182}\mathrm{Hf}$	8 900 000
¹²⁹ I	17 000 000
²³⁶ U	23 000 000
²⁴⁴ Pu	81 000 000

Radioisotopes measured with AMS

Isotope	Half-life (year)
³ H	12
⁴⁴ Ti	60
⁶³ Ni	100
³² Si	140
³⁹ Ar	269
^{14}C	5 730
⁵⁹ Ni	75 000
⁴¹ Ca	104 000
⁸¹ Kr	230 000
³⁶ Cl	301 000
²⁶ A1	720 000
$^{10}\mathrm{Be}$	1 520 000
⁵³ Mn	3 600 000
¹⁸² Hf	8 900 000
¹²⁹ I	17 000 000
²³⁶ U	23 000 000
²⁴⁴ Pu (^{239, 240, 242} Pu	ı) 81 000 000

Radioisotopes are measured with AMS through isotope ratios

Typical range:

radioisotope/stable isotope = 10^{-12} to 10^{-16}

The main challenge in measuring such minute isotope ratios is the separation of the radioisotope from interfering background of stable isobars.

All other radioisotopes are more difficult and must be cleaned up from stable isobar interference. Sometimes special negative molecules help

Measurement of the ¹²⁹I/¹³¹I Ratio in Chernobyl Fallout

Paper presented at the Adriatico Conference on "Environmental Physics - Atmospheric Aerosol", Trieste 22-25 July 1986

Both ¹²⁹I and ¹³¹I are fission products, but with vastly different half-lives:

¹²⁹I: 1.6 million years
¹³¹I: 8.0 days

W. Kutschera, D. Fink, M. Paul, G. Hollos, A. Kaufmann Physics Scripta 37 (1988) 310-313

Abstract

Rainwater collected in the Munich area approximately one week after the Chernobyl reactor accident was investigated for its content of the radioisotopes ¹²⁹I ($T_{1/2} = 1.6 \times 10^7$ yr) and ¹³¹I ($T_{1/2} = 8.04$ d). For the time of release, an isotopic ratio of ¹²⁹I/¹³¹I = 19 ± 5 was found. This value was obtained from a gamma-ray activity measurement of ¹³¹I with a Ge detector and a concentration measurement of ¹²⁹I with accelerator mass spectrometry. From the measured ratio an operating time of the reactor prior to the accident in the vicinity of two years can be estimated, which is in fair agreement with estimates from other long-lived to short-lived radioisotope ratios in the Chernobyl fallout. Some measurements of ¹³¹I activity in thyroids of persons living in the Munich area are also reported.

Date of measurement	Person #	Activity ^a (Bq)	Main living site	Dose ^b (mrem)
6 May 1986	1	227	country	45
	2	98	city	20
	3	91	city	18
	4	108	city	22
11 May 1986	2	60	city	12
	5	120	country	24
	6	117	country	23
27 May 1986	2	15	city	3
-	5	36	country	7

Table I. Activity of ¹³¹I in human thyroids (Munich area).

^a Bq = 1 decay/sec. Uncertainty = $\pm 20\%$.

^b Conversion = $0.2 \text{ mrem/Bq} (= 2 \mu \text{Sv/Bq}).$

Vienna Environmental Research Accelerator V E R A

Institute für Isotope Research and Nuclear Physics University of Vienna Währinger Str. 17, A-1090 Vienna, Austria

VERA is an AMS facility for "all" isotopes based on a 3-MV Pelletron tandem accelerator

P.Steier et al., Nucl. Instrum. & Methods 223-224 (2004) 67-71 W. Kutschera, Int. J. Mass Spectrometry 142 (2005) 145-160

Positioning of the 3-MV tandem accelerator of VERA in the "Kavalierstrakt", Währingerstr. 17, A-1090 Wien (1995)

+3 MV Tandem Accelerator

Pelletron type

2 charging chains

maximal charging current: 230 µA

Ar gas stripper/ foil stipper

insulating gas: SF₆

Column structure of the 3-MV tandem accelerator of VERA

Staff of VERA

Alfred Priller *Technical head of VERA* (paleoclimate, loess)

Peter Steier *Operations manager* (glacier dating, DNA dating, heavy isotopes)

Eva Maria Wild *Sample preparation* (archaeology, paleoclimate)

Robin Golser *Atomic physics* (exotic atoms, PIXE)

Anton Wallner

Astrophysics (supernova remnant, stellar nucleosynthesis)

Cs-Beam Sputter Source for Negative Ions

40 Samples

max. 75 keV Preacceleration

Ion Currents:

C: 60 µA

BeO: 3 µA

UO⁻: 100 nA

The Cesium-Beam Sputter Source for Negative Ions

¹H, ¹⁰Be, ¹⁴C, ²⁶Al, ³⁶Cl, ⁴¹Ca, ⁵⁵Fe, ¹²⁹I, ¹⁸²Hf, ²¹⁰Pb, ²³⁶U, ²³⁹⁻²⁴⁴Pu, (⁴³Ca¹⁹F₄)⁻⁻, (H₂)⁻⁻

The World of VERA

Long-lived radionuclides measured at VERA

Some AMS-nuclides at VERA (3-MV)

Radio- nuclide	Half-life (Myr)	Overall Efficiency	Detection Limit	Precision
¹⁰ Be	1.5	5x10 ⁻⁵	¹⁰ Be/ ⁹ Be < 2x10 ⁻¹⁴	< 3%
¹⁴ C	5730 yr	2x10 ⁻²	¹⁴ C/ ¹² C < 3x10 ⁻¹⁶	< 0.5 %
²⁶ AI	0.7	5x10 ⁻⁴	²⁶ AI/ ²⁷ AI < 6x10 ⁻¹⁶	< 1.0 %
129	15.7	1x10 ⁻²	$^{129}I/^{127}I = 2x10^{-14}$	2 %
¹⁸² Hf	8.9	1x10 ⁻⁴	182 Hf/ 180 Hf = 1x10 ⁻¹¹	5 %
236U	23.4		$^{236}U/^{238}U = 6x10^{-12}$	5 %
²⁴⁴ Pu	81.0	> 4x10⁻⁵		5 %

Determination of Plutonium in environmental samples by AMS and Alpha Spectrometry

Proceedings of the 8th International Conference in Application of Nuclear Techniques, Crete, Greece, 12-18 September 2004

E. Hrenecek, P. Steier, A. Wallner Applied Radiation and Isotopes 63 (2005) 633-638

C	Cm238	Cm239	Cm240	Cm241	Cm242	Cm243	Cm244	Cm245 8500 y	Cm246 4730 y	Cm247 1.56E+7 y
Cm	0+	(7/2-)	0+	1/2+	0+	5/2+	0+	7/2+	0+	9/2-
	ΕС,α	EC,α	EC,α,sf,	EC,α	α,sf	EC,α,sf,	α ,sf	α ,sf	α,sf	α
•	Am237	Am238	Am239	Am240	Am241	Am242	Am243	Am244	Am245	Am246
Am	/3.0 m 5/2(-)	98 m 1+	(5/2)-	50,8 h (3-)	432.2 y 5/2-	16.02 h 1-	/3/0 y 5/2-	10,1 h (6-)	2.05 h (5/2)+	39 m (7-)
	EC,α	EC,α	ΕС,α	EC ,β-,α	α,sf	* ΕC,β-	α,sf	β-	β-	β-
_	Pu236	Pu237	Pu238	Pu239	Pu240	Pu241	Pu242	Pu243	Pu244	Pu245
Pu	2.858 y 0+	45.2 d 7/2-	87.7 y 0+	24110 y 1/2+	6563 y 0+	14.35 y 5/2+	3.733E+5 y 0+	4.956 h 7/2+	8.08E+7 y 0+	10.5 h (9/2-)
	α,sf	* ΕC,α	α,sf	α,sf	α,sf	β-,α	* α,sf	β-	α ,sf	β-
.	Np235	Np236	Np237	Np238	Np239	Np240	Np241	Np242	Np243	
Np	396.1 d 5/2+	154E+3 y (6-)	2.14E+6 y 5/2+	2.11/d 2+	2.3565 d 5/2+	61.9 m (5+)	13.9 m (5/2+)	5.5 m (6)	1.8 m (5/2-)	
-	ΕС,α	* EC,β-,α,	α ,sf	β-	β-	β-	β-,α	β-	β-	
.	U234	U235	U236	U237	U238	U239	U240		U242	
U	2.455E+5 y 0+	703.8E+6 y 7/2-	2.342E7 y 0+	6.75 d 1/2+	4.468E+9 y 0+	23.45 m 5/2+	14.1 h 0+		16.8 m 0+	
	α,n,sf 0.0055	α, ²⁰ Nesf.*	α,sf	β-	α,sf * 99.2745	β-	β-		β-	
D	Pa233	Pa234	Pa235	Pa236	Pa237	Pa238				2
Pa	26.967 d 3/2-	6.70 n 4+	24.5 m (3/2-)	9.1 m 1(-)	$\frac{8.7 \text{ m}}{(1/2+)}$	2.3 m (3-)				
	β-	β -	β-	β-	β-	β-	-			

Pu isotopes: ²⁴²Pu as spike material (reference)

AMS measurement: ^{239,240,241(244)}Pu relative to ²⁴²Pu

Isotope ratios

source	²³⁸ Pu/ ²³⁹⁽⁴⁰⁾ Pu	reference
Global weapons test fallout	0.03	Bunzl et al. 1987
Chernobyl fallout	0.33 – 0.44	IAEA 1986
Irish Sea sediment	0.05 - 0.3	Kershaw et al. 1995
Thule sediment	0.019	Aarkog 1971
Mururoa test site	0.0044	Danesi et al. 2002
Fangataufa test site	0.38	Mulsow et al. 1999

Isotope ratios

source	²⁴⁰ Pu/ ²³⁹ Pu	reference
Global fallout	0.18	Buessler et al. 1987
Chernobyl fallout	0.39	MacKenzie 2000
Irish Sea sediment	0.05 – 0.25	Kershaw et al. 1995
Thule sediment	0.058	Komura et al. 1984
Mururoa average	~ 0.035	Chiappini et al. 1999
Fangataufa	0.05	Chiappini et al. 1999

Sample preparation for alpha counting

- Leaching 8 M HNO₃
- Anion Exchange AG 1x8
- 8 M HNO₃, NaNO₂ for Pu(IV)
- 10 M HCl for Th(IV)
- 0,1 M NH_4I / 9 M HCl for Pu
- Alpha Spectrometry: Mikroprecipitation with NdF₃,
- Cellulosenitrate filter
 0.1 µm pore size

Alpha Spectrometry

- ²⁴²Pu Tracer
- 2.5 to 6 g Sample size
- Detection limit:
 0.1 to 0.3 Bq / sample
- ²³⁸Pu / ²³⁹⁽²⁴⁰⁾Pu

Energy of alpha particles

Sample Preparation for AMS

- Sample preparation:
 combustion of filter
 - dissolution in HCl
 - -10 mg Fe carrier, Fe(OH)₃
 - $-800^{\circ}\text{C}\text{Fe}_2\text{O}_3$

AMS measurement $^{238}UO^{-} \rightarrow ^{238}U^{5+}$, used for tuning (current) $^{242}PuO^{-} \rightarrow ^{242}Pu^{5+}$, scaling and ion counting

Results

	AM	S	Alpha Spe	ectrometry
	²⁴⁰ Pu/ ²³⁹ Pu [at/at]	²³⁹⁽⁴⁰⁾ Pu [Bq/kg]	²³⁹⁽⁴⁰⁾ Pu [Bq/kg]	²³⁸ Pu [Bq/kg]
11.4.1 Fangataufa (Kilo) loose coral rocks	0.049 ± 0.002	51.3 ± 2.6	43.5 ± 1.6	15.0 ± 0.7
11.4.3	0.049 ± 0.003	19.3 ± 0.8	19.8 ± 0.9	6.8 ± 0.4
11.4.4	0.050 ± 0.007	93.6 ± 4.7	71.8 ± 2.4	26.1 ± 1.0
9.3.6 Mururoa (Faucon) top soil	0.018 ± 0.002	175 ± 15	159.1 ± 4.9	0.77 ± 0.18
9.3.18	0.017 ± 0.002	115 ± 5	109.9 ± 3.7	0.59 ± 0.16
9.3.25	0.018 ± 0.003	221 ± 11	204.3 ± 5.4	1.21 ± 0.19
7.2.4.2 Mururoa (Colette)	0.019 ± 0.002	539 ± 39	497 ± 17	2.24 ± 0.46

Comparison AMS - α **-spectrometry**

Results

Test site	²³⁸ Pu/ ²³⁹⁽⁴⁰⁾ Pu (Alpha Spec)	
Mururoa	0.0051 ± 0.0006	0.0044 Danesi et al. (2002)
Fangataufa	0.35 ± 0.01	0.38 Mulsow et al. (1999)
Test site	²⁴⁰ Pu/ ²³⁹ Pu (AMS)	
Mururoa	0.018 ± 0.001	< 0.03 safety tests Chiappini et al. (1999)
Fangataufa	0.049 ± 0.001	0.05 Chiappini et al. (1999)

Outlook: Analytical Strategy

²³⁶U, a natural and anthropogenic neutron monitor

$$^{235}\text{U} + n$$
 $^{14\%}$ $^{236}\text{U} + \gamma$, half-life = 23 million years
86\% fission

Expected ²³⁶U/²³⁸U isotope ratios:

Uranium mineral: ~ 10^{-11} 1 ppm U in rock: ~ 10^{-14} Power reactor: ~ 10^{-3} (after burning off 1% ²³⁵U)

Lowest ²³⁶U/²³⁸U ratio measured at VERA: 6.1x10⁻¹²

Probably the most interesting frontier for heavy-isotope AMS:

Searching for live supernova remnants on Earth

Live long-lived radionuclides

nearby supernova: < 100 pc, rate ~ 0.3 - 10 (Ma)⁻¹

Crab-nebula (SN from 1054 AD) Supernova Remnant at 2000 pc distance

http://antwrp.gsfc.nasa.gov/apod/image/9911/crab_vlt_big.jpg

Production of long-lived solar system radionuclides

⁶⁰Fe-signal in deep-sea crust

K. Knie,¹ G. Korschinek,^{1,*} T. Faestermann,¹ E. A. Dorfi,² G. Rugel,^{1,3} and A. Wallner^{1,3}

¹⁸²Hf would be a good candidate for a supernova remnant:

²⁴⁴Pu: Is our Earth too much contaminated to find the faint signal of supernova-produced ²⁴⁴Pu?

Fig1.

Figure 1 shows the measured concentrations of the plutonium isotopes. The value of 241 Pu ($T_{1/2} = 14.35$ y) is decay corrected for 1960.

	²³⁹ Pu	²⁴⁰ Pu	²⁴¹ Pu	²⁴² Pu	²⁴⁴ Pu
cts.	142	58	2	7	12
$C [10^6 {\rm at/g}]$	146 ± 19	36 ± 6	$1.5\substack{+2.0\\-1.0}$	$3.8\substack{+2.1\\-1.5}$	0.17 ± 0.05

Table1.

The measured counts of each Pu isotope are indicated. The deduced concentration with the statistical error is given in 10^6 at/g. In the case of 241,242 Pu are the errors calculated according to Feldman and Cousins [ref] for low count numbers.

Manganese nodule

	external ratios"
	(rel. to ²³⁹ Pu ¹)
• ²³⁹ Pu:	1
• ²⁴⁰ Pu:	0.25
• ²⁴¹ Pu:	0.01 (0.07 d. corr.)
• ²⁴² Pu:	0.026
• ²⁴⁴ Pu:	0.001

¹ after: C. Wallner et al., New Astron. Rev. (2003)

And finally:

Why not searching for the unknown such as superheavy elements? An AMS facility can certainly be tuned to regions of the nuclear chart which are far away from known nuclides.