

The Abdus Salam International Centre for Theoretical Physics

() International Energy Agent

SMR.1744 - 27

SCHOOL ON ION BEAM ANALYSIS AND ACCELERATOR APPLICATIONS

13 - 24 March 2006

Low energy scattering

Peter BAUER Johannes Kepler Universität Linz, Austria

Low Energy Ion Scattering

Peter Bauer

March 2006

Johannes Kepler University Linz Institute of Experimental Physics Department of Atomic Physics and Surface Science

Overview:

- Low energy ion scattering:
 - RBS, MEIS (high energies)
 - LEIS (low energies)

- Quantitative analysis surface
 - structure
 - composition

Quantitative analysis of nanometer layers

- composition, depth profiles
- depth resolution
- mass resolution

Contents:

ion scattering: RBS \leftrightarrow LEIS

- \succ scattering by nuclei \rightarrow scattered yield
- > interaction with target electrons \rightarrow slowing down

Low energy ion scattering (LEIS)

- Electrostatic analyzer: ESA-LEIS
- Time-Of-Flight: TOF-LEIS

ESA-LEIS:

- \succ instrumentation \rightarrow static ESA-LEIS
- \succ ions detected \rightarrow ion fraction P+
- \succ noble gas ions:
 - > neutralisation \rightarrow surface sensitivity
- \succ applications: quantitative surface analysis \rightarrow examples

TOF-LEIS (Time-of-flight)

- \succ instrumentation \rightarrow static TOF-LEIS
- ➢ ions and neutrals detected
 - surface structure analysis
 - neutral spectrum: shape, depth information
 - depth resolution \rightarrow depth analysis \rightarrow applications

Contents:

ion scattering: RBS \leftrightarrow LEIS

- \succ scattering by nuclei \rightarrow scattered yield
- interaction with target electrons \rightarrow slowing down
- Low energy ion scattering (LEIS)
 - Electrostatic analyzer: ESA-LEIS
 - ➤ Time-Of-Flight: TOF-LEIS

ESA-LEIS:

- \succ instrumentation \rightarrow static ESA-LEIS
- \succ ions detected \rightarrow ion fraction P+
- ➤ noble gas ions:
 - \succ neutralisation \rightarrow surface sensitivity
- \succ applications: quantitative surface analysis \rightarrow examples

TOF-LEIS (Time-of-flight)

- \succ instrumentation \rightarrow static TOF-LEIS
- ➢ ions and neutrals detected
 - surface structure analysis
 - neutral spectrum: shape, depth information
 - depth resolution \rightarrow depth analysis \rightarrow applications

Ion scattering:

Target: Z_{i2}, M_{i2}

Scattering by target nuclei

$$V(r) = \frac{Z_1 Z_2 e^2}{r} \Phi(r/a)$$

 $\Phi(r/a)$... screening function (electronic screening of nucleus)

Impact parameter b $\leftrightarrow \theta \rightarrow$ Scattering cross section d σ /d $\Omega \rightarrow$ Scattering probability dp

 $dp = ndx (d\sigma/d\Omega)$

Scattering potential

Scattering point charge by point charge: $V_C(r) = Z_1 Z_2 e^2/r$ (Coulomb)

Scattering dressed charge by neutral atom:

Screening function $\Phi(r/a)$ (Thomas-Fermi-Molière)

$$V(\mathbf{r}) = V_{C}(\mathbf{r}) \cdot \Phi(\mathbf{r}/\mathbf{a})$$

$$\Phi\left(\frac{\mathbf{r}}{\mathbf{a}}\right) = \sum_{i=1}^{3} b_{i} \exp(-c_{i} \frac{\mathbf{r}}{\mathbf{a}}) \text{ with } \mathbf{a} = \frac{0.8852 \cdot \mathbf{a}_{0}}{\sqrt[3]{\left(\sqrt{Z_{1}} + \sqrt{Z_{2}}\right)^{2}}}$$
screening length $\mathbf{a} \approx 0.2 \text{ Å}$
Limiting cases:

$$\Phi(\mathbf{r}/\mathbf{a} \rightarrow 0) = 1$$

$$\Phi(\mathbf{r}/\mathbf{a} \rightarrow \infty) = 0.$$
in any case: $\Phi(\mathbf{r}/\mathbf{a}) \leq 1$

Scattering cross section $d\sigma/d\Omega$

 $V(r) = V_{C}(r) \rightarrow Rutherford cross section$

$$\frac{d\sigma_{R}}{d\Omega} = \left(\frac{Z_{1}Z_{2}e^{2}}{4\operatorname{Esin}^{2}\frac{\theta}{2}}\right)^{2}$$

Scattering cross section $d\sigma/d\Omega$

Scattering cross section $d\sigma/d\Omega$

db/d
$$\vartheta$$
 is obtained from $\theta(b) = \pi - 2 \int_{R_{min}}^{\infty} \frac{bdr}{r^2 \sqrt{1 - \frac{b^2}{r^2} - \frac{V(r)}{E}}}$ (scattering integral)

11/89

Scattering cross section

There are different models for $\Phi(r/a)$: Thomas-Fermi-Molière universal potential etc.

Integral scattering probability:

Collisional energy loss (binary collision)

kinematic factor:
$$k = \frac{E_1}{E_0} = \left\{ \frac{\left[1 - (M_1 / M_2)^2 \sin^2 \theta\right]^{1/2} + (M_1 / M_2) \cos \theta}{1 + (M_1 / M_2)} \right\}^2 \text{ for } M_1 \le M_2$$

Interaction with target electrons

• kinematics: electron's mass M₂ << M₁

Interaction with target electrons

- kinematics: electron's mass M₂ << M₁
- \rightarrow scattering angle negligible
- → small energy losses per collision BUT with high probability

Interaction with target electrons

- kinematics: electron's mass M₂ << M₁
- \rightarrow scattering angle negligible
- → small energy losses per collision BUT with high probability
- → Continuous slowing down ("friction force")
- \rightarrow Stopping Power:

$$\mathbf{S} = \lim_{\Delta x \to 0} \Delta \mathbf{E} / \Delta \mathbf{x} \equiv \mathbf{d} \mathbf{E} / \mathbf{d} \mathbf{x}$$

Stopping Power

- Energy loss dE per path length dx: S = dE/dx
- Stopping cross section: $\varepsilon = S / n = dE / ndx$

RBS:
$$S \propto \frac{Z_2}{v^2} \ln\left(\frac{2 m_e v^2}{I}\right)$$
 He / Au LEIS: $S \propto v$ (like friction force) $I = 10^{-100}$

Contents:

ion scattering: RBS \leftrightarrow LEIS

- \succ scattering by nuclei \rightarrow scattered yield
- \blacktriangleright interaction with target electrons \rightarrow slowing down

Low energy ion scattering (LEIS)

- Electrostatic analyzer: ESA-LEIS
- Time-Of-Flight: TOF-LEIS

ESA-LEIS:

- \succ instrumentation \rightarrow static ESA-LEIS
- \blacktriangleright ions detected \rightarrow ion fraction P+
- > noble gas ions:
 - \blacktriangleright neutralisation \rightarrow surface sensitivity
- \blacktriangleright applications: quantitative surface analysis \rightarrow examples

TOF-LEIS (Time-of-flight)

- \succ instrumentation \rightarrow static TOF-LEIS
- ions and neutrals detected
 - surface structure analysis
 - neutral spectrum: shape, depth information
 - depth resolution \rightarrow depth analysis \rightarrow applications

ESA-LEIS (electrostatic analyser used)

 $\mathsf{ESA} \to \mathsf{detection}$ of scattered ions

→ sensitive for outermost atomic layer <u>usually:</u> binary collisions dominiate double collisions negligible

TOF-LEIS (time-of-flight analyser used)

 \rightarrow detection of scattered neutrals + ions

- → no surface sensitivity like RBS at low energies
- \rightarrow <u>but</u>: no single scattering!
- \rightarrow information about nm-layers

Contents:

ion scattering: RBS \leftrightarrow LEIS

- \succ scattering by nuclei \rightarrow scattered yield
- \succ interaction with target electrons \rightarrow slowing down
- Low energy ion scattering (LEIS)
 - Electrostatic analyzer: ESA-LEIS
 - ➤ Time-Of-Flight: TOF-LEIS

ESA-LEIS:

- \succ instrumentation \rightarrow static ESA-LEIS
- \succ ions detected \rightarrow ion fraction P+
- > noble gas ions:
 - > neutralisation \rightarrow surface sensitivity
- \succ applications: quantitative surface analysis \rightarrow examples

TOF-LEIS (Time-of-flight)

- \succ instrumentation \rightarrow static TOF-LEIS
- ➢ ions and neutrals detected
 - surface structure analysis
 - neutral spectrum: shape, depth information
 - depth resolution \rightarrow depth analysis \rightarrow applications

ESA-LEIS Instrumentation:

Cylindrical Mirror Analyzer (CMA):

only ions with $E_f \in [E, E + dE]$ are transmitted, with $dE \propto E$

Double Toroïdal Analyser (DTA):

ions with $E_f \in [E_{min}, E_{max}]$ are transmitted simultaneously

ESA-LEIS Instrumentation (static LEIS):

CALIPSO

⁴He⁺ ion spectra (ESA)

$$A^{+} = \frac{N_{i}}{\cos \alpha} \cdot \frac{d\sigma}{d\Omega} \cdot (nd)_{0} \cdot \Omega \cdot P^{+} \cdot \eta_{+}$$

ion yield A⁺ depends on:

- + N_i ... number of ions
- + α ... angle of incidence
- $0 \quad d\sigma/d\Omega$... scattering cross section
- ? P^+ ... ion fraction
- + Ω ... solid angle
- + η_+ ... detection efficiency for ions

Neutralization in LEIS:

3

- : Auger neutralization or resonant neutralization
- : collision induced neutralization V reversed path: collision induced ionization

Ion fraction P⁺ : neutralisation mechanisms important for He⁺!

• Auger neutralisation (AN)

Ion fraction P⁺ : neutralisation mechanisms important for He⁺! AN He+ Auger neutralisation (AN) RN Resonant neutralisation RN (ionization RI) qRN collision induced charge exchange in He⁺ important for He⁺ general not RI otal energy (arb.u.) for $He^{+}!$ $He^+ + M^-$ He* \rightarrow He⁰ + M⁰ internuclear distance (arb.u.) 30/89

 \rightarrow fraction of surviving ions:

 $\mathsf{P}^{+} = \exp\{-\int dt \Gamma_{\mathsf{A}}(z)\} = \exp\{-\int dz \Gamma_{\mathsf{A}}(z) dt/dz\} \approx \exp(-\mathsf{v}_{\mathsf{c}}/\mathsf{v}_{\perp})$

$$v_{c} = \int dz \Gamma_{A}(z)$$

 $v_{\perp} = 1/v_{0\perp}$

 $P^+ \approx \exp(-v_c/v_{0\perp})$

Auger neutralization on in- and outgoing path

survival probability on the way in: P_{in}^+

Auger neutralization on in- and outgoing path

survival probability on the way in: P_{in}^+ on the way out: P_{out}^+

Probability to survive in charge state He⁺

premise: no resonant neutralization (He⁺!) no collision induced charge exchange (E < E_{th})

 $P^+ = \exp[-v_c(1/v_{0\perp} + 1/v_{f\perp})]$... pure AN
Example: ${}^{4}\text{He} \rightarrow \text{Cu}$

 $E < E_{th}$: P⁺(v₁)! ... ion fraction depends only on v₁

Trajectory effects

$$P^+ = e^{-\int dt \Gamma_A(z)} \approx e^{-\Delta t \Gamma_A} \qquad \Delta t < 2z_j / v_\perp$$

Trajectory effects

 $1/v_{\perp,0}$

Consequences?

interaction time shorter, $\langle v_{\perp} \rangle$ smaller

$$P^{+} = \exp\left[-\int_{Z_{min}}^{Z_{jellium}} \Gamma(z)/v_{\perp}(z)\right] = \exp\left[-\langle 1/v_{\perp} \rangle \cdot v_{c, eff}\right]$$

 P^+ from experiment: a priori correct (hopefully) $1/v_{\perp}$ is larger than estimated by $1/v_{\perp,0}$ v_c results too large

$$P^+ = exp[-f_{corr} \cdot v_c/v_{\perp}]$$

$$\mathbf{f}_{\rm corr} = \frac{\langle 1/\mathbf{v}_{\perp} \rangle}{1/\mathbf{v}_{\perp}} \cdot \frac{\mathbf{v}_{\rm c,eff}}{\mathbf{v}_{\rm c}}$$

f_{corr} small correction?

Auger neutr. ↔ collision induced processes

• projectiles: noble gas ions (e.g., He⁺)

Auger neutralization AN collision induced neutralization CIN collision induced reionization CIR

Comparison Eindhoven – Linz:

Eindhoven group: variation of energy

De Ridder & Linz: good quantitative agreement!

Collision induced processes

 $r < r_{min} \rightarrow$ overlap of orbitals \rightarrow electron promotion

Collision induced processes

 $r < r_{min} \rightarrow overlap of orbitals \rightarrow electron promotion$

Collision induced processes

 $r < r_{min} \rightarrow overlap of orbitals \rightarrow electron promotion$

Neutralisation ↔ ion fraction P⁺

ion fraction
$$P^+ = N_+/(N_+ + N_0)$$

{ survivals
reionised projectiles

AN: $P^+(-v_c/v_{\perp})$ collision: $P_{CIN}(E, \theta), P_{CIR}(E, \theta)$

Neutralisation ↔ ion fraction P⁺

Neutralisation ↔ ion fraction P⁺

 $P^+ = P^+(E, \theta, \mathbf{V}_{\perp}) \rightarrow P^+(\alpha) @ given E, \theta$

$^{4}\text{He} \rightarrow \text{Cu}$

 $E > E_{th}$: P⁺(V₁, α)

$^{4}\text{He} \rightarrow \text{Cu}$

 $E < E_{th}: P^+(v_{\perp})$ $E > E_{th}: P^+(v_{\perp}, \alpha)$

$^{4}\text{He} \rightarrow \text{Cu}$

High energy regime in more detail:

P_{CIN}(E), P_{CIR}(E)

 $P_{CIN} > P_{CIR}$ P_{CIN}^{\uparrow} , P_{CIR}^{\uparrow} with E \uparrow P_{CIN} , P_{CIR} at higher E?

(M. Draxler 2002)

Shape of ion spectra

Cu: threshold for reionization is high (E_{th} = 2.1 keV) → no reionization background for E < 3 keV

Mo: threshold for reionization is low ($E_{th} = 0.4 \text{ keV}$) \rightarrow reionization background down to E < 1 keV

Applications: surface composition analysis

(concentrations c_i of j atoms, j = "dark blue", "light blue" and "red")

Quantitative surface composition analysis

Surface concentration of element j

basis:

$$A_{j}^{+} = \frac{N_{0}}{\cos \alpha} \cdot \frac{d\sigma_{j}}{d\Omega} \cdot (nd)_{j,0} \cdot \Omega \cdot P_{j}^{+} \cdot \eta_{+} = c_{j}S_{j}$$

sensitivity factor for element j

Main question: does P⁺ depend on surface composition? ↔ are there "matrix effects"?

No matrix effects \leftrightarrow S_i does not depend on other elements present in the surface.

How to prove the absence of matrix effects?

Quantitative LEIS: Usually NO Matrixeffects (↔ P⁺ does not depend on chemical environment)

.... not even in oxides $(SiO_2, Al_2O_3)!$

...but sometimes P⁺ does depend on chemical state

... for instance: Carbon (graphitic - carbidic)

 \rightarrow yield is dependent on binding partner.

(L.C.A. van den Oetelaar, 1994)

Summary charge exchange processes

- model system to study P⁺
- \checkmark "local" \leftrightarrow "non-local" neutralisation in LEIS
- \checkmark P⁺ is a rather complex quantity
- ? Is P⁺ well behaved?

What about quantitative surface composition analysis?

He⁺ \rightarrow bicrystal W(110), W(211)

surface atomes/cm²: $n_{211}/n_{110} = 0.58$ signal ratio : $n_{211}/n_{110} = 0.88$ \rightarrow different neutralisation or deeper layers contributing

Cortenraad (2000)

Two elements (O, W) in the surface

 $C_{O} + C_{Ta} = 1$ $A_0^+ = C_0 S_0$ $A_{Ta}^+ = C_{Ta} S_{Ta}$ 400 1.5 KeV 4He 40 mA 300 Nb, Ta signai [kc/s] 400 200 100 Nb 0 15 ٥ 10 20 Oxygen signal [kc/s]

 \rightarrow indeed no matrix effects!

Application: surface composition of a spinel

 $ZnAI_2O_4$ zinc aluminate spinel*)

LEIS is sensitive to Zn (see ZnO)

no Zn visible in spinel surface!

*) as bulk ceramic: used as a structural and high-temperature material. with high-surface area: useful as catalysts and catalytic supports

Influence of surface roughness?

 γAl_2O_3

LEIS analysis for surface composition:

Analysis of a real Cu/ZnO/SiO₂ catalyst

ceramic sponges are easily destroyed by ion bombardment \rightarrow static LEIS: quantitative surface composition is possible!

Contents:

ion scattering: RBS \leftrightarrow LEIS

- \succ scattering by nuclei \rightarrow scattered yield
- \succ interaction with target electrons \rightarrow slowing down
- Low energy ion scattering (LEIS)
 - Electrostatic analyzer: ESA-LEIS
 - Time-Of-Flight: TOF-LEIS

ESA-LEIS:

- \succ instrumentation \rightarrow static ESA-LEIS
- \succ ions detected \rightarrow ion fraction P+
- \succ noble gas ions:
 - \succ neutralisation \rightarrow surface sensitivity
- \succ applications: quantitative surface analysis \rightarrow examples

TOF-LEIS (Time-of-flight)

- \succ instrumentation \rightarrow static TOF-LEIS
- ➢ ions and neutrals detected
 - surface structure analysis
 - depth resolution \rightarrow depth analysis \rightarrow applications
 - neutral spectrum: shape, depth information

Static TOF-LEIS - ACOLISSA

Advantages: - fluence < 10¹² ions/cm²

- ions and/or neutrals

with post-acceleration \rightarrow ions / neutrals separated

(M. Draxler, 2002)

Conversion TOF spectrum → **energy spectrum**

Classical mechanics: $E_f = (M/2)v_f^2 = (M/2) \cdot (L_1/\tau_f)^2$

particle conservation: $N(E_f)dE_f = N(\tau_f)d\tau_f$

Conversion TOF spectrum → **energy spectrum**

ions: surface peak (As in ESA spectra)

neutrals: much higher intensity than in ion spectrum neutral spectrum has a surface peak, contains also information from deeper layers

Energy spectrum

MARLOWE-simulation (Monte-Carlo)

Explanation of surface peak:

Surface peak due to (1) single scattering \rightarrow multiple scattering (2) shift of deeper layers due to stopping power
Experiment vs. simulation

Experiment vs. simulation

Surface structure analysis: ⁴He+ \rightarrow Cu crystal

Channeling \rightarrow flux enhancement:

5 kV Helium+ auf Nickel

Focussing collisions at certain angles \rightarrow intensity peaks:

Surface structure analysis: ${}^{4}\text{He} \rightarrow \text{Cu crystal}$

experiment: 179° scattering @ 3 keV

(Draxler 2005)

75/89

Surface structure analysis: ${}^{4}\text{He} \rightarrow \text{Cu crystal}$

Comparison experiment - Monte-Carlo simulations:

 \rightarrow channeling is sensitive to the scattering potential (screening length a = C_f·a_{TFM}

Surface structure analysis: ⁴He+ \rightarrow Cu crystal

Comparison experiment - Monte-Carlo simulations:

 \rightarrow information on scattering potential (screening length a $\approx a_{TFM}/2$) \rightarrow information on the scattering cross section

Time resolution ↔ depth resolution

time resolution $\delta \tau \leftrightarrow$ energy resolution $\delta E \leftrightarrow$ depth resolution δx

 $\delta E = 2E \delta \tau / \tau$ (similarly as in RBS)

typ. example: dt = 10ns, L₁ = 0.67 m
1 keV He⁺:
$$\tau_f$$
 = 3.4 µs \rightarrow dt/ τ_f = 0.3%!

Depth resolution in LEIS

 $\delta \tau = 10 \text{ ns}, \alpha = \beta = 25^{\circ}, \text{ SRIM stopping:}$

LEIS: spectrum width ↔ depth

single scattering model: $\Delta E_{\text{LEIS}} \propto \Delta x$ 1.5 keV $H^+ \rightarrow Au$ 800 N(E) (arb.u.) 600 12 Å Au 22 Å Au 400 32 Å Au 200 0 – 600 1000 1200 1400 800 1600 multiple scattering ??? final energy (eV)

TRBS simulation of LEIS:

TRBS:

- ✓ Monte-Carlo
- ✓ amorphous target
- ✓ dE/dx (non-local)
- ✓ multiple scattering

multiple scattering

- \rightarrow low energy edge
- \rightarrow plateau height

Application to nm layers

how to keep multiple scattering low?

use protons as projectiles (low Z₁) use ,high' energies (rather 5 keV than 500 eV)

how to optimize depth resolution?

use low energies ($\delta x \propto E$)

 \rightarrow compromise resolution \leftrightarrow multiple scattering

2.6nm Au/B – thickness inhomogeneity

Au evaporated onto B substrate RBS for thickness (SIM-NRA): $26\text{\AA} \pm 5\%$

atomic force microscopy for surface inhomogeneity: ± 5Å

3 keV H⁺ \rightarrow 2.6nm Au/B

LEIS quantitative for nm layers !?

Ga/Si(111) (evaporated in situ, quartz reading: 6Å)

2 keV He⁺ for structure analysis: ~ 20Å (comparison to TRBS)

 \rightarrow annealing \rightarrow broadening of Ga peak (change in topography):

- either thickening of clusters or

- diffusion into Si

 \rightarrow sharp Si edge with and w.o. annealing \rightarrow major part of Si is free of Ga

Technical application: Cu/PET

Summary:

- ESA-LEIS & TOF-LEIS:
 - single crystals surface structure surface composition neutralization
 - thin films

surface composition neutralization growth modes

.

Acknowledgment

- JKU Linz / Austria: M. Draxler, S. Markin, S. Chenakin, P. Zeppenfeld
- TU Eindhoven-Calypso / The Netherlands: H.H. Brongersma
- IPP Garching / Germany: R. Beikler, E. Taglauer
- Hueck Folien GmbH Baumgartenberg / Austria: M. Bergsmann, F. Kastner
- Fonds zur Förderung der wissenschaftlichen Forschung

Quantitative LEIS

 $\leftrightarrow \text{Matrixeffects in P+?}$ Is $Y_A^+ = c_A \cdot \eta_A$?
Element A Concentration c_A Sensitivity factor η_A

Test: Adsorption of Br on W $\theta_{Br} + \theta_{W} = 1$ $c_{Br} + c_{W} = 1$ $Y_{W}^{+}/\eta_{W} + Y_{Br}^{+}/\eta_{Br} = 1$

