

The Abdus Salam International Centre for Theoretical Physics

() Internation Energy Age

SMR.1744 - 29

SCHOOL ON ION BEAM ANALYSIS AND ACCELERATOR APPLICATIONS

13 - 24 March 2006

MEIS - applications

Torgny GUSTAFFSON Rutgers State University of New Jersey, USA

Structure and composition of ultrathin films using MEIS

Torgny Gustafsson Rutgers University, Piscataway, New Jersey

In collaboration with:

Rutgers: E. Garfunkel, L. Goncharova, D. Starodub, M. Dalponte, **R. Barnes,** S. Sayan, W.H. Schulte, T. Nishimura, Y. Chabal, Y. Wang, J. DeFazio Agere: M. Green, G. Wilk, B. Busch Taiwan: R. Kwo, M. Hong IBM: E. Gusev, M. Frank Applied Materials: C. Czarnik et al. IMEC/Intel: W.Tsai et al. Sematech/Austin: G. Bersauker, P. Lysaght, B. Foran Cornell: J. Grazul, D. Muller NCSU: J.-P. Maria, G. Parsons, G. Lucovsky et al. Vanderbilt: Y. W. Song, L. Feldman Penn State: V. Vaithyanathan, D.G. Schlom Singapore: M.-Y. Ho, H. Gong et al. Berlin: G. Schiwietz Porto Alegre: H. Budinov, P. L. Grande

Why interest in ultrathin analysis? The SiO₂/Si system: interface of

CMOS Gate Structure

SiO₂ needs to be replaced by a higher dielectric constant material ("high-k")

The SiO₂/Si system: interface of choice in microelectronics for 40+ years

Moore's law says that the gateoxide thickness will soon be too small (~ 1 nm) due to large leakage currents from quantum mechanical tunneling

Towards Sub - 0.1 µm Technology

Dielectric properties of some materials

Material	Permittivity (k)	Thickness equivalent to 10 Å SiO ₂
Vacuum/Air	1	~3Å
SiO ₂	~3.8	10Å
Si ₃ N ₄	~7.8	~20Å
Al ₂ O ₃	~9	~30Å
ZrO ₂ , HfO ₂	~20-30	~50-75Å
Ta ₂ O ₅ , TiO ₂	~25-60	~60-140Å
SrTiO ₃	~60	~140Å

Thermal stability:

Si + $M_xO_y \rightarrow M$ + SiO₂ Si + $M_xO_y \rightarrow MSi_z$ + SiO₂ (or silicate) $\Delta G>0 @1000^{\circ}K$

Spectra and information content

Isotope studies of diffusion in oxides

Oxygen (O_2) transport in SiO₂

SiO₂ films:

- amorphous after annealing
- molecular O₂ transport in SiO₂
- decomposition by SiO desorption <u>High-K films (except Al₂O₃):</u>
- tend to crystallize at low T
- high oxygen mobility

Atomic oxygen (O) transport in high-K films

Isotope tracer studies

Energy

Oxygen reactions with and diffusion in hafnium oxide and silicate films

At least two reactions are possible:

Is the transport atomic (fast, for high- κ systems) or molecular (slow, SiO₂)? What is the mechanism?

What is the influence of composition on the rate of transport?

Oxygen reaction: effects of <u>composition</u> HfO₂(SiO₂)_x re-oxidation in ¹⁸O: 500°C, 10⁻² Torr, 30 min

- strong exchange reaction even at 500°C: ¹⁶O loss, but the same total O concentration
- no change in width of ¹⁶O and Si peaks (no formation of interfacial oxide)
- exchange rate decreases with increase of SiO₂ fraction x
- 50% of SiO₂ in HfO₂(SiO₂)_x is enough for almost full suppression of oxygen exchange

Kinetics of oxygen exchange with gas phase

Oxidation conditions: ¹⁸O₂, 10⁻²Torr, 490°C

HfO₂ f_{10} $f_$

- Hf oxide has a faster exchange rate than Hf silicates (reaches >90% of its final value in 10 min)
- ¹⁸O incorporation at 490°C is predominately due to exchange with gas phase, no/very little interface reaction
- ¹⁶O and ¹⁸O peaks have similar shapes, implying relatively uniform isotope intermixing
- The small reduction of ¹⁸O after ¹⁶O exposure indicates random network exchange

Temperature dependence of oxidation (I)

13

Exchange and growth temperature dependence (II)

Si

SiO

- Due to exchange reactions, the ¹⁸O in $(HfO_2)_2(SiO_2)$ layers increases, ¹⁶O decreases, with the total oxygen content constant.
- There is higher ¹⁶O density <u>at the interface</u> (¹⁶O/¹⁸O >1) ٠ at T_x=500-700°C (oxygen or vacancy exchange mechanism)
- Interface ¹⁶O/¹⁸O changes at $T_x \ge 800^{\circ}C$ due to (a) higher ¹⁸O equilibrium concentration (b) opening of direct paths through $(HfO_2)_2(SiO_2)$

Presence of nitrogen in high-κ film

• $(HfO_2)_2(SiO_2)$ films have been submitted to various post growth anneals $(NH_3, N_2, O_2, T_{anneal} = 500-700^{\circ}C)$ • only annealing in $NH_3/700^{\circ}C/60s$ results in nitrogen incorporation in $HfSiO_6$ with oxygen removal (final composition of $\underline{HfSiO_5N}(O: N = 5:1)$)

Sample	as grown	annealed in NH ₃
N content, 10 ¹⁵ cm ⁻²	2.59	4.09

• Nitrogen incorporation into the $HfSiO_x$ film **reduces** oxygen exchange in the film:

After ¹⁸O oxidation

Sample	as grown	annealed in NH_{3}
¹⁸ O content, 10 ¹⁵ cm ⁻²	2.55	2.1

15

Si₃N₄ layer nitrogen diffusion during ¹⁸O annealing

• Nitrogen atomic density is constant at $T_x \le 700^{\circ}$ C, oxygen diffusion causes some O/N intermixing at $T_x \sim 610-700^{\circ}$ C at the interface

• Nitrogen distribution broadens. Possible loss at T_x >800°C, presumably via diffusion towards the top surface and nitrogen loss from near-surface region

¹⁸O oxidation anneal at 950°C

Possible phase segregation

 almost complete exchange of ¹⁶O by ¹⁸O in the silicate layer

• possible phase segregation of the silicate layer with SiO₂ enrichment of the top surface layer

Shown depth profile is for illustration only, as lateral inhomogeneity may occur

Effects of film crystallization

To determine effect of crystallinity of the high- κ film, a 30Å HfO₂/6Å SiO₂/Si(001) stack was subjected to crystallization anneal prior to oxidation in ¹⁸O₂

Interfacial SiO₂ content by MEIS

- Normalize O and M peak position (to surface scattering energy) and heights.
- Can use to quantify excess (or missing) O in raw data
- $ZrO_2/SiO_2/Si$ –process-dependent interface SiO_2 thickness

Fine control of SiO_2 interface - can we controllably remove SiO_2 and not high-K oxide?

Interfacial SiO_2 desorption (as SiO) by vacuum annealing; note MO_x has not yet decomposed in this case.

One approach to interface control: Grow in UHV MEIS spectra for MBE grown HfO₂ on Si(001) after UHV anneals

- ✓ <u>No</u> SiO₂ layer on HfO₂/Si interface, stable to anneal in UHV to ≤530°C
- ✓ growth of thin (~4Å) SiO₂ interfacial SiO₂ layer at T~630°C
- ✓ complete film disintegration only above ~1020°C
- ✓ Broadening of the O peak and a small increase of the Si peak indicate interfacial SiO_2 formation

(with R. Kwo, National Tsing Hua University, Taiwan)

Oxygen interaction with cerium oxide films

Sample I: as-grown

interfacial Ce⁴⁺ is reduced to Ce³⁺ state

interfacial SiO₂ and silicate

Sample II: Sample I annealed to 750°C 10 min

 dissolution of interfacial SiO₂ with formation of a thick silicate film

Isotopic study of Ce oxide re-oxidation

10⁻² torr ¹⁸O₂, 500°C, 15 min H⁺ 130.75keV; 125.3°

Sample I "Ce oxide"

- the oxygen content in the films increases upon re-oxidation for both samples
- much more rapid interface growth than Hf silicate case
- the Si yield increases for the silicate, consistent with SiO₂ formation
- broadening and lowering of ¹⁶O peak suggests oxygen transport via place exchange mechanism

Influence of gate metals on the chemical stability of oxide stacks

Defects in high- κ gate stacks seem to be strongly dependent upon gate metal and thermal treatment.

Gate metal:

- can be oxygen source: W/HfO₂/Si
 (E.J. Preisler, S. Guha, M. Copel *et al., APL* 85 (2004) 6230)
- can be oxygen acceptor: Ti/HfO₂ (ZrO₂)/Si
 (H. Kim, P.C. McIntyre, C.O.Chui *et al., JAP* 96 (2004) 3467)
- can induce positive charge: Re/HfO₂/Si (Shift of E_{Fermi})

```
Ti/HfO<sub>2</sub>/Si(001) - mechanism?
```

Composition of initial gate stack (pre-anneal)

- ~45Å Ti was deposited at RT, p~1×10⁻⁸ Torr
- MEIS measurements were done within 14 hrs of deposition
- Ti layer oxidizes on the surface and at Ti/HfO₂ interface
- possible intermixing at TiO_x/HfO₂ interface
- partial depletion of oxygen from HfO₂ layer

 $HfO_2 + Ti \rightarrow HfO_{2-x} + V_O + TiO_x$

 simulations indicate that there is still detectable amount of SiO₂ remaining at the HfO₂/Si(001) interface

Compositional profile after anneal to 300°C

 Lowing and broadening of Ti peak with growth of O yields for the Ti region indicate Ti oxidation

•Ti + xO \Rightarrow TiO_x

- Decrease of Si surface peak and decrease of the width of O peak indicate partial removal of SiO₂ layer
- Incorporation of some of the Si initially present in the interfacial SiO₂ layer in the <u>high- κ layer</u> and oxidation of the Ti layer at the Ti/HfO₂ interface changes stack capacitance in comparison to an ideal TiO δ /HfO₂/Si structure

Oxygen diffusion kinetics

Ti thickness issues

- Ti thickness should exceed some minimal value for SiO₂ reduction to start
- Thicker Ti films stacks show SiO₂ layer reduction even without low T anneal

- O transport through HfO₂ is fast
- amount of O incorporated into the bulk of Ti overlayer never exceeds O solubility limit in Ti (no strong chemical bonding...)

Compositional profile after air exposure

- Further Ti oxidation in the surface layer
- Complete Ti layer oxidation to TiO₂ is not achieved (dashed line),
- Hf oxide layer remains slightly oxygen depleted: oxygen vacancies can affect electrical measurements

Summary (so far)

- Oxygen incorporation and /or exchange rates are a strong function of film composition: different interaction mechanisms with oxygen for Hf and Ce compounds
- Exchange and growth rates are strong functions of temperature
- Nitrogen incorporation into the high-k film reduces oxygen exchange
- Increasing film crystallinity enhances oxygen exchange, presumably (?) by opening more permeable diffusive pathways via crystallite grain boundaries

Epitaxial oxide material integrated with Si

Epitaxial oxides on Si grown by molecular beam epitaxy Droopad R., Yu Z.Y., Ramdani J., *et.al J. CRYSTAL GROWTH* 227, 936 (2001)

- Epitaxial structures may afford controllable interfaces (no dangling bonds...)
- Thermal stability
- Dielectric constants
- Lattice match?

Sc₂O₃/Si(111)
 SrTiO₃/Si(001)

Motivation

Possible applications

- gate oxide in Si CMOS technology:
 - high κ results in low equivalent oxide thickness
 - nearly defect-free interface results in large carrier mobility
 - crystallinity results in better stability and reliability
- ferroelectric and high- T_c heterostructures

Challenges

- chemically unstable interface with Si
- formation of *low-* κ (a-SiO₂, silicates) layer at the interface
- low band offsets
- difference in expansion thermal coefficients

MEIS Yields: Epitaxial vs Amorphous

- When an incident beam is aligned with a lowindex axis of an epitaxial film, the spectrum mainly reflects the surface composition
- Easier to investigate interface chemical composition of epitaxial films than amorphous ones

Sc₂O₃ films grown on Si(111): Growth Details

- 50-80Å Sc₂O₃ films were grown on Si(111) using MBE (electron beam evaporation of a pure Sc₂O₃ at substrate T~770°C)
- Initial SiO₂ was removed from the surface by annealing in UHV at Tx~950°C, (7x7) reconstructed Si(111) surface
- HREED indicate that the films have the same in-plane symmetry as the Si(111) substrate

 \Rightarrow Epitaxial growth

C. P. Chen, M. Hong, J. Kwo, et al, *J. Crystal Growth* 278 (2005) 638 M. Hong, A. R. Kortan, P. Chang, et al, *APL* (submitted)

In collaboration with M.Hong, National Tsing Hua University

Sc₂O₃ structure

Bulk Sc₂O₃ has the cubic bixbyite structure

a=9.845Å (la<u>3</u>)

MEIS experimental data 50Å Sc₂O₃(111)/Si(111)

- χ = Yield_{cryst}/Yield_{amorph} = 4%, indicating good film crystalline quality;
 no interface Sc and O are observed;
- fractional number of silicon atoms \Rightarrow crystallinity of the interface and predominant deformation of Si lattice

Lower growth temperature

80Å Sc₂O₃(111)/Si(111)

- Crystalline film, however quality deteriorates
- Surface Si peak: formation of void in the film that leave some of the substrate exposed, or Si enriched grain boundaries

Angular Distribution Analysis

- No minima for Sc in the Si blocking geometry
- Detector shift to a different angle range reveals blocking minima in Sc yields
- Sc blocking minimum can be related to the stereographic projection of the (111) faced cubic crystal and corresponds to the [211] scattering plane.

(111)Sc $_2O_3$ // (111)Si and [211]Sc $_2O_3$ // [112]Si

Alternative Scattering direction: [211] channeling

To confirm the azimuth orientation of the epitaxial film sample was rotated by 60°.

• The [211] channeling direction and the [211] Si scattering plane were used and the alternative blocking directions were probed.

• Si yields show a blocking minimum at 125°, which corresponds to [011] direction.

Sc angular distribution has minima at ~105°, 125° and 131°, that can be identified as the [001], [114] and [113] blocking directions in the [<u>11</u>2] scattering plane.

Growth and structure of the interface

- Both Si(111) and Sc₂O₃(111) surfaces exhibit 3-fold rotational axis symmetry
- (7x7) Si(111) surface was used to initiate Sc₂O₃ growth (a=16.457Å)
- Unique positions of oxygen atoms in Sc_2O_3 film relatively to (7x7)Si(111) surface favor 60° (=180°) rotation
- Possible sub-oxide formation at the interface

SrTiO₃/Si(001): Film fabrication

Solution: multi-step epitaxy

- initial formation of SrSi₂ to:
 - (i) provide template for epitaxy;
 - (ii) avoid Si oxidation;
 - (iii) avoid Ti contact with Si
- further growth by alternating cycles of low-T Sr and Ti co-deposition in O_2 , and recrystallization at high T
- how does interface change during high-T step (due to Ti, Sr, Si, O diffusion/ reaction)?
- optimization of re-crystallization conditions

Top surface termination

 predominantly Sr termination, but better quantitative agreement by invoking 20% Ti-terminated patches

Interface composition

Normal incidence, 98keV H⁺, scattering angle 125° (substrate Si blocking) SrTiO₃/SrTiSi_xO_y/Si(001)

Sr, Ti and O are observed in the interface region - they are visible to the ion beam (not blocked) in this scattering geometry

SrTiO ₃	78Å
SrO	2Å
TiSi _x O _y	6Å
Si(001)	

or

SrTiO ₃	78Å
Ti _{1-x} Sr _x Si _y O _z	8Å
Si(001)	

42

Interfacial peak analysis

 lowering re-crystallization temperature results in reduction of visible interfacial Ti, consistent with Sr silicide/silicate interface

Thermal stability issues

- no change after annealing up to 750°C
- disordering starts at interface at 850°C, eventually results in TiSi₂ formation and removal of Sr and O

2Si + SrTiO₃ \rightarrow TiSi₂ + SrO(g) + O₂(g) + SiO(g)

Thermal decomposition

AFM before (as grown)

Annealed to 950°C

TPD (temperature desorption spectra) for 35Å SrTiO₃/Si(001) (heating rate of 1.5K s⁻¹)

- SrO and SiO (?) desorption at T>800°C
- Complete decomposition and formation of large TiSi_x islands (I=50-100nm, h~10nm)

Why GaAs (or Ge)?

- Potentially great advantages over Si-based devices for both high-speed and high-power applications
- The electron mobility of GaAs is 5x that in Si
- Much thinner interfacial oxide

HfO₂ on GaAs: MEIS and TEM comparison

• TEM and MEIS results are consistent

TEM of Al₂O₃ on GaAs

No etch

(J. Grazul and D. Muller, Cornell)

• no contrast between Al₂O₃ and Ga_xAs_vO

MEIS data of Al₂O₃ on GaAs: oneparameter fitting

80

85

H⁺ Energy (keV)

90

95

49

for the HF-etched sample

Summary

- Highly ordered epitaxial growth.
- Epitaxial growth of Sc₂O₃ was accompanied by 60° inplane rotation of the film relatively to substrate
- Low leakage current and a high breakdown field show promising electrical characteristics
- Composition of SrTiO₃ on Si(001) interface can be controlled by recrystallization temperature
- SrTiO₃ film decompose under UHV anneal above 850°C with formation of TiSi_x islands

Conclusions

- Oxygen mobility in high-k films is a serious issue. Interesting material dependence!
- High-k films compositionally layered, usually with SiO₂ at interface on Si. Methods to monitor SiO₂ content developed.
- Crystalline films on Si show promising (or at least interesting) properties. Composition and structure have been determined.

Oxygen transport mechanisms examined by ion scattering

