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A network of excitable nodes based on the photosensitive Belousov-Zhabotinsky reaction is studied
in experiments and simulations. The addressable medium allows both local and nonlocal links
between the nodes. The initial spread of excitation across the network as well as the asymptotic
oscillatory behavior are described. Synchronization of the spatiotemporal dynamics occurs by en-
trainment to high-frequency network pacemakers formed by excitation loops. Analysis of the
asymptotic behavior reveals that the dynamics of the network is governed by a subnetwork selected
during the initial transient period. © 2006 American Institute of Physics.
�DOI: 10.1063/1.2177569�

Networks of excitable nodes with complex connectivity
are common in the biological world, such as interacting
neurons in brain tissue. We study networks of excitable
nodes based on the photosensitive Belousov-Zhabotinsky
(BZ) reaction, in which local and nonlocal links are pos-
sible. Reaction-diffusion waves propagating into neigh-
boring regions comprise the local links, while the nonlo-
cal links are created by nondiffusive jumps in the
addressable excitable medium. The network initially de-
velops by the spread of excitation through the medium
via the local and nonlocal links, yielding insights into the
growth of the network of excitable nodes, including the
role played by path-length optimization. The dependence
of the asymptotic spatiotemporal behavior on the number
of nonlocal links is examined and described in terms of
phase and frequency synchronization of the nodes. The
dynamics of the excitable nodes leads to a pruning pro-
cess that gives rise to a subnetwork of active links. The
addressable excitable BZ medium allows the character-
ization of the growth and asymptotic dynamics of a net-
work of excitable nodes.

I. INTRODUCTION

Recent developments in characterizing network
architectures1,2 have led to studies of more complex network
systems, such as networks of coupled oscillators.3,4 These
networks are natural models for a variety of biological and
physical processes, including neural networks1,5–8 and net-
works of chemical oscillators.9 The effect of network archi-
tecture on the dynamics of coupled oscillators has been ex-
amined in studies of network synchronization.10,11 Recent
studies have focused on the interrelations between network
architecture and dynamical properties, such as weighted cou-
pling strategies for improved synchronization within small
world networks3 and the relationship between frequency
locking to a pacemaker and the network depth.9

Networks of excitable nodes, with an excitable steady
state being the locally stable state, are fundamentally differ-
ent from networks with oscillatory nodes. Without some ex-
ternal perturbation, such a system will remain continually
quiescent. A number of theoretical studies have been carried

out with models of neurons as local excitable elements6,7,12,13

and with the susceptible-infected-susceptible �SIS� model for
disease spreading.14 These studies include the characteriza-
tion of synchronization6,14 as well as self-sustained oscilla-
tions arising from recursive feedback within a network.6

While networks of excitable nodes require an initial pertur-
bation to exhibit complex dynamical behavior, once per-
turbed, such networks evolve to exhibit global oscillations
that are similar to those exhibited in networks of oscillatory
nodes. An important difference between networks of excit-
able and oscillatory nodes is that the excitable system
evolves from the initial perturbation by the growth of the
network. In the course of the initial spread of the excitation,
the dynamics of the network is established, which ultimately
determine the asymptotic behavior of the network.

In this report, we examine the spatiotemporal dynamics
of a network of excitable nodes. We focus on an experimen-
tally realizable network based on the photosensitive
Belousov-Zhabotinsky system,15,16 in which the local excit-
ability can be manipulated via light intensity.17 We first ex-
amine the spread of excitation across the network following
a perturbation of the quiescent steady state. The conditions
for sustained oscillations or the collapse of the dynamics to
the steady state are then characterized. The nature of the
oscillatory behavior in terms of frequency and phase locking
of the underlying excitable dynamics is discussed. Finally,
we examine how the network evolves as a consequence of
the dynamical processes, and we identify the active subnet-
work.

II. NETWORK

A. Experimental system

The experimental system consists of the photosensitive
BZ reaction in which the trisbipyridine Ru�II� catalyst is im-
mobilized in a thin layer �0.3 mm� of silica gel that is bathed
in continuously refreshed catalyst-free solution.18 A video
projector and video camera interfaced with a computer allow
real-time feedback for perturbing the light sensitive medium
and monitoring its response. The system is maintained in an
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excitable state with an illumination intensity of 8.82
�10−3 W m−2. The gel area of 22 mm�22 mm is divided
into a 26�26 cell array by the imposed light intensity, where
each cell is made up of 10�10 grid points. The reaction
mixture composition, �BrO3

−�=0.552 M, �malonic acid�
=0.026 M, �bromomalonic acid�=0.162 M, and �H2SO4�
=0.489 M, was prepared so that the system is oscillatory in
the dark state. Hence, a wave can be initiated at a cell by
reducing the light intensity to zero in that cell.

B. Model system

Numerical studies were conducted using the Oregonator
model19,20 of the photosensitive BZ reaction16,21,22

�u

�t
= Du�

2u +
1

�
�u − u2 − �� + fv�

u − q

u + q
� , �1�

�v
�t

= u − v , �2�

where u and v are the dimensionless concentrations of
HBrO2 and Ru�bpy�3

3+, Du is the diffusion coefficient of
HBrO2, and � represents the rate of photochemical bromide
production due to the irradiation. The Euler method was used
for the numerical simulations, with dx=0.15 and dt=0.001,
and the parameters are f =1.4, q=0.0002, �=0.01, and Du

=1.0, where � and q are scaling parameters and f is an ad-
justable stoichiometric parameter. The network was com-
prised of a 50�50 cell array, with each cell made up of 19
�19 grid points. A wave could be initiated at a cell by set-
ting �=0 at all grid points within the cell while the sur-
rounding medium was maintained in the excitable state with
�=0.073.

C. Experimental and numerical methods

Each cell in the square array of cells is considered to be
a node in the static network. Local links arise naturally
within the array from propagating reaction-diffusion waves,
which emanate from initiation sites to propagate through sur-
rounding cells. Directional nonlocal links are created by
changing the excitability of a destination cell according to
the state of a source cell. The resulting nonlocal links are
assigned prior to commencing an experiment by randomly
choosing a source cell i and a destination cell j, where i� j.
The threshold for activation of a link is determined by the
excitation of 50% of the grid points in a source cell, which
then triggers an increase in excitability in the destination
cell. This increase in excitability may or may not give rise to
the initiation of a new wave, depending on the dynamical
state of the destination cell. The overall experiment is initi-
ated by reducing the light intensity to zero in the center cell
of the medium to initiate a wave propagating into the sur-
rounding excitable cells.17

III. NETWORK STRUCTURE

The addressable excitable medium, with local and non-
local excitations, has the structure of a static network with
directed, weighted links.23 We consider the cells to be nodes

of the network, and the weighting of a link between nodes is
determined by the time required for an excited node to give
rise to an excitation at a node to which it is directly con-
nected. For local links, this excitation time is governed by
the geometrical distance between the nodes. The weighting
for a nonlocal link is determined by the time between the
excitation of the source node and the appearance of a wave at
the destination node.

The underlying architecture of the network can be char-
acterized according to the mean path length and the cluster-
ing coefficient.1,10 The mean path length is defined as the
average minimum separation of two nodes within the net-
work. The variation of the mean path length with the number
of links is shown in Fig. 1. The clustering coefficient is de-
fined as the average number of links between neighbors of an
individual node divided by the total possible number of links
between these neighbors.2,24 The statistical measures in Fig.
1 reveal a small-world network architecture as the number of
possible links in the system is increased. At a low number of
links, the mean path length and clustering coefficient reflect
the underlying lattice network. At a high number of links, the
mean path length scales as that of a random graph,25 while
the clustering coefficient remains close to the value for a
network with no random links. For an intermediate number
of links, we see small path lengths and relatively large clus-
tering coefficients typical of small-world networks.2

The initial spreading of excitation through the system
can be characterized by recording the time each node is first
excited following the central initiation of the experiment.
The initial wave expands radially, and as source nodes are
excited, new waves are initiated via links to destination
nodes. Further initiations continue to occur until all of the
nodes have been excited at least once. Figures 2�a� and 2�c�
show typical configurations of the computational and experi-
mental networks, respectively, where each node is shaded
according to the time of excitation. The spreading of the

FIG. 1. The mean path length �solid line� and the clustering coefficient
�dashed line� as a function of the number of randomly assigned nonlocal
links. The values are normalized by the mean path length and the clustering
coefficient, respectively, for the network with no random links. Circles show
the normalized mean path length resulting from a reduction in the number of
network links due to the dynamics of the excitable nodes �see Sec. IV D�.
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central excitation is apparent as well as the subsequent non-
local excitations.

The structural features of the network can be evaluated
by examining the shortest distance between each node and
the central node in the network, which can be determined
using Dijkstra’s algorithm.26 Figures 2�b� and 2�d� show net-
works with the same links as in the simulations and experi-
ments in Figs. 2�a� and 2�c�, where now each node is shaded
according to its distance from the central node along the
shortest pathway. The weighting of the links in Dijkstra’s
algorithm is determined by the time required for an excited
node to excite the nodes to which it is directly connected.

The time required to excite the nearest neighbor nodes is
used to normalize the times for the other links, and the
weighting for the four nearest neighbor links is simply w1

=1. We assume the time required to excite the next-nearest
neighbor links is proportional to the geometrical distance
between the nodes, and the weighting for these links is there-
fore w2=�2. The initiation time for a nonlocal link is the
time between excitation of the source node and the time of
appearance of a wave at the destination node. The wave ini-
tiation time in the experimental system is significantly longer
than in the model system, and different weightings for the

FIG. 2. �a� The normalized time of travel from the central wave initiation to each node. Numerical simulation for a system of 50�50 nodes and 100 nonlocal
links. �b� The shortest path length from the central wave initiation to each node for the network in �a� calculated using Dijkstra’s algorithm. A weighting of
0.4 is applied to the nonlocal links. �c� The normalized time of travel from the central initiation to each node for a 26�26 node experiment with 10 nonlocal
links. �d� The shortest path length from the central initiation to each node for the network in �c� calculated using Dijkstra’s algorithm. A weighting of 2.1 is
applied to the nonlocal links.
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nonlocal links are therefore required in the corresponding
Dijkstra’s algorithm calculations. For the experimental and
model networks, weightings of w3,exp=2.1 and w3,num=0.4
were used for the nonlocal links. The difference in the ini-
tiation times in the experiment and numerical networks, and
hence the weightings of nonlocal links, is due to residual
light intensity that is unavoidable in the experimental system
as well as the nonquantitative nature of the model system.

The striking similarity between Figs. 2�a�, 2�c�, and 2�b�,
2�d� indicates that the excitation propagates through the net-
work via the shortest path between nodes. This result is re-
lated to the determination of optimal paths in a maze with
propagating reaction-diffusion waves,27 as a maze is equiva-
lent to a network of connected nodes. Thus, the minimal path
length from the central initiation point to every node in the
network is determined by the spread of excitation through
the network and corresponds to the minimal path length de-
termined by Dijkstra’s algorithm.

The information in Figs. 2�a� and 2�c� also includes the
first coverage time, which is the time taken for each node to
be excited at least once following the central initiation. Simi-
larly, the information in Figs. 2�b� and 2�d� includes the rela-
tive network diameter, which we define as the distance to the
node that lies farthest from the central node measured along
the network.2 Figure 3 shows the first coverage time and the
relative network diameter as a function of the number of
links for the experimental measurements and model system.
The values of first coverage time and the relative network
diameter are normalized with respect to the maximum values
at zero link number. We see that the first coverage time de-
pendence on the number of links is equivalent to the depen-
dence of the relative network diameter calculated using Dijk-
stra’s algorithm.

The measures shown in Figs. 1–3—the mean path, short-
est path, and relative network diameter—demonstrate impor-
tant features of the underlying network architecture and il-
lustrate the ability to explore these features with the excitable
reaction-diffusion system. However, even though an initial
network structure is imposed on the system, the underlying
dynamical processes give rise to the evolution of an effective

network. The nodes of the network are comprised of the
excitable medium, and the grid points in each node exist in
either an excitable, excited, or refractory state. Each part of
the medium is maintained in the excitable state until it is
excited locally by a propagating reaction-diffusion wave or
nonlocally by a wave initiation at the destination node of an
active link. Once excited, the medium locally undergoes an
excitation cycle and cannot be excited again until it has re-
laxed back to the excitable state. Therefore, some nodes in
the original network structure become unavailable for exci-
tation as the result of local excitation cycles occurring
throughout the medium. The measures that have been de-
scribed in this section correspond primarily to the first exci-
tation of the medium; we describe the dynamic evolution of
the network in the next section.

IV. NETWORK DYNAMICS

Figure 4 shows typical behavior of the experimental sys-
tem in successive snapshots taken at 15.0 s intervals. The
dark squares in each frame show the destination nodes of
activated links, where the excitability is increased for pos-
sible wave initiation. The bright regions show the excited
state of the reaction-diffusion waves, where the regions im-
mediately behind are in the refractory state. Frames �a� and
�c� were taken at an interval approximately equal to one pe-
riod and show similar patterns of coverage, as do frames �b�
and �d�.

A. Fractional coverage

An instantaneous measure of the state of the system is
given by the fractional coverage, defined as the fraction of
the medium that is in the excited state at any time. Both the
transient and asymptotic dynamics of the network are re-
vealed as a function of time by this measure. Figure 5 shows
the fractional coverage of a model system with 200 nonlocal

FIG. 3. �a� The normalized relative network diameter measured using Dijk-
stra’s algorithm ��� and the normalized first coverage time ��� as a function
of the number of nonlocal links in an experimental 26�26 node system.
Each point represents 10 network configurations. �b� The normalized rela-
tive network diameter ��� and the normalized first coverage time ��� as a
function of the number of nonlocal links in numerical simulations of a 50
�50 node system. Each point represents an average of 20 network
configurations.

FIG. 4. Images of a typical experiment with a 26�26 node network and
300 nonlocal links. Dark squares represent activated destination nodes. Im-
ages were taken at 15 s intervals.
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links, where three different types of behavior are observed
depending on the initial conditions. The excitation may
spread through the medium only once, with the system sub-
sequently relaxing to the excitable steady state, as shown in
Fig. 5�a�, or sustained oscillations may be exhibited, as
shown in Fig. 5�c�. Occasionally, a number of transient os-
cillations are observed before the system collapses to the
excitable steady state, as shown in Fig. 5�b�.

As the number of nonlocal links is increased, it becomes
more and more likely that the nodes of the network will each
be excited only once. The dependence of the behavior on the
number of links was investigated with the computational
model to determine the probability of collapse to the steady
state. Approximately 40 simulations with different initial
conditions were carried out to determine the collapse prob-
ability for each link number shown in Fig. 6. We see that the

probability of the system collapsing to the steady state in-
creases with an increase in the number of nonlocal links. In a
system with no nonlocal links, a single wave of excitation
will propagate through the medium, with each node becom-
ing excited once and remaining refractory for a period of
time before relaxing to the excitable state. Secondary wave
initiations can occur in a system with nonlocal links if the
destination nodes are no longer in the refractory state when
the link is activated. The transition to nonsustained oscilla-
tory behavior is accompanied by a decrease in the first cov-
erage time. The increase in collapse probability occurs when
the first coverage time is approximately equal to the period
of the excitation cycle. The dashed line in Fig. 6 indicates the
number of links for which the first coverage time is equal to
the excitation cycle period. Nonlocal links become ineffec-
tive at shorter first coverage times because the initiation of
secondary waves at destination nodes is not possible when
these nodes have not relaxed to the excitable state.

Typical sustained oscillations in the fractional coverage
are shown in Fig. 7 for the experimental and model systems.
We see in the experiments and simulations that the oscilla-
tion amplitude tends to increase as the number of nonlocal
links is increased. The increase in amplitude corresponds to
an increase in phase synchronization of the oscillatory be-
havior throughout the medium. Simple oscillations were the
most common in both the experiments and the simulations,
although complex oscillations were occasionally exhibited
�which we exclude in our analyses�. The oscillations in the
experimental system tend to be less regular due to the inher-
ent inhomogeneity of the system.

We note that collapse to the steady state was not ob-
served in the experimental system. Possible explanations for
this include the inherent inhomogeneities and the fact that
the first coverage time is always longer than the period of the
excitation cycle in the experimental system. Simulations
were carried out to test these possibilities, in which a system
with 200 links that exhibited collapse, as in Fig. 5�a�, was
modified. In one set of calculations, a delay in the wave
initiation time was incorporated into the model to mimic the
longer wave initiation time observed in the experiment.
When the wave initiation time was increased by a factor of 5,
which was comparable to the wave initiation time in the
experiment, sustained oscillations were observed. The delay

FIG. 5. Three types of behavior for the fractional coverage as a function of
time: a single excitation �a�, transient oscillations �b�, and sustained oscilla-
tions �c�. Simulations carried out with a 50�50 node network, with a dif-
ferent set of 200 nonlocal links in each case.

FIG. 6. Probability of collapse to the steady state as a function of the
number of nonlocal links. Each point represents the average of approxi-
mately 40 configurations of the links. Simulations carried out with a 50
�50 node network. The dashed line corresponds to the number of links in
which the first coverage time is equal to the period of the excitation cycle.

FIG. 7. �a� The fractional coverage as a function of time in experiments
carried out on a 26�26 node network with 300 nonlocal links �dashed line�
and 20 nonlocal links �solid line�. �b� Fractional coverage as a function of
time in simulations of a 50�50 node network with 200 nonlocal links
�dashed line� and 10 nonlocal links �solid line�.
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gives rise to an excitation cycle that is longer than the first
coverage time, as observed in the experiment. Another set of
calculations was carried out in which the value of � was
increased from 0.073 to 0.100 in one-half of the medium.
Sustained oscillations were observed in the inhomogeneous
system, while the homogeneous system collapsed to the
steady state.

B. Frequency synchronization

Experiments and simulations were carried out to inves-
tigate the synchronization behavior of the nodes, where the
state of each node was described by the average concentra-
tion of the inhibitor Ru�bpy�3

3+. The local intensity in the
experimental images corresponds to the concentration of the
inhibitor, and the local value of the variable v corresponds to
the inhibitor concentration in the simulations. The period of
each node is then defined as the time between successive
maxima in the corresponding time series. The period is never
less than that of an excitation cycle; however, it may be
longer if the node remains in the excitable state for extended
times, and it can be infinite in the case of no subsequent
excitations of a node.

Figure 8 shows the evolution of the average period of the
nodes and the corresponding standard deviation as a function
of time for simulations with 30 and 180 links and for an
experiment with 300 links. As the network settles into its
fractional coverage oscillation, the period of all of the nodes
approaches a single value. Following a transient time, the
standard deviation becomes very small in the simulations,
shown in �a� and �b�, as the average period of an individual
node oscillation converges to the period of the coverage os-
cillation. Frequency synchronization is exhibited whenever
sustained coverage oscillations occur, regardless of the num-
ber of nonlocal links, although the duration of the transient

time may depend strongly on the particular link configura-
tion. We note that the larger standard deviation in the mea-
surements shown in �c� is likely a reflection of the unavoid-
able inhomogeneities in the experimental system.

Frequency synchronization is the result of entrainment
by the highest frequency network pacemaker, where a pace-
maker is defined as a periodic source of excitation. In a net-
work of excitable nodes, periodic sources of excitation arise
when there are links with destination nodes behind waves
that excite the source nodes of the links. Such an excitation
loop forms a distributed network pacemaker, with a period
defined by the time required for a wave to travel from the
destination node to the source node plus the time for the
nonlocal link to re-excite the destination node. These loops
may have complicated structures, with multiple local and
nonlocal links. An excitation loop will entrain all of the
nodes in the network, provided that its period is shorter than
that of any other excitation loop. These excitation loops lead
to a dependence of the asymptotic period on the number of
links, as shown in Fig. 9. We see that for greater than about
50 links, it is likely that there will be an excitation loop with
the shortest possible period, which is governed by the period
of the excitation cycle. Hence, as soon as a destination node
behind a wave relaxes to the excitable state, it is excited by a
link to an excited source node. For lower numbers of links,
the asymptotic period also depends on the length of the
shortest excitation loop, but now the period may be longer
because destination cells behind waves may remain excitable
for extended times. For few links, the period of the excitation
loops becomes highly dependent on the network structure,
and therefore a much larger standard deviation in the period
is observed, as seen in Fig. 9.

C. Phase synchronization

We use a measure of the degree of phase synchronization
given by the normalized vector sum of the phases, R
�Ref. 28�,

FIG. 8. The average period �solid line� and standard deviation �dashed lines�
in simulation of a 50�50 node network with 30 nonlocal links �a� and 180
nonlocal links �b�. The average period �solid line� and standard deviation
�dashed lines� in experiment on a 26�26 node network with 300 links �c�.

FIG. 9. The average period as a function of the number of nonlocal links in
the model system. The error bars show the standard deviation corresponding
to approximately 10 different configurations of the network.
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R =
1

N
�	

j=1

N

ei�j� . �3�

A value of R close to zero indicates that the phases of the
individual oscillators are evenly distributed, while a value of
R close to unity indicates the oscillators are in phase. We do
not expect to observe R values close to unity, since sustained
oscillations are not possible in a highly synchronized net-
work of excitable nodes. Figure 10 shows that the phase
synchronization increases as links are added to the network.
A consequence of this synchronization is the increase in am-
plitude of the coverage oscillation with increasing numbers
of links seen in Fig. 7.

D. Active links

The dynamics of the excitable medium making up the
nodes of the network gives rise to a pruning process in which
a subset of the links originally ascribed to the network be-
comes inactive, while the remaining active links account for
the dynamical behavior of the system. The pruning occurs
for particular spatiotemporal patterns because the destination
nodes may be in the excited or refractory state and therefore
cannot be excited. We define an active link as a nonlocal link
that results in a successful initiation of a wave at the desti-
nation cell. The structure of the dynamical process that gives
rise to oscillations in the coverage will now be examined
according to the number and sequence of active links.

The number of active nonlocal links during regular cov-
erage oscillations is shown as a function of the total number
of nonlocal links in Fig. 11. A correlation is apparent, al-
though there is an increasingly large spread in the values
arising from the increase in possible network configurations.
The average number of active links is a slightly decreasing
fraction of the total as the number of random links increases.
This slight falloff is apparently the result of a saturation ef-
fect, since the medium becomes more phase synchronized at
higher link numbers. This gives rise to increasing numbers of

inactive links, as more source nodes are activated at coverage
oscillation maxima when destination nodes are more likely
to be unexcitable.

Further insights into the dynamics of the network can be
gained from the sequence of active links. The repeating pat-
tern of initiations that leads to the overall oscillations can be
examined in terms of the sequence in which the links are
activated. Destination nodes of active links are labeled ac-
cording to the order of their excitations during the
asymptotic coverage oscillations. The active link with its
destination node closest to the center of the medium is cho-
sen to be link 1, and the subsequent active links are succes-
sively numbered at their destination nodes. This leads to a
sawtooth profile in the order of destination node excitation,
increasing from 1 to the total number of active links, when
plotted as a function of time. This sequence of initiations is
repeated once per coverage oscillation, as shown in Fig.
12�a�. The sequence of active links may be stable or unstable
to particular perturbations, and these stability properties are
demonstrated in Fig. 12. Active link 6 is removed for several
oscillatory cycles from the previously stable sequence in Fig.
12�b�. We see that following a transient period, the system
finds a new cycle of sequential active links. Active links that
were not involved in the original sequence are numbered
according to their order of first occurrence during the tran-
sient. In Fig. 12�c�, active link 4 is removed for several os-
cillatory cycles. We see that the sequence is stable to this
perturbation, as it quickly returns to the original cycle. The
experimental system exhibits a similar sequencing of active
links over successive coverage oscillations, as shown in Fig.
13. We see that there is a spontaneous shifting of the active
link basis for the experimental coverage oscillation during
the transient period before the system relaxes to its
asymptotic sequence.

The impact of the underlying dynamics on the network
structure can be seen by replotting the effective mean path
length as a function of the number of links, where the values
are determined by including only the active links. We see in
Fig. 1 that the effective mean path length scales in the same

FIG. 10. Average value of R calculated from Eq. �3� as a function of the
number of nonlocal links in the simulation of a 50�50 node network.
Values are for sustained oscillations in the fractional coverage.

FIG. 11. The number of active nonlocal links as a function of the number of
random nonlocal links in simulations of a 50�50 node network.
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manner as the equivalent sized random network mean path
length. The underlying excitable dynamics has therefore se-
lected a dynamically equivalent subnetwork from the initial
network of local and nonlocal links.

V. DISCUSSION

The excitation spreads through the network from the ini-
tial central wave excitation to reach each node via the short-
est path. We find that the time required for the final node to
become excited varies in the same manner that the relative
diameter of the network varies with the number of links.
Oscillatory asymptotic behavior is more likely for networks
with low numbers of links, while collapse to the excitable
steady state is more likely for networks with high numbers of
links. The sustained oscillations in the fractional coverage
arise from the entrainment of the individual nodes of the
network to the highest frequency network pacemaker. The
associated phase and frequency synchronization of the nodes
is a consequence of the connectivity of the underlying net-
work and the ability of each excitable node to respond to the
highest frequency perturbation. We note that simple oscilla-
tory behavior was observed in almost all of our experiments
and simulations, and higher-order periodicities in the cover-
age oscillations were observed in only a handful of cases.

Insights into the network pacemaker can be gained by
considering an extreme example. We imagine a network with
only a single nonlocal link, with the source node an appro-
priate distance from the destination node at the center of the
medium. The resulting spatiotemporal pattern will consist of
expanding circular waves, with a frequency dependent on the
distance of the source node from the destination node. The
coverage oscillation simply corresponds to the increase in
excitation area as the wave expands and eventually leaves
the medium, which gives rise to a small amplitude oscillation
on repeated wave initiations at the destination node. We have
seen with increasing numbers of nonlocal links that the av-
erage amplitude of the coverage oscillation increases, indi-
cating that a higher fraction of the nodes are simultaneously
excited with increasing link connectivity.

The dynamical features of the excitable nodes give rise
to a pruning process, where a significant fraction of the links
becomes inactive and a subnetwork of active links deter-
mines the asymptotic dynamics. We have seen that the link
sequence is stable with respect to some link perturbations
and unstable with respect to others. The selection of a sub-
network by the collective dynamics of the excitable nodes
has features akin to the selection of subnetworks or network
motifs in genetic networks and food webs.29

The network of excitable nodes in the photosensitive BZ
system offers a means to demonstrate synchronization in an
experimental system with local and nonlocal links. The tran-
sition to synchronized behavior, through frequency locking
and an increase in the order parameter R, is similar to that
seen in other networks of oscillatory10,11 and excitable6,12,14

nodes. We note that similar synchronization also has been
found in a system of globally coupled electrochemical
oscillators.30 While understanding the synchronization of a
network of oscillatory or excitable nodes is essential for a
characterization of the system dynamics, other features such
as network growth and the relationship between network ar-
chitecture and node dynamics yield insights into the spa-
tiotemporal behavior. We note that the term network growth
has several meanings depending upon the context. In de-
scribing network architectures, it typically refers to the addi-

FIG. 12. �a� Sequence of node excitation for 30 nonlocal links in the simu-
lation of a 50�50 node network. �b� Sequence of node excitation with the
removal of active link 6 from t=24.4 to t=40.0. A new sequence is dis-
played that persists after link 6 is replaced. �c� Sequence of node excitation
with the removal of active link 4 from t=24.4 to t=40.0. The original
sequence is displayed after the link is restored. �d�,�e� Locations of the
active links plotted in the sequence shown in �a�,�b�.

FIG. 13. The active link sequence for a network with 10 links determined in
an experiment on a 26�26 node network. Links 7 and 8 are spontaneously
eliminated as the network evolves to a periodic sequence.
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tion of nodes to an existing network based upon a specified
attachment rule.2 In the work described here, the network
develops from an existing network architecture according to
the dynamical processes occurring in the network. We have
seen how the initial spread of activity, following an initiation
stimulus, traverses the network via the optimal shortest path.
The development of the asymptotic behavior is governed by
a pruning process in which an active subnetwork is selected
according to the intrinsic time scale of the node dynamics
and the architecture of the network.
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