WORKSHOP ON DRIVEN STATES IN SOFT AND BIOLOGICAL MATTER
18 - 28 April 2006

Active Thermodynamics of Cell Membranes

Nir GOV
Department of Chemical Physics
The Weizmann Institute of Science
Rehovot, Israel
Active thermodynamics of cell membranes

Nir Gov
Department of Chemical Physics

Workshop on Driven States in Soft and Biological Matter
ICTP, April 18-28, 2006
Introduction: Microvilli

Living epithelial cell (A6 cell line)

J. Gorelik et. al.; PNAS 100, 5819–5822 (2003)
Introduction: Microvilli

human blood lymphocyte

S. Majstoravich et. al.;

J. Gorelik et. al.;
Introduction: Microvilli

Actin bundles:

Dynamic:

J. Gorelik et. al. ; PNAS 100, 5819–5822 (2003)
Microvilli

Schematic picture:

Actin filament break-up at base

Actin monomer diffusion to tip

Tip complex

R
Actin polymerization driven motion

1. Extracellular stimuli

2. Produce active GTPases & PIP2

3. Activate WASp/Scar

4. Activate Arp2/3 complex to initiate new filaments

5. Barbed ends elongate

6. Growing filaments push membrane forward

7. Capping protein terminates elongation

8. Aging

9. ADF/cofilin severs & depolymerizes ADP-filaments

10. Pool of ATP-actin bound to profilin

11. Pool of ATP-actin bound to profilin

12. LIM-kinase inhibits ADF/cofilin

PAK

Actin treadmilling

10. Profilin catalyzes exchange of ADP for ATP
Our model: link actin polymerization with membrane curvature

Dynamics of Membranes Driven by Actin Polymerization

Nir S. Gov* and Ajay Gopinathan†
*Department of Chemical Physics, The Weizmann Institute of Science, Rehovot, Israel 76100; and †Department of Physics and Materials Research Laboratory, University of California, Santa Barbara, California 93106-9530 USA
Filopodia: Membrane proteins at the tip

Phospho-tyrosine (PY), Cdc42, Src etc.

Do these active proteins have a positive spontaneous curvature?
Filopodial tip complex

- Also important are bundling proteins such as Fascin.
- Tip contains formins, protecting actin from capping.

Tatyana M. Svitkina,1 Elena A. Bulanova,2 Oleg Y. Chaga, Danijela M. Vignjevic,1 Shin-ichiro Kojima, Jury M. Vasiliev,2 and Gary G. Borisy

Restoring force: saturation

\[h_c \propto L \]

\[F_0 \approx \kappa / R \]

"Long cylinder" limit

Equation of motion

\[
\frac{\partial h}{\partial t} = -\omega h + An
\]

Where:

\[\omega \propto \frac{F_0}{h_c}\]

\[v_0 = A\langle n \rangle\]

Restoring force

Growth velocity

And a noise term:

\[\langle (n - \langle n \rangle)^2 \rangle \neq 0\]
Microvilli: Height distribution

Observations:

Microvilli: Height probability distribution

From the equation of motion

→ Fokker-Planck equ.:

\[
\frac{\partial P}{\partial t} = \frac{\partial}{\partial h} \left(\omega h P \right) + \frac{1}{2} \frac{\partial^2 P}{\partial h^2} \frac{A}{\omega} \left\langle n^2 \right\rangle - \frac{\partial P}{\partial h} A \left\langle n \right\rangle
\]

At steady-state we get: \(\frac{\partial P}{\partial t} = 0 \)

\[\Rightarrow P(h) = R_n e^{2hv_0/D_h} e^{-h^2\omega/D_h} \]

where:

\[D_h = A^2 \left\langle n^2 \right\rangle / \omega = (\Delta n/n_0)^2 v_0^2 / \omega \]

Describes the distribution of tip activity
Fluctuations in the size of the MV tip

Aggregation driven by spontaneous curvature:

\[n \propto R^2 \]

\[\langle n^2 \rangle = \frac{k_B T}{\partial^2 E_n / \partial n^2} \approx n_0^2 \frac{k_B T}{\kappa} \Rightarrow \left(\frac{\Delta n}{n_0} \right)^2 \approx \frac{k_B T}{\kappa} \]

Typically \(\kappa \sim 5-20 \ k_B T \)

Thermal noise!
Microvilli: Height probability distribution

Why narrow distribution in ridges?
Microvilli: Spatial distribution/patterns

Reduced membrane curvature energy between the MV:

\[E_{\text{curv}} \approx \frac{\kappa h}{R} \]

Increased curvature energy of flattened tip:

\[E_{\text{bend}} \approx \frac{\pi \kappa}{8} \]

Min. height for ridge:

\[E_{\text{curv}} \geq E_{\text{bend}} \Rightarrow h_{\text{ridge}} \approx \frac{\pi}{8} R \]
Microvilli: ridges & height distribution

MV of unequal heights attract each other less than MV of equal heights

Additional restoring force: $-\omega(h - h_{nn})$
MV in ridges: Height prob. distribution

Ridge height equation of motion:

\[
\frac{\partial h}{\partial t} = -\omega h + A n_0 - \omega (h - h_{nn})
\]

Mean-field:

\[h_{nn} \approx \langle h \rangle \]
Exponential tails: due to force saturation

human blood lymphocyte

Long Microvilli: Force saturation

\[\langle h \rangle \approx A \langle n \rangle / \omega < h_c \]

\[P(h) = \begin{cases}
R_n e^{2hn_0/D_h} e^{-h^2 \omega / D_h} & h < h_c \\
R'_n e^{2h(-\omega h_c + A \langle n \rangle) / D_h} & h > h_c
\end{cases} \]

\[\frac{\partial h}{\partial t} = \begin{cases}
-\omega h + An & h < h_c \\
-\omega h_c + An & h > h_c
\end{cases} \]
Long MV: Height probability distribution
Microvilli: Spatial distribution/patterns

Microvilli: Spatial distribution/patterns

- Dynamic $\rightarrow T_{\text{eff}}$
- “Thermodynamic” phase diagram
Microvilli: Spatial distribution/patterns

- Linear aggregates due to positive spontaneous curvature of tip complex

T. Tlusty & S. Safran; Science 290 (2000) 1328

2D dipolar fluid, network of worm-like micelles etc.
Microvilli: Spatial distribution/patterns

- Assume single height of MV: $<h>$
- Excluded volume interactions
- Defects: free ends and 3-fold junctions

Based on:
Microvilli: Energy of defects

\[E_{\text{end}} \approx \frac{2\pi \kappa \hbar}{R} - \frac{\pi \kappa}{8} \]

Increases with \(h \)

\[E_{\text{junct}} \approx \frac{\pi \kappa \hbar}{6R} + \frac{2\pi \kappa}{15} \]

Increases more slowly with \(h \)
Formation of networks

If the MV height increases, junctions multiply over ends:

Phase transition to a connected network:

$$\frac{\partial^2 F}{\partial \phi^2} = 0$$

Spinodal
Free energy of gas of defects

\[
F(\phi)/k_BT = (1 - \phi) \ln (1 - \phi) + \phi_e (\ln \phi_e - 1) + \phi_j (\ln \phi_j - 1) \\
+ \phi_e \epsilon_e + \phi_j \epsilon_j - \frac{1}{2} \phi_e \ln \phi - \frac{3}{2} \phi_j \ln \phi
\]

\(\phi\) is the area fraction of the MV
\(\phi_e\) & \(\phi_j\) is the area fraction of the ends and 3-fold junctions respectively

Minimize with respect to independent defects’ concentrations:

\[
\phi_j = \phi^{3/2} e^{-\epsilon_j} \\
\phi_e = \phi^{1/2} e^{-\epsilon_e}
\]
Using: $\kappa = 10 \ k_B T$, $h = 400$nm

Microvilli: Spatial distribution/patterns

Percolation line

Coexistence region

"Gas"

Network "liquid"
Note: Large “effective” temperature

Using: $\kappa = 10 \, k_B T$, $\Phi = 0.05$

$h_{ridge} \approx \frac{\pi}{8} R$

$\frac{\partial^2 F}{\partial \phi^2} = 0$
Using a fixed T_{eff}
Does it really behave as “active”-thermodynamics?

Predictions of thermodynamic theory:

\[P(l) \sim e^{l/\bar{l}}, \text{ where } \bar{l} = \frac{\phi}{\phi_e / 2 + 3\phi_j / 2} \]
- Phase separation?
- What changes between cells?
- Equilibrium between systems in contact?
Conclusions

- **Spontaneous curvature of membrane proteins** that activate actin polymerization drives Microvilli dynamics and morphology.

- **Coupling of active and thermal fluctuations** on different length and time scales: “Active-Thermodynamics”
Acknowledgements

Theory
Ajay Gopinathan (UCSB)
Sam Safran (WIS)
Jacques Prost (Curie)

Experiment
Erich Sackmann (TUM)
Benny Geiger (WIS)
Ronen Alon (WIS)

Funding
BSF, EU-NoE, ISF
Multi-scale Modeling

Thermal & actin-driven aggregation → Tip formation

~100nm

Thermal & actin-driven aggregation of MV → Network formation

~1µm

Cell-wide morphology and shape

~10µm
Experimental challenge:

We need to characterize the physical parameters of the protein aggregates at the membrane:

- What is the spontaneous curvature?