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Impacts of SpW and SpC on Life
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The Magic Way in Astrobiology

 \When an astrophysicist addresses an
audience of biologists, he speaks of
astrophysics

 When a biologist addresses an audience
of astrophysicists, he speaks of biology

* When astrophysicists (or biologists) talk
among themselves, they speak of football




But unfortunately for you (and for me)

* Today, an astrophycisist (i.e. myself) will
address an audience of physicists (i.e.
you) and he will speak of biology...

* Anyway this indicates the important fact
that scientists who deal with Space
Meteorology are committed to work in the
framework of Life sciences as well !
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Introduction

The effects of solar activity and solar weather
have played a leading role in the origin and
evolution of life on Earth.

We reconsider two contributing joint factors:

Chemical & biological evolution on Earth and on
small bodies of S.S.

Energetics of the early Sun and outer sources of
energy

This leads to the necessity of improved
understanding and predicting solar activity




The Sources of Space Weather and Climate
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Sources of Chemical Evolution in S.S.

Diffuse Medium

ﬁ

Stellar Death and

Mass Ejection Star and Planet Formation

Exogenous Delivery -
7 e

Asteronds
Comets
Interplanetary
Dust :
7 Meteorites
Lo 1

Particles

Volcanic Outgassing
Endogenous Synthesis "

Hydrothermal Vents ' Miller Urey Syntheses

Planet




Wavelength
(nm)
1-10

10 -100
100 - 120
120 - 190

190 - 280

280 - 320

320 - 400

Solar Radiation
in Middle and Upper Atmosphere

Abbreviation

Soft X rays
Xuv
EUV
Vuv

uv-C

uv-B

UV-A

Name and
comments

X-ray UV
extreme UV

vacuum UV

arbitrary division
in photobiology

arbitrary division
in photobiology

arbitrary division
in photobiology)

Effects

ionize all
ionize N,, O, O,

ionize NO
dissociate O,

cut-off at
1.5 Gyr BP

dissociate O,

induces decrease in
photosynthesis of
cyanobacteria

Height
range(km)

70 -100
100 - 300
80 - 100
40 - 130

20 - 40

20 - 40

reaches the Earth’s
surface




Solar PaleoWeather and Emergence of Life on Earth
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UV Defense Mechanisms in Oceans
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Biologically-Motivated UV Defense Mechanisms

BIOLOGICALLY-MOTIVATED
UV DEFENSE MECHANISMS
|
e.d. ARCHEAN
v e ,,J[ OLDEST FOSSILS ] »| 38056y ep [——when —F[ﬂNDxIC ATHMOSPHERE

[ CYANOBACTERIA ]

b

—

are
~A| PROKARYOTIC
A el — show —h[ LITTLE EVOLUTIONARY CHANGE ]

developed

l adapted to
[ VARIOUS LY J

DEFENSE MECHAMISMS

growing in developing

HABITAT ABSORBING
[IN WATER COLUMN J PIGMENTS LIEEE DT

_| | requires
with such as

DA REPAIR
[U"JR ABSDRBERS] SCYTOMNEMIN MECHAMISMS
! I

such as

results in

Fe
RESISTAMCE CmapTlools

D R knowledge modeling kit

TO
NITROGENEOUS .
SALTS IONIZING RADIATION M. Messerotti, 2005




Physically-Motivated UV Defense Mechanisms
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lonizing and Non-lonizing Radiation During the Origin of Life
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Model Formations of a Gamma Ray Burst

FORMATION OF A GAMMA-RAY BURST could begin
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Can a GRB affect the Biosphere?




Extra-Solar Radiation During the Evolution of Life
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UV Radiation and the Distribution of Life in the S.S.
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Photobiological Effects in the Ozone-Free Early Atmosphere
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Radiation Resistance as Result of Evolutionary Selection
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New Insights from Solar Space Missions

Ulysses detected the existence of a stream of neutral
Helium atoms interacting with the heliosphere

The S.S. is colliding with a vast interstellar cloud

Can similar events produce Space Weather and Climate
harmful or favorable for the evolution of life in S.S.?

Ulysses identified lo’s vulcanism as the dominant source
of the jovian dust stream

Sulfur on the Europa icy surface is patchy

Non-water ice materials can be endogenous, possibly
also biogenic




Conclusions

Space and Solar Climate and Weather are fundamental
fellcct]?rs In constraining the possible theories for the origin
of life

They are also fundamental for understanding the early
evolution of life

The Sun’s evolution involved changes in T and L, key
factors in Astrobiology

A better understanding of past and present solar activity
would provide essential clues to modelling

— the earliest organisms

— the possible distribution of life in the S.S.
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Introduction

An important factor for understanding the origin
and evolution of life on Earth is the evolution of
Solar Weather and Solar Climate

It is important to reconsider the constraints that the
present knowledge of our star implies for the
emergence of life on Earth

This will provide further insights into what may
happen in any of the multiple solar systems that
are known to date




Isotopic fractionation of noble gases on Earth

The isotopic fractionation of the 5 stable noble gases (He,
Ne, Ar, Kr, Xe) is a signature of the early Sun.

The early atmosphere arose from collisions during the
accretion period (HV, Heavy Bombardment).

Planetesimal impacts increase the surface temperature,
affecting the formation of either a proto-atmosphere or a
proto-hydrosphere by degassing of volatiles (Matsui & Abe,
1986).

This generated a “steam atmosphere” and a rapid outflow of
hydrogen & some compounds (e.g. methane), carrying
along heavier gases in its trail (Hunten, 1993) by
aerodynamic drag.

The upward drag of noble gases atoms of similar dimension
competes with gravity — isotopes with different masses —
mass dependent fractionation.




Settlement of appropriate conditions for life

Solar analogs indicate a larger EUV emission by
the early Sun, which can drive mass fractionation
in the noble gases: the 22Ne/?°Ne ratio is larger
than in the Earth mantle or in the Solar Wind,

The observed fractionation is an indicator of:
a) The presence of the postulated escape flux.
b) The evidence for the solar energy source that drives
the outward flux of gases.
 The emergence of appropriate conditions for life
Is associated with the decrease of solar radiation
that characterizes the accretion period.




The generation of the hydrosphere

» At the end of the accretion period, the surface heat
flux diminishes.

* The “steam atmosphere” rains into a global ocean
(Kasting, 1993).

primitive atmosphere — hydrosphere + atmosphere

 This splitting leaves behind Carbon and Nitrogen
compounds — ingredients for subsequent chemical
evolution and, eventually, the dawn of life.




Effects of the young Sun on the Earth’s paleoathmosphere
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Depletion of volatile elements on the Moon

It is widely accepted that the Moon formed by the
Impact of a Mars-size body with the Earth.

This process depleted volatile elements such as H,
C, N and noble gases.

Despite that, the lunar soil is rich in volatiles.

The isotopic composition of noble gases is
subsequent to Moon formation.

Various hypotheses for volatiles such as N:

— Solar origin: Direct implantation from solar wind ions.

— Non-solar origin (but: N abundance & "N/"*N 30% var.?)
— Terrestrial origin: from Earth’s atmosphere when no m.f.




Preparing the Solar System for the emergence of life

« Solar activity is the most relevant process

« The more intense solar wind is a key factor via its
Interaction with the spreading accretion disk — the
shock blows the residual gas and fine dust.
(Evidence from meteorites, Bertout et al. 1991)

No terrestrial geologic records give information
about the processes taking place from that moment
onwards.

During the first 100 million years — flux of
Impactors — separation of iron and silicate —
metallic core




The early Earth environment

During the core formation, a planetary impact ejected a
significant fraction of mass from the Earth

The Moon formed, it cooled quickly, no atmosphere

The original atmosphere of the Earth is blown away by the
intense solar wind from the early Sun

The geological activity on Earth causes the partial
outgassing of the secondary atmosphere, whose original
composition can be inferred from the isotopic composition
of noble gases

Comets can have plaid a role in feeding the noble gases in
the correct proportions (Owen & Bar-Nun, 1995).

After the end of accretion (4.4 Gy BP) the temperatures had
descended to about 100° C.




Early origin and evolution of life on Earth

Solar climate and solar weather should have been
sufficiently mild BUT

The Imbrium Basin on the Moon was formed by a
major impact 3.8-3.9 Gy BP (Hartmann et al.,
2000) —» Late Heavy Bombardment (LHB)

Persistence of catastrophic impacts (Sleep et al.,
1989), possibily triggered by the rapid migration of
the giant planets (Gomes et al., 2005)

I life emerged before LHB, it has been annihilated
and it started again after LHB fading out.

The HB of terrestrial-like planets in exoplanetary
systems was considered in Levison et al. (2003)




Solar radiation as a factor in the origin of life

« Components of solar weather relevant to life

— Non-ionizing UVR (incidence on the surface of the early
Earth and Mars — inferred from observations)

— lonizing radiation (HXR, SXR, v)
— Low-energy solar wind particles
— Solar Cosmic Rays (SCR)

* Any scenario for the early onset of life must take
Into account the paleo-solar-weather and —climate

 |Inferences can be derived from:

— The study of solar analogs (e.g. the Sun-In-Time project)

— The signatures of solar energetic particles in
extraterrestrial materials (lunar rocks and meteorites)




lonizing and non-ionizing radiation during the origin of life
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Solar radiation when life emerged

Possible periods for life emergence:
— Hadean (4.6-3.8 Gy BP) ()
— Archean (3.8-2.5 Gy BP)

In the Archean the atmosphere was anoxic (from
Isotopic and geologic evidences, Walker et al.
1983)

No UV defense mechanism by ozonosphere

UVB (280-315 nm) & UVC (190-280 nm) radiation
could have penetrated to the Earth’s surface

Biological consequences expected (Margulis et al.,
1976; Cockell, 1998)




Extra-solar radiation as a factor in the origin of life

GRBs are originated in distant galaxies by
evolution/merging of compact objects

The SWIFT mission contributes to the determination of
recent burst rates

These were used to infer life robustness in the Ordovician
(510-438 My BP), when the second major mass extinction
occurred (440-450 My BP)

This extinction was ascribed to a GRB (Thomas et al.,
2005) due to the depletion of the ozone layer (half of the
mass is depleted by a 10 s GRB with a recovery time of 5
CEIR)]

In such a case, solar UVR can kill most life forms on land
and near the surface of oceans and lakes, and disrupt the
food chain.




Solar radiation as a factor in the distribution of life

At the present time, most UV and X radiation is absorbed at
the top of the atmosphere

The early Sun was producing a higher level of UVR and X
radiation (4x — 11x wavelength dependent)

No UV protection mechanism was originally present
To explore the consequences at biological level the

following topics were investigated:
— The paleo-Sun radiation environment (Lammer et al., 2002)
The Earth’s magnetic field reversal (Biernat et al., 2002)
The biological effects of solar flares (Belisheva et al., 2002)

The uracil dosimetry for life molecules preservation (Berces et al.,
2002)

Various experiments aboard ISS.

‘ The Abdus Salam
; International Centre for Theoretical Physics
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Distribution of life by transfer of microorganisms

The possibility that life was distributed in the Solar System
by transfer of microorganisms between planets and

satell)ltes was estensively investigated (Cockell & Horneck,
2001

The constraints on the possible transfer are set by the solar
weather during the early stages of the evolution of life

Bacillus Subtilis (Gram+ bacterium) produce endospores
resistant to heat and dessication

Its inactivation was studied in Earth’s orbit under different
simulated ozone-column abundances to define the
photobiological effects of an early ozone-free atmosphere

It resulted that the spectral sensitivity of DNA increases
sharply towards shorter wavelengths from UVB to UVC:

— This is the primary reason for the observed high lethality of
extratrerrestrial UV radiation

— It could provide a barrier to the distribution of life in the Solar System




Biological resistance to ionizing radiation

Many radiation-resistant organisms are known

Deinococcus radiodurans (“terrible berry that withstands
radiation”) is a Gram+, red-pigmented, non-motile, non-
spore-forming, extremophile bacterium, which is resistant to
lonizing and UVR:

— It grows under chronic radiation (50 Gy/h)

— It recovers from gamma doses of 10,000 Gy

— Survivors are found from doses of 20,000 Gy

— (E. Coli is 200 times less resistant to gamma)

— (Humans cannot tolerate radiation of up to 5 Gy)

— Possibly due to its genome and to the adaptation to dessication: lack
of water and excessive radiation doses stimulated the activation of
massive DNA repair mechanisms

« Cyanobacteria effectively withstand dessication

‘ The Abdus Salam
'_.;;;’; International Centre for Theoretical Physics




Conclusions

We attempted a preliminary comprehensive discussion of
how research in the conditions of the early Sun combine
with observations in several relevant disciplines to give us
insights into the factors that lead to the emergence of life in
a given solar system.

The considered fields are, respectively, biogeochemistry,
lunar science, micropaleontology and chemical evolution.

These considerations are necessary in order to gradually
approach an understanding of the general conditions that
will allow life to emerge in a given solar system anywhere in
the universe,

Such a multi-disciplinary approach demonstrates the
fundamental role for scientific research of monitoring solar
weather and modelling solar climate: an important
scientific spin-off of an applied discipline

‘ The Abdus Salam
vy International Centre for Theoretical Physics
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