

310/1749-17

ICTP-COST-USNSWP-CAWSES-INAF-INFN International Advanced School on Space Weather 2-19 May 2006

Implications of Space Weather for the Search of Life

Julian CHELA-FLORES
Staff Associate
The Abdus Salam International Centre for
Theoretical Physics (ICTP)
Trieste
ITALY

These lecture notes are intended only for distribution to participants

Origin, evolution and distribution of life in the Solar System: Constraints from space weather

Lecture 2: Implications of Space Weather for the Search of Life

Julian Chela-Flores

The Abdus Salam ICTP, Trieste, Italia and Instituto de Estudios Avanzados IDEA, Caracas, R.B. Venezuela

Plan of the lecture

- Space radiation sources in our own solar system.
- Space weather in the jovian system.
- > A component of space weather from the Jovian system.
- Space weather in other planets of other solar systems.

Solar radiation in the Earth middle and lower atmosphere

Wavelengt h (nm)	Abbreviation	Name and comment s	Effects	Height range (km)
Less than 280	UVC	arbitrary division in photobiology	cuts-off at 1.5 Gyr BP	20 - 40
280 - 320	UVB	arbitrary division in photobiology	dissociate O ₃	20 - 40
320 - 400	UVA	arbitrary division in photobiology	induces a decrease in photosynthesis of cyanobacteria	reaches the Earth's surface

The Earth: History of Solar Radiation

Present

Abundance of stromatolites in the fossil record

(time scale in Gyrs)

4.6

2.5

Fossils of ancient life on Earth

Mars: History of Solar Radiation

Venus: History of Solar Radiation

C.S. Cockell, Planetary and Space Sci. 48 (2000) 203-214.

Space radiation sources: Eruptive prominences

The arch shown is associated with **coronal mass ejections** (CMEs) that are associated with magnetic field lines in coronal holes.

Observed in the extreme UV light of a singly ionize atom of He (HE II) at 30.4 nm. This event took place on 24 July 1999.

The Genesis mission

- Launched in August of 2001 to capture samples from the Sun.
- The samples of solar wind particles, collected on ultra-pure wafers of gold, sapphire, silicon and diamond, were returned for analysis.

A probe in a solar north-south polar orbit

The Ulysses dust detector

Part 2 Space weather in the Jovian system **International Journal of Astrobiology (2006)**

The images of Voyayers and Galileo

lo's volcanic surface (Galileo)

The images of Voyayers and Galileo

Internal heat may provide ecosystems driven by hydrothermal vents

Can life on Europa survive under ionizing radiation?

The Europa icy and 'patchy' surface

(Spectrometer data from near IR)

Where is the 'S-belt' region of highest concentration of non-ice elements?

Interstellar molecules

(Pascale Ehrenfreund & Steven B. Charnley, 2000)

Number of Atoms										
2	3	4	5	6	7	8	9	10	11	12+
H ₂	C ₃	с-С₃Н	C ₅	C₅H	С _в Н	CH ₃ C ₃ N	CH₃C₄H	CH ₃ C ₅ N?	HC ₉ N	C ₆ H ₆
AlF	C ₂ H	l-C₃H	C ₄ H	I-H ₂ C ₄	CH ₂ CHCN	HCOOCH ₃	CH ₃ CH ₂ CN	(CH ₃) ₂ CO	11Cgi4	HC ₁₁ N
AIC1	C₂O	C ₃ N	C ₄ Si	C ₂ H ₄	CH ₃ C ₂ H	CH ₃ COOH?	(CH ₃) ₂ O	NH ₂ CH ₂ COOH?)	PAHs
C₂	C₂S	C₃O	1-C ₃ H ₂	CH ₃ CN	HC ₅ N	C ₇ H	CH ₃ CH ₂ OH	Wile Circoon;		C ₆₀ +?
CH	CH ₂	C ₃ S	c-C ₃ H ₂	CH ₃ NC	HCOCH ₃	H ₂ C ₆	HC ₇ N			C60 1
CH ⁺	HCN	C_2H_2	CTI	CH ₃ OH	NH ₂ CH ₃	HOCH ₂ CHO				
CN	HCO	CH ₂ D ⁺ ?		CH ₃ SH	c-C ₂ H ₄ O		-			
CO	HCO+	HCCN	HC ₃ N	HC ₃ NH ⁺					co	
CO+	HCS+	HCNH+	HC ₂ NC	HC ₂ CHO					100	- ETHANE
CP	HOC+	HNCO	HCOOH	NH ₂ CHO		POLYYNE	S			as a
CSi	H ₂ O	HNCS	H ₂ CHN	C ₅ N	F-154					1
HC1	H ₂ S	HOCO+	H ₂ C ₂ O		A					
KCI	HNC	H ₂ CO	H ₂ NCN		Walt To I			AHs /		FOF
NH	HNO	H ₂ CN	HNC ₃			A KENT		34		A
NO	MgCN	H ₂ CS	SiH ₄			A-0		W /		ACETO- NITRILE
NS	MgNC	H ₃ O ⁺	H ₂ COH ⁺		DIME	THYL	The State of the S	· ·		NITRILE
NaCl	N_2H^+	NH ₃			ETH	ER		/	•	100
OH	N ₂ O	SiC ₃								Acres de
PN	NaCN	CH ₃								
SO	OCS				FULLERENES /			• · · · · · · · · · · · · · · · · · · ·		4.75
O ⁺	SO ₂				-			AM	INO ACIDS	1
SiN	c-SiC ₂				ARTICLE ST		and the second second	7 (10)	A C	
SiO	CO ₂					Same and the same and the	F-1		J. 1	
iS	NH ₂					<i>y</i>				F
S	H ₃ +									
if	H ₂ D ⁺			,	R.Ruiterkamp '99 A(CETYLENE				

Non-water ice constituents staining the icy and patchy surface of Europa

New absorption features (µm)	3.50	3.88	4.05	4.25	4.57
Candidate elements	H ₂ O ₂	C ₂ H ₅ SH mercaptan	SO ₂	CO ₂	(CN) ₂ cyanogen

What are the conceivable sources of S-stains on the icy and patchy surface of Europa

External:

lons may be implanted from the Jovian plasma, or alternatively the source is

►Internal:

Sulphur may be due to cryovolcanism, or we can ask:

Could the sulphur be biogenic?

The Europa Microprobe in-situ Explorer (The EMPIE study)

One way to decide on the sulphur source is to land on the icy surface of Europa.

The lander will have a set of 4 miniprobes (350 gm each).

Tirso Velasco and colleagues

The proposed lander on the icy surface of Europa

- Expected penetration in ice is 72.5 cm.
- Mass constraint for the microprobes 1.7 kg.

Mass spectrometry

- MS is the right tool. The image shows a light one built for the Bepi-Colombo 2012 mission to Mercury, although the lander was later cancelled.
- When living organisms process sulfur they tend to fractionate isotopes differently from geological processes.

The delta³⁴S-parameter

$$\delta^{34}S = \left[\frac{(^{34}S/^{32}S)_{sa}}{(^{34}S/^{32}S)_{st}} - 1\right] \times 10^{3} [\%, CDM],$$

Canyon Diablo Meteorite (CDM) is one of the most famous meteorites, a troilite (FeS), found in a crater,

north of Phoenix, Arizona.

CDM coincides with the average terrestrial ratio of the isotopes ³²S and ³⁴S.

Sulfate-reducing bacteria

Unite H with S atoms from dissolved sulfate of seawater to form hydrogen sulfide:

$$4H_2 + H_2SO_4 - WH_2S + 4H_2O + 39$$
 kilocalories

➤ The H₂S then combines with Fe in sediments to form grains of pyrite.

Assimilatory sulfate reduction

- The biogenic uptake of S is by <u>sulfate reduction</u> of inorganic sulfate to sulfide.
- Sulfide eventually reacts with serine to yield the amino acid cysteine.
 - Isotopic discrimination is minor.

Dissimilatory sulfate reduction

Organic substrate

2 lactate +
$$SO_4^{2-} \longrightarrow 2$$
 acetate + $2 H_2O$
+ $2 CO_2 + S^{2-}$.

- >A form of anaerobic respiration.
 - Large scale reduction of biogenic sulfate to sufide.

Sulfur metabolism produces isotope fractionation

Bacterial sulfur isotope fractionation in marine environments

Partition of S isotopes between sedimentary sulfate and biogenic pyrite

- Dissolved sulfate on evaporation forms sulfate minerals depleted of ³²S by 20 per mil.
- The H₂S given off by the bacteria is enriched in ³²S by 20 per mil.

The Apollo missions

Apollo 11 July 16, 1969 Columbia/Eagle

Apollo 12 November 14, 1969

Apollo 13 April 11, 1970 Yankee Clipper/Intrepid Odyssey/Aquarius

Apollo 14 January 31, 1971 Kitty Hawk/Antares

Port-of-Spain Ma de Margarita

Apollo 15 July 26, 1971 Endeavour/Falcon

Apollo 16 April 16, 1972 Caspar/Orion

Apollo 17 December 7, 1972 America/Challenger

Landing sites of the Apollo missions

Lunar material from the Apollo missions

basalt

troctolite

arnothosite

The delta³⁴S-parameter in terrestrial, meteoritic and lunar material

From measurements in basins off California: Insoluble sulfide, mostly pyrite

The search for Earth-like exoplanets

- The Terrestrial Planet Finder (TPF) will consist of space telescopes.
- Darwin will use three space telescopes (3 m in diameter) and a fourth spacecraft to serve as communications hub.
- TPF and Darwin will go beyond the three previous techniques for exoplanet hunting: wobbling stars, transits and microlensing (when a dark mass passes in front of a background star, the light from the star can be significantly magnified).

How, when and where did life start?

Give us in the short term an independent origin of life on Europa, Mars, Titan, or Enceladus and the doors to progress will open.

Discussion

- ► Brain evolution may offer hints of the probability that a human level of intelligence may arise in an independent evolutionary line provided the space weather conditions are favorable.
- ➤ The SETI project is an observational tool currently available to bioastronomers for searching for this aspect of evolution.
- ➤ The component of space weather generated by the Jovian magnetosphere is of interest for the understanding of potential biosignatures on Europa.
- The close integration of space weather research with astrobiology is at its preliminary stage.

