310/1749-17 #### ICTP-COST-USNSWP-CAWSES-INAF-INFN International Advanced School on Space Weather 2-19 May 2006 ### Implications of Space Weather for the Search of Life Julian CHELA-FLORES Staff Associate The Abdus Salam International Centre for Theoretical Physics (ICTP) Trieste ITALY These lecture notes are intended only for distribution to participants # Origin, evolution and distribution of life in the Solar System: Constraints from space weather ## Lecture 2: Implications of Space Weather for the Search of Life **Julian Chela-Flores** The Abdus Salam ICTP, Trieste, Italia and Instituto de Estudios Avanzados IDEA, Caracas, R.B. Venezuela ### Plan of the lecture - Space radiation sources in our own solar system. - Space weather in the jovian system. - > A component of space weather from the Jovian system. - Space weather in other planets of other solar systems. ### Solar radiation in the Earth middle and lower atmosphere | Wavelengt
h
(nm) | Abbreviation | Name
and
comment
s | Effects | Height
range
(km) | |------------------------|--------------|--|---|--------------------------------| | Less
than 280 | UVC | arbitrary
division in
photobiology | cuts-off at
1.5 Gyr BP | 20 - 40 | | 280 - 320 | UVB | arbitrary
division in
photobiology | dissociate
O ₃ | 20 - 40 | | 320 - 400 | UVA | arbitrary
division in
photobiology | induces a
decrease in
photosynthesis
of
cyanobacteria | reaches the
Earth's surface | ### The Earth: History of Solar Radiation #### **Present** Abundance of stromatolites in the fossil record (time scale in Gyrs) 4.6 2.5 ### Fossils of ancient life on Earth ### **Mars: History of Solar Radiation** ## Venus: History of Solar Radiation C.S. Cockell, Planetary and Space Sci. 48 (2000) 203-214. ## Space radiation sources: Eruptive prominences The arch shown is associated with **coronal mass ejections** (CMEs) that are associated with magnetic field lines in coronal holes. Observed in the extreme UV light of a singly ionize atom of He (HE II) at 30.4 nm. This event took place on 24 July 1999. ### The Genesis mission - Launched in August of 2001 to capture samples from the Sun. - The samples of solar wind particles, collected on ultra-pure wafers of gold, sapphire, silicon and diamond, were returned for analysis. ### A probe in a solar north-south polar orbit ### The Ulysses dust detector # Part 2 Space weather in the Jovian system **International Journal of Astrobiology (2006)** ### The images of Voyayers and Galileo ## lo's volcanic surface (Galileo) ### The images of Voyayers and Galileo # Internal heat may provide ecosystems driven by hydrothermal vents #### Can life on Europa survive under ionizing radiation? ### The Europa icy and 'patchy' surface (Spectrometer data from near IR) ### Where is the 'S-belt' region of highest concentration of non-ice elements? ### Interstellar molecules (Pascale Ehrenfreund & Steven B. Charnley, 2000) | Number of Atoms | | | | | | | | | | | |-----------------|-------------------------------|----------------------------------|---------------------------------|---------------------------------|-----------------------------------|----------------------------------|--|---|-------------------|-------------------------------| | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12+ | | H ₂ | C ₃ | с-С₃Н | C ₅ | C₅H | С _в Н | CH ₃ C ₃ N | CH₃C₄H | CH ₃ C ₅ N? | HC ₉ N | C ₆ H ₆ | | AlF | C ₂ H | l-C₃H | C ₄ H | I-H ₂ C ₄ | CH ₂ CHCN | HCOOCH ₃ | CH ₃ CH ₂ CN | (CH ₃) ₂ CO | 11Cgi4 | HC ₁₁ N | | AIC1 | C₂O | C ₃ N | C ₄ Si | C ₂ H ₄ | CH ₃ C ₂ H | CH ₃ COOH? | (CH ₃) ₂ O | NH ₂ CH ₂ COOH? |) | PAHs | | C₂ | C₂S | C₃O | 1-C ₃ H ₂ | CH ₃ CN | HC ₅ N | C ₇ H | CH ₃ CH ₂ OH | Wile Circoon; | | C ₆₀ +? | | CH | CH ₂ | C ₃ S | c-C ₃ H ₂ | CH ₃ NC | HCOCH ₃ | H ₂ C ₆ | HC ₇ N | | | C60 1 | | CH ⁺ | HCN | C_2H_2 | CTI | CH ₃ OH | NH ₂ CH ₃ | HOCH ₂ CHO | | | | | | CN | HCO | CH ₂ D ⁺ ? | | CH ₃ SH | c-C ₂ H ₄ O | | - | | | | | CO | HCO+ | HCCN | HC ₃ N | HC ₃ NH ⁺ | | | | | co | | | CO+ | HCS+ | HCNH+ | HC ₂ NC | HC ₂ CHO | | | | | 100 | - ETHANE | | CP | HOC+ | HNCO | HCOOH | NH ₂ CHO | | POLYYNE | S | | | as a | | CSi | H ₂ O | HNCS | H ₂ CHN | C ₅ N | F-154 | | | | | 1 | | HC1 | H ₂ S | HOCO+ | H ₂ C ₂ O | | A | | | | | | | KCI | HNC | H ₂ CO | H ₂ NCN | | Walt To I | | | AHs / | | FOF | | NH | HNO | H ₂ CN | HNC ₃ | | | A KENT | | 34 | | A | | NO | MgCN | H ₂ CS | SiH ₄ | | | A-0 | | W / | | ACETO-
NITRILE | | NS | MgNC | H ₃ O ⁺ | H ₂ COH ⁺ | | DIME | THYL | The State of S | · · | | NITRILE | | NaCl | N_2H^+ | NH ₃ | | | ETH | ER | | / | • | 100 | | OH | N ₂ O | SiC ₃ | | | | | | | | Acres de | | PN | NaCN | CH ₃ | | | | | | | | | | SO | OCS | | | | FULLERENES / | | | • · · · · · · · · · · · · · · · · · · · | | 4.75 | | O ⁺ | SO ₂ | | | | - | | | AM | INO ACIDS | 1 | | SiN | c-SiC ₂ | | | | ARTICLE ST | | and the second second | 7 (10) | A C | | | SiO | CO ₂ | | | | | Same and the same and the | F-1 | | J. 1 | | | iS | NH ₂ | | | | | <i>y</i> | | | | F | | S | H ₃ + | | | | | | | | | | | if | H ₂ D ⁺ | | | , | R.Ruiterkamp '99 A(| CETYLENE | | | | | ### Non-water ice constituents staining the icy and patchy surface of Europa | New absorption features (µm) | 3.50 | 3.88 | 4.05 | 4.25 | 4.57 | |------------------------------|-------------------------------|---|-----------------|-----------------|----------------------------| | Candidate elements | H ₂ O ₂ | C ₂ H ₅ SH
mercaptan | SO ₂ | CO ₂ | (CN) ₂ cyanogen | ### What are the conceivable sources of S-stains on the icy and patchy surface of Europa #### **External:** lons may be implanted from the Jovian plasma, or alternatively the source is #### **►Internal:** Sulphur may be due to cryovolcanism, or we can ask: Could the sulphur be biogenic? ### The Europa Microprobe in-situ Explorer (The EMPIE study) One way to decide on the sulphur source is to land on the icy surface of Europa. The lander will have a set of 4 miniprobes (350 gm each). Tirso Velasco and colleagues #### The proposed lander on the icy surface of Europa - Expected penetration in ice is 72.5 cm. - Mass constraint for the microprobes 1.7 kg. ### Mass spectrometry - MS is the right tool. The image shows a light one built for the Bepi-Colombo 2012 mission to Mercury, although the lander was later cancelled. - When living organisms process sulfur they tend to fractionate isotopes differently from geological processes. ### The delta³⁴S-parameter $$\delta^{34}S = \left[\frac{(^{34}S/^{32}S)_{sa}}{(^{34}S/^{32}S)_{st}} - 1\right] \times 10^{3} [\%, CDM],$$ Canyon Diablo Meteorite (CDM) is one of the most famous meteorites, a troilite (FeS), found in a crater, north of Phoenix, Arizona. CDM coincides with the average terrestrial ratio of the isotopes ³²S and ³⁴S. #### Sulfate-reducing bacteria Unite H with S atoms from dissolved sulfate of seawater to form hydrogen sulfide: $$4H_2 + H_2SO_4 - WH_2S + 4H_2O + 39$$ kilocalories ➤ The H₂S then combines with Fe in sediments to form grains of pyrite. ## Assimilatory sulfate reduction - The biogenic uptake of S is by <u>sulfate reduction</u> of inorganic sulfate to sulfide. - Sulfide eventually reacts with serine to yield the amino acid cysteine. - Isotopic discrimination is minor. ## Dissimilatory sulfate reduction #### **Organic substrate** 2 lactate + $$SO_4^{2-} \longrightarrow 2$$ acetate + $2 H_2O$ + $2 CO_2 + S^{2-}$. - >A form of anaerobic respiration. - Large scale reduction of biogenic sulfate to sufide. # Sulfur metabolism produces isotope fractionation ### Bacterial sulfur isotope fractionation in marine environments ### Partition of S isotopes between sedimentary sulfate and biogenic pyrite - Dissolved sulfate on evaporation forms sulfate minerals depleted of ³²S by 20 per mil. - The H₂S given off by the bacteria is enriched in ³²S by 20 per mil. #### The Apollo missions Apollo 11 July 16, 1969 Columbia/Eagle Apollo 12 November 14, 1969 Apollo 13 April 11, 1970 Yankee Clipper/Intrepid Odyssey/Aquarius Apollo 14 January 31, 1971 Kitty Hawk/Antares Port-of-Spain Ma de Margarita Apollo 15 July 26, 1971 Endeavour/Falcon Apollo 16 April 16, 1972 Caspar/Orion Apollo 17 December 7, 1972 America/Challenger #### Landing sites of the Apollo missions ### Lunar material from the Apollo missions basalt troctolite arnothosite ### The delta³⁴S-parameter in terrestrial, meteoritic and lunar material From measurements in basins off California: Insoluble sulfide, mostly pyrite #### The search for Earth-like exoplanets - The Terrestrial Planet Finder (TPF) will consist of space telescopes. - Darwin will use three space telescopes (3 m in diameter) and a fourth spacecraft to serve as communications hub. - TPF and Darwin will go beyond the three previous techniques for exoplanet hunting: wobbling stars, transits and microlensing (when a dark mass passes in front of a background star, the light from the star can be significantly magnified). #### How, when and where did life start? Give us in the short term an independent origin of life on Europa, Mars, Titan, or Enceladus and the doors to progress will open. #### Discussion - ► Brain evolution may offer hints of the probability that a human level of intelligence may arise in an independent evolutionary line provided the space weather conditions are favorable. - ➤ The SETI project is an observational tool currently available to bioastronomers for searching for this aspect of evolution. - ➤ The component of space weather generated by the Jovian magnetosphere is of interest for the understanding of potential biosignatures on Europa. - The close integration of space weather research with astrobiology is at its preliminary stage.