Solar Activity: Exploration with Wavelets

Henrik LUNDSTEDT
Swedish Institute of Space Physics
Scheelev 17
SE-223 70 Lund
SWEDEN
The Sun: Space Weather Applications

2) Solar activity: Exploration with wavelets

ICTP-COST-CAWSES-INAF-INFN, Trieste, 2006

H. Lundstedt
Swedish Institute of Space Physics, Lund, Sweden
www.lund.irf.se
Outline of my second talk

• Lund Solar Activity Model
• Wavelet methods (scalograms, ampligrams, MRA, wavelet power and wavelet coherence)
• Methods applied on solar activity indicators
• Transients, cycles, trends discussed
The goal of our research program is to create a new indicator (model/LSAM) of solar magnetic activity so we can better predict space weather, space climate and effects. Wavelet methods are used to extract information about solar magnetic activity (e.g. trends, transients, about Bp, Bt, AR), which then will be used as input to our neural network prediction model.

Wavelet Methods

Wavelet transform, Morlet wavelet, and Wavelet Coefficient (WCM = Wavelet Coefficient Magnitude)

\[
w(a,b) = a^{-1/2} \int_{-\infty}^{+\infty} y(t) g^* \left(\frac{t-b}{a} \right) dt
\]

\[
g(t) = \exp(i\omega_0 t - \frac{t^2}{2})
\]

\[
w_{f,k} = j^{-1/2} \int_{-\infty}^{+\infty} y(t) g^* \left(\frac{t-k}{f} \right) dt
\]

Wavelet Methods (Liszka and Wernik)

Download software www.irf.se (Umeå, Lund)
Indicators: R_g/R_z

C14 production rate

Annual C14 Production rate 1500–1950

C14 Production rate –9950(11500BP)–1950(0)
Trends in Sun’s 4.6 billion years activity based on studies of 400 years observations of sunspot number (toroidal field) and 11500 years of C14 production rate (poloidal field) values.

Sunspots

Solar activity seems to be characterized by oscillations of different scales that arise and die, no ever lasting cycles.

C14 production rate

- 2300-2500 y -->
- 900-1100 y -->
- 400-500 y -->
- 190-210 y -->

Svalgaard. et al., 2005, Predict a weak Cycle 24.
Scalogram of VAR(C14 production rate) Maunder minima, year 2100 activity

Time Scale: 450 y

Time elapsed (25x years)

Lundstedt et al., 2005

Clilverd, et al., Astron & Geophys. 44, 2003
Scalograms and Skeletons of an Ampligram of Rg
Multiresolution analysis (MRA): the idea is to separate the information to be analyzed into a “principal” (low pass) and a “residual” (high pass) part. The process of decomposition can then be applied again to both parts.

Engineers’ filter approach

\[
s = A_f + \sum_{j \leq f} D_j
\]
\[
A_{f-1} = A_f + D_f
\]
\[
D_j(t) = \sum_{k \in \mathbb{Z}} C(j,k) \Psi_{j,k}(t)
\]
\[
C(a,b) = \int s(t) \frac{1}{\sqrt{a}} \Psi \left(\frac{t-b}{a} \right) dt
\]
\[
a = 2^j, b = k2^j, (j, k) \in \mathbb{Z}^2
\]

(s = signal, A = approximation, D = detail, a = scale, b = time shift, j = level)

Mathematicians’ wavelet matrix approach

\[
f(x) = \sum_{k=-\infty}^{\infty} c_k \varphi_k(x) + \sum_{s=1}^{\infty} \sum_{j=0}^{\infty} \sum_{k=-\infty}^{\infty} d^i_{jk} \psi^i_{jk}(x)
\]
\[
c_k = \int f(x) \varphi_k(x) dx
\]
\[
d^i_{jk} = \int f(x) \psi^i_{jk}(x) dx
\]

\[
f'(x) = \sum f_k \varphi'(x) + \sum f_{jk} \psi'_{jk}(x)
\]

Wavelets are to functions what the positional notation is to numbers. Solving differential equations may then be carried out by differentiating the function represented by the wavelet series.
C14 production rate shows variation of the poloidal field (PF). During Maunder minimum the toroidal field (TF) didn’t exceed a certain threshold and therefore no sunspots.

C14 shows the variation of the poloidal field. (Be10, Beer et al., 1998)

We also see high solar activity about 1600 and in the end of 1700, not seen in Rg.

MRA of WSO polar magnetic field
Precursor of next “cycle 24 maximum”

Svalgaard. et al., predict a weak Cycle 24.
Solar cycle length (time scales) Vs. solar activity (WCMmax)

\[R_\alpha = \frac{12.08}{N} \sum_k C_i \]

\[R_z = k(10g + f) \]

(Lundstedt et al., Annal. Geophys., 2004)
Different view on next “cycle 24”

Dikpati, Toma, Gilman, GRL, 33, 2006
State of the art $\alpha \omega$ transport dynamo

Kosovichev, A.G, IAU Symp., 223, 2004
Predictions of cycle 24

NASA plans to arrange a prediction panel meeting on cycle 24

Predictions of cycle 24

- D. Hathaway (strong cycle), based on the assumption that a fast meridional circulation speed during cycle 22 would lead to a strong solar cycle 24.
- K. H. Schatten (Rz = 100±30), based on the view that the Sun’s polar field serves as a predictor of solar activity on the basis of dynamic physics.
- J-L. Wang et al., (Rz = 83.2-119.4), based on statistical characteristics of solar cycles.
- Kane, R. P. (Rz= 105), based on statistical regression analysis of the sunspot number and geomagnetic activity.
- S. Duhau (Rz= 87.5±23.5), based on a non-linear coupling function between sunspot maxima and aa minima modulations found as a result of a wavelet analysis.
- L. Svalgaard et al., (Rz = 75±10), based on the solar polar magnetic field strength at sunspot minima.
- Badalyan et al., (Rz not exceeding 50), based on statistical characteristics of solar cycles.
- G. Maris, et al., (low), based on observing the flare energy release during the descendant phase of cycle 23 (empirical method).
- M. Clilverd et al., (weak cycle), based on the variation of the atmospheric cosmogenic radiocarbon.
Wavelet power spectra
WSO meanfield

MDI shows how the dynamo changes (1.3y)
Wavelet coherence
Rz/aa

The wavelet approach allows us to study time-varying co-variation at different scales between two signals using wavelet coherence (Christod et al., 2004). The wavelet coherence is defined as

$$R^2_s(\omega) = \frac{|S(s^{-1}W_{XY}^s(\omega))|^2}{S(s^{-1}W_X^s(\omega))^2S(s^{-1}W_Y^s(\omega))^2}$$

(5)

where s is the scale, n the sample index of time series X and Y, S is a smoothing operator, W_X^s and W_Y^s are the wavelet coefficients for the two time series, respectively. The cross wavelet transform is defined as

$$W_{XY}^s = W_X^sW_Y^s*$$

(6)

where $*$ denotes the complex conjugate.
Magnetic maps of the WHOLE Sun
SOHO/MDI/Stanford/P. Scherrer

Farside images computed from MDI sound travel time analysis.
Earth-side images are magnetic flux observed by SOHO-MDI.
These files are updated daily!!

14-15 Oct, 2003
30 Oct, 2003
CR averaged synoptic maps give the long-term variation of the whole Sun’s state (3D)

The Corona

Solar surface

Subsurface

(Courtesy: Howe et al., 2000 and GONG)
The final goal: to put this new picture into a hybrid physics-based neural network prediction model

- Neural network based real-time forecasts are already running at our RWC of ISES of many space weather effects. We are now presenting the wavelet outputs to neural networks.

- However, we also need real-time synoptic maps of activity below, on and in corona and that will not be available until SDO (NASA, launch 2008)
Participants not on photo: Krister Bengtson (E.ON, Sweden), Axel Brandenburg (Nordita, Denmark), Alexi Glover (ESA/ESTEC), Alain Hilgers (ESA/ESTEC), Christian Jacobsson (E.ON, Sweden), Nina von Krusenstierna (Aerotech, Sweden), Rickard Lundin (IRF-Umeå), Nigel Marsh (DNSC, Denmark), Gunilla Sundberg (E.ON, Sweden), Henrik Svensmark (DNSC, Denmark) and Bo Thidé (IRF-Uppsala).
THE END

of

Second Talk