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LECTURE 1

SINGLE PARTICLE DRIFT MOTIONS

Vladimir M. Čadež

Astronomical Observatory Belgrade
Volgina 7, 11160 Belgrade, Serbia&Montenegro

Email: vladimir.cadez@phy.bg.ac.yu

Gaseous plasma is a mixture of moving particles of different species α having
mass mα and charge qα. Usually but not necessarily always, such a plasma is
globally electro-neutral, i.e.

∑
α qα = 0.

In astrophysical plasmas, we often have mixtures of two species α = e, p or
electron-proton plasmas as protons are the ionized atoms of Hydrogen, the most
abundant element in the universe. Another plasma constituent of astrophysical
significance are dust particles of various sizes and charges. For example, the
electron-dust and electron-proton-dust plasmas (α = e, d and α = e, p, d resp.)
are now frequently studied in scientific literature. Some astrophysical configura-
tions allow for more exotic mixtures like electron-positron plasmas (α = e−, e+)
which are steadily gaining interest among theoretical astrophysicists.

In what follows, we shall primarily deal with the electron-proton, electro-
neutral plasmas in magnetic field configurations typical of many solar-terrestrial
phenomena.

To understand the physics of plasma processes in detail it is necessary to
apply complex mathematical treatments of kinetic theory of ionized gases. For
practical reasons, numerous approximations are introduced to the full kinetic
approach which results in simplified and more applicable plasma theories. This
lecture will show what can be learned about plasma dynamics by looking at
motions of individual particles in external or predefined magnetic and electric
fields assuming that the induced electromagnetic fields, produced by such mov-
ing charged plasma particles, are negligible in comparison with fields externally
prescribed. Such an approximation of unaffected external fields significantly
simplifies the analysis of particle dynamics and can be applied in many low
plasma density configurations including those existing in the solar corona and
in planetary magnetospheres and ionospheres.

Let us now consider a series of examples of different external magnetic and
electric field configurations.
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1.1 Case with ~E=const and ~B = 0

The equation of motion for a particle with mass m and charge q is

m
d~v

dt
= q ~E (1)

whose solution for the particle velocity

~v =
q

m
(t− t0) ~E + ~v0

represents a uniformly accelerated particle motion along a constant ~E-field.
In this example, particles with charges of different sign move in opposite

directions which results in electric currents:

~j = qe~ve + qp~vp

.

1.2 Case with ~B=const and ~E = 0

Motion of a charged particle in a constant magnetic field is described by

m
d~v

dt
= q~v × ~B (2)

which immediately yields

~v · d~v

dt
= 0 ⇒ |~v| = v = const (3)

i.e. constancy of the velocity vector intensity. This further tells us that a
charged particle does not gain any kinetic energy form the considered magnetic
field.

Decomposing the velocity vector into two components

~v = ~v‖ + ~v⊥

in directions parallel and normal to ~B, the equation of motion (2) reduces to
two equations for each of the velocity components:

m
d~v⊥
dt

= q~v⊥ × ~B and
d~v‖
dt

= 0. (4)

We see that the velocity component ~v‖ along ~B remains constant in this case,
i.e. unaffected by the presence of magnetic field and its magnitude v‖ is simply
prescribed as the initial condition. Now, if v‖=const the same must also be true
for the magnitude of the normal component v⊥ since v2 ≡ v2

‖ + v2
⊥ = const as

already obtained in Eq (3). Thus:

v⊥, v‖, v ≡
√

v2
⊥, v2

‖ = const (5)
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To find the shape of the trajectory the particle moves along, we take the
Cartesian geometry with ~B = (0, 0, B), ~v⊥ = (vx, vy, 0) and ~v‖ = (0, 0, vz) and
write Eq (4) as:

m
dvx

dt
= qBvy, m

dvy

dt
= −qBvx, m

dvz

dt
= 0.

After some elementary rearrangements, we obtain the following set of equations:

d2vx

dt2
= −ω2

Lvx, v2
x + v2

y = v2
⊥, vz = v‖. (6)

where v‖ and v⊥ are constants given as initial conditions.
Three velocity components follow from Eq (6) as:

vx ≡ dx

dt
= v⊥ cos(ωLt)

vy ≡ dy

dt
= −v⊥ sin(ωLt)

vz ≡ dz

dt
= v‖

(7)

where:

ωL ≡ qB

m
(8)

is known as Larmor frequency (also the gyro or cyclotron frequency).
Eqs (9) finally yield the particle trajectory equation after one time-integration:

x− x0 = rL sin(ωLt)

y − y0 = rL cos(ωLt)

z − z0 = v‖t,

(9)

with
rL ≡ v⊥

ωL
(10)

known as the Larmor radius(also gyro-radius).
The trajectory (9) is a helix along the z-axis (i.e. in the direction of ~B) with

the pitch angle α given through the relation v⊥ = v‖tanα.
The vector of the gyration angular velocity ~ωL follow also directly from the

first equation Eqd4 integrated over time:

m

∫
d~v⊥
dt

dt = q

∫
~v⊥dt× ~B ⇒ ~v⊥ = ~ωL × ~r⊥ (11)

where

~ωL ≡ −q ~B

m
.
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The considered charged particle motion is therefore a superposition of gyra-
tion (with the gyration radius and gyration frequency rL and ωL respectively)
in a plane normal to magnetic filed lines, and a uniform motion of the center
of gyration, the so called guiding center, along the field lines. In the guiding
center description, such charged particle motion is identified as the motion of
its guiding center.

According to Eqd5c, the positively charged particles gyrate about the mag-
netic field line in the clockwise direction while particles with a negative charge
move in the opposite direction.

1.3 Case with constant ~B and ~E

If a constant electric field is added to the previous configuration, the dynamics
of a charged particle is governed by the equation

m
d~v

dt
= q ~E + q~v × ~B (12)

which can be analyzed and solved in a similar way as done in Case 1.2. Thus,
we decompose ~v and ~E

~v = ~v⊥ + ~v‖, ~E = ~E⊥ + ~E‖,

substitute these into Eq (12) and obtain two equations for propagations parallel
and normal to the magnetic field:

m
d~v‖
dt

= q ~E‖, and m
d~v⊥
dt

= q ~E⊥ + q~v⊥ × ~B (13)

The first equation in Eq (13) says that the particle is accelerated along the
magnetic field by the parallel component of the electric field in the same way
as it happens in Case 1.1:

~v‖ =
q

m
(t− t0) ~E‖ + ~v0. (14)

To solve the second equation, we switch to a new frame of reference moving
with some constant speed ~VE in a direction normal to ~B so that

~v⊥ = ~VE + ~u⊥ (15)

where ~u⊥ is the normal velocity component relative to the moving frame. The
second Eq (13) now becomes:

m

(
d~u⊥
dt

+
d~VE

dt

)
= q ~E⊥ + q~VE × ~B + q~u⊥ × ~B (16)

where d~VE/dt = 0 as assumed in this case.
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Since ~VE has not been specified so far, we shall so choose it now that the
first two terms on the right hand side of Eq (16) mutually cancel out:

q ~E⊥ + q~VE × ~B = 0 ⇒ ~VE =
~E⊥ × ~B

B2
=

~E × ~B

B2
. (17)

The remaining part of Eq (16) is then:

m
d~u⊥
dt

= q~u⊥ × ~B (18)

which is the same type of equation as Eq (4) in Case 1.2. The velocity compo-
nent ~u⊥ therefore describes an orbiting motion with Larmor frequency ωL and
Larmor radius rL around magnetic field lines as viewed in the frame of reference
moving with a constant velocity ~VE . Finally, the particle velocity components in
the rest frame are given by Eqs (14)-(15) indicating an accelerated guiding cen-
ter motion along magnetic field lines with ~v‖ and a superimposed perpendicular
drift motion with

~VE =
~E × ~B

B2
. (19)

This drift, called the ’E×B’ drift, is charge independent and therefore induces
no electric currents as both the positive and negative charges move in the same
direction as seen in Eq (19) for ~VE .

1.4 Case with constant ~B and ~F

If some additional constant external force ~F acts on a charged particle moving
in a constant magnetic field we start from the equation of motion:

m
d~v

dt
= ~F + q~v × ~B (20)

Comparing this equation with the equation of motion (12) in Case 1.3 we see
that the only difference between them is the replacement of q ~E by ~F . This
means that all derivations performed in Case 1.3 can now be repeated here by
taking ~F/q instead of ~E. Thus, we conclude that a charged particle spirals
around magnetic field lines and its guiding center velocity has two components
describing an accelerated motion along the magnetic field lines due to ~F‖, and
a drift motion across the filed lines with velocity ~VF :

~VF =
~F⊥ × ~B

qB2
=

~F × ~B

qB2
(21)

whose orientation is charge dependent. As a result, this drift, also called the
force drift, produces electric currents as charges with opposite signs drift in
opposite directions.
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One of interesting examples of a force drift is the gravitational drift occurring
in presence of a uniform gravitational field ~g when ~F = m~g. In this case, the
gravitational drift velocity ~Vg follows from Eq (21) as:

~Vg =
m~g × ~B

qB2
(22)

In astrophysical plasmas, this drift contributes to formation of ring currents
among other things.

1.5 Case with ~B = const and ~E = ~E(t)

Take now that the uniform electric field from Case 1.3 varies in time, ~E = ~E(t),
and let us examine how this effects plasma particle motions.

The time variation is assumed small on the time scale of one gyration period
τL = 2π/ωL (taking q > 0), and only the first time derivative is retained in
series expansions meaning that d ~E/dt ≈const. Now, we can go back to Case
1.3 and repeat the whole analytical procedure up to Eq (16):

m

(
d~u⊥
dt

+
d~VE

dt

)
= q ~E⊥ + q~VE × ~B + q~u⊥ × ~B. (23)

The term d~VE/dt now remains in the equation and its presence represents effects
of a slowly time-varying electric field. Same as in Case 1.3, we go to a new
coordinate system moving with drift velocity ~VE given by Eq (17)

~VE =
~E × ~B

B2

which reduces Eq (23) to:

m
d~u⊥
dt

= −m
d~VE

dt
+ q~u⊥ × ~B (24)

This equations is equivalent to Eq (20) with the external force ~F given by:

~F = −m
d~VE

dt

which promotes an additional drift motion of the guiding center with velocity
~VF ≡ ~VP called the polarization drift:

~VP = − m

qB2

d~VE

dt
× ~B = − m

qB2

d

dt

(
~E⊥ × ~B

B2

)
× ~B

or
~VP =

m

qB2

d ~E⊥
dt

. (25)
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The polarization drift ~VP is charge sign dependent and therefore induces electric
currents in plasmas.

In this example, the total drift velocity ~VD is then:

~VD = ~VP + ~VE (26)

with the following ordering:

VP

VE
≡

∣∣∣∣∣
m

qB2

d ~E⊥
dt

∣∣∣∣∣
∣∣∣∣∣
~E⊥ × ~B

B2

∣∣∣∣∣

∼ τL

E⊥

dE⊥
dt

¿ 1.

1.6 Case with nonuniform magnetic field: ~B=(0,0,B(x))

Examine now an example of a charged particle with q > 0 moving in a magnetic
field with straight lines parallel to the z-axis whose density varies in the x-
direction: ~B = B(x)êz. Let this x-dependence be sufficiently weak as to allow
the first order series expansion as an acceptable approximation

B(x) = B(0) + x
dB

dx

∣∣∣∣
x=0

(27)

and let the change of B(x) over the distance of the gyration radius rL be small
relative to B(x) itself: rLdB/dx ¿ B.

In what follows, we shall consider only the normal component of the particle
velocity vector ~v as the parallel component remains unaffected by the ~B-field
and we take ~v‖ = 0 by the initial condition so that ~v · ~B = 0. The particle
velocity has thus only two components:

vx =
dx

dt
and vy =

dy

dt
,

and the vector equation of motion Eq (2) can be expressed as a system of two
scalar equations in the following way:

m
dvx

dt
= q

(
B(0) + x

dB

dx

∣∣∣∣
0

)
dy

dt

m
dvy

dt
= −q

(
B(0) + x

dB

dx

∣∣∣∣
0

)
dx

dt
.

(28)

The trajectory of particle motion described by Eq (28) would be circular with
the radius rL and the gyration period τL if the magnetic field were uniform:
dB/dx = 0. The presence of a weak magnetic field non uniformity dB/dx
slightly modifies the trajectory in the sense that it is not a closed circle any
more and the particle position shifts by some ∆y along the y-axis after each
gyration time τL. This results into a drift motion along the y-axis known as the
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magnetic gradient drift with speed VG = ∆y/τL. To obtain the displacement
∆y we integrate the first equation in Eq (28) over one time period τL. As the
particle motion remains periodic in the x-direction we have:

m

∫ τL

0

dvx

dt
dt = mvx(τL)−mvx(0) ≈ 0.

which further yields:

qB(0)
∫ τL

0

dy

dt
dt + q

dB

dx

∣∣∣∣
0

∫ τL

0

x
dy

dt
dt = 0

or

B(0)∆y − πr2
L

dB

dx

∣∣∣∣
0

= 0 ⇒ ∆y =
πr2

L

B

dB

dx
(29)

with expressions (9) for x(t) and y(t) taken into account.
The gradient drift velocity is now:

~VG ≡ ∆y

τL
êy =

ωLr2
L

2B

dB

dx
êy =

mv2

2qB2

dB

dx
êy

or in a full vector form:
~VG =

mv2

2qB3
~B ×∇B. (30)

As the magnetic field gradient drift (30) depends on the sign of charge q it
induces electric currents in plasmas which occurs in planetary magnetospheres
for example.

1.7 Case of stationary ~B-field with curved and parallel
field lines

A uniform and stationary magnetic field configuration studied in Case 1.2 is now
assumed to be modified by adding a small curvature to its field lines that causes
corrections to particle motion of the first order of smallness. In this example,
the curved magnetic field lines are parallel and uniformly distributed through
any perpendicular plane. In other words, the magnetic field intensity B does
not change in the direction along the magnetic field vector ~B = Bês.

The basic type of a plasma particle motion in this case is a gyration with its
guiding center moving along slightly curved magnetic field lines with velocity
~v‖ = v‖ês which introduces a centrifugal force ~Fc. This results into a force drift
described in Case 1.4 with the drift velocity:

~Vc =
~Fc × ~B

qB2
(31)

known as the centrifugal drift.
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The explicit expression for the centrifugal force and the related drift follows
from:

~Fc ≡ −m
d~v‖
dt

= −mv‖
dês

dt
= −mv‖

dês

ds

ds

dt
= −

mv2
‖

B

d~B

ds
(32)

where:
v‖ =

ds

dt

while the derivative of the magnetic field along the curved filed line s can be
written as:

d ~B

ds
= (ês · ∇) ~B =

1
B

( ~B · ∇) ~B.

Eq (32) for the centrifugal force ~Fc then takes the final form:

~Fc = −
mv2

‖
B2

( ~B · ∇) ~B (33)

while the centrifugal drift velocity (31) becomes:

~Vc =
mv2

‖
qB4

~B ×
[
( ~B · ∇) ~B

]
. (34)

As can be seen from Eq (34), the centrifugal drift ~Vc is charge dependent
and therefore produces electric currents. These effects of curved magnetic fields
are commonly present in ring current formation mechanisms in planetary mag-
netospheres for example.

1.8 Stationary ~B field with slightly convergent field lines

Let us now assume the magnetic field lines from Case 1.2 slightly convergent
and axially symmetric with respect to the z-axis. For this reason, it is more
convenient to apply a cylindrical coordinate system (êr, êφ, êz) oriented along
the axis of symmetry so that the considered weakly convergent magnetic field
~B is now given by

~B = (Br(r, z), 0, Bz(r, z)) with |Br(r, z)| ¿ |Bz(r, z)|.

The positively charged particle motion in such a magnetic field configuration
retains the two basic properties from Case 1.2 where the magnetic field was
uniform: The guiding center motion with velocity ~v‖ along a magnetic field
line, let it be the line of the axis of symmetry i.e. the z-axis, and a gyration
with velocity ~v⊥ about the same field line. The difference now is that the
uniform ~B-filed considered in Case 2.1 had no effect on ~v‖ while the magnetic
field with slightly convergent field lines also exerts a parallel force ~F‖ along the
z-axis which effects the guiding center velocity ~v‖:

~F‖ ≡ Fz êz = qBr~v⊥ × êr (35)
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To calculate the radial magnetic field component Br we start from the Gauss
law:

∇ · ~B =
1
r

∂

∂r
(rBr) +

∂

∂z
Bz = 0 ⇒ ∂

∂r
(rBr) = −r

∂

∂z
Bz

then perform an integration over the coordinate r between r = 0 and r = rL

with conditions ∂Bz/∂z ≈ const and Br(0, z) = 0 which yields:

rLBr(rL, z) = −∂Bz

∂z

∫ rL

0

rdr

or
Br(rL, z) = −1

2
rL

∂Bz

∂z
. (36)

Taking Eq(11) for the gyration velocity, i.e.:

~v⊥ = ~ωL × ~rL = −ωLrLêz × êr = v⊥êr × êz,

we finally obtain from Eq (35) the following expression for ~F‖:

~F‖ = −1
2
qrLv⊥

∂Bz

∂z
(êr × êz)× êr = −mv2

⊥
2Bz

∂Bz

∂z
êz

or:
~F‖ ≈ −W⊥

B

dB

dz
êz with W⊥ ≡ 1

2
mv2

⊥ (37)

where W⊥ is the particle kinetic energy of orbital motion, and with the assump-
tion Bz À Br equivalent to B ≈ Bz taken into account.

According to Eq (37), the parallel force ~F‖ is oriented in the direction of
decreasing of the magnetic field intensity. In other words, this force tends to
slow down and eventually to stop the guiding center motion toward the region
with stronger magnetic field. The details of this process follow directly from the
equation of motion under action of the parallel force Eq (37). Thus, expressing
the parallel acceleration term in Eq(37) as:

m
d~v‖
dt

= m
d~v‖
dz

dz

dt
= mv‖

dv‖
dz

êz =
dW‖
dz

~ez,

so that Eq (37) reduces to:

dW‖
dz

= −W⊥
B

dB

dz

or to
dW⊥
dz

=
W⊥
B

dB

dz
(38)

with the particle energy conservation law W ≡ W⊥ + W‖ =const taken into
account.
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Eq (38) can easily be integrated which yields:

M ≡ W⊥(z)
B(z)

= const. (39)

The quantity M is the magnetic moment of the particle, it remains constant
within the applied approximation of weak divergence of magnetic filed lines,
and is known as the first adiabatic invariant. It is easy to show the existence of
another adiabatic invariant, the so called third adiabatic invariant, which is the
magnetic flux ΦB through the surface encircled by the quasi-circular particle
orbit:

ΦB ≡ πr2
L(z)B(z) = π

m2v2
⊥(z)

q2B(z)
= 2πM

m

q2
= const.

Constancy of both the particle energy W and magnetic moment M deter-
mines the motion of the guiding center along the magnetic field. Namely, if the
considered charged particle with total energy W = W⊥ + W‖ is moving with
the velocity ~v‖ toward stronger magnetic field, its parallel kinetic energy W‖
is falling off due to the force ~F‖ and eventually reaches zero at some location
z = zr called the particle reflection point or the mirror point:

W‖(zr) = W −MB(zr) = 0 (40)

After that, the particle velocity ~v‖ changes its orientation and the guiding center
of the particle starts moving in the opposite direction toward the region of a
weaker magnetic field. The location of the reflection point zr in a given magnetic
field configuration thus depends on two constants of motion specified as initial
conditions: the kinetic energy W and magnetic moment M of a moving particle.

From Eq (40) we easily obtain the maximal magnetic field strength Bmax ≡
B(zr) a particle with given W and M prescribed at some initial position z = z0,
can reach before being bounced back into the domain of a weaker magnetic field.
Namely, from:

M =
W⊥(z)
B(z)

=
W

B(z)
sin2 θ(z) =

W

B(z0)
sin2 θ(z0)

we get:

Bmax =
B(z0)

sin2 θ(z0)
(41)

where the pitch angle θ is defined as:

v⊥ = tan(θ)v‖ or v⊥ = sin(θ)v.

Finally, the same results for drift motions along the magnetic field are valid
if the considered slightly divergent/convergent magnetic field topology based on
Case 1.2 is replaced by a similarly modified curved field from Case 1.7. The
parallel motion of the guiding center then takes place along a new curved coor-
dinate s-line taken to follow a chosen ~B-field line rather than along the z−axis.
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As to the above expressions, they remain as they are only with the coordinate
z formally replaced by the coordinate s. Of course, the curved magnetic field
now introduces also a transverse centrifugal drift ~Vc given by Eq (34).

The described magnetic field topology and related charged particle motions
are typically found in planetary magnetospheres and also in laboratory plasma
trapping devices.
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