
Mesopause Temperatures from the Observation of OH (6 – 2) Meinel Band Emissions at Kolhapur, India

Navin Parihar & G. K. Mukherjee Indian Institute of Geomagnetism, India *e-mail: gkm@iigs.iigm.res.in*

Outline of Talk

- Introduction
- Experimental Set Up
- Results & Discussions
- Conclusions

Introduction

- Airglow emission of photons
- OH emissions
 - **Ro-vibrational** transitions within **OH** ($X^2\Pi$).
 - Wavelength spread ~ 4 000 40 000 Å.
 - Integrated nightglow intensity ~ 5 MR.
 - Emission Peak ~ 87 ± 4 km.

Mesopause

The region of temperature minimum between stratosphere and lower thermosphere.

Mesopause temperatures from OH emissions

Measuring intensity distribution between various lines or branches within a band

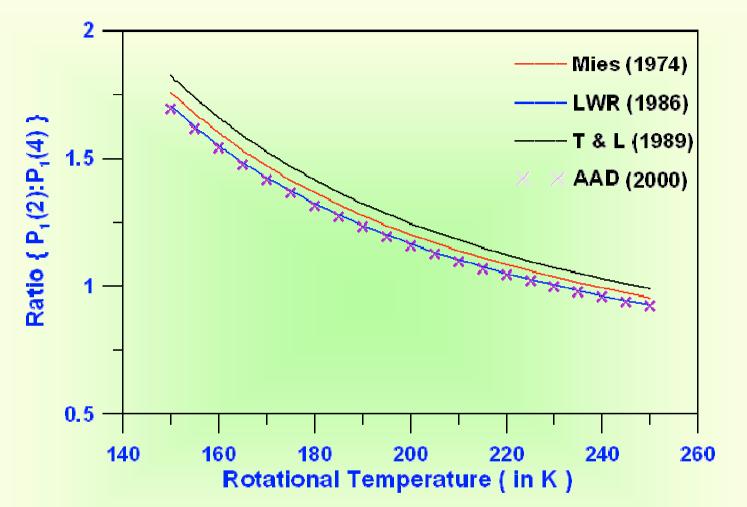
"OH molecules producing the emission are energetically indistinguishable from the surrounding atmosphere"

Why study Mesopause temperature?

- Coldest part of terrestrial atmosphere.
- Investigation of Gravity waves & Tides.
- Chemical reactions are functions of ambient temperature.
- Phenomenology of noctilucent clouds & polar mesospheric echoes.

OH* Production & OH Airglow Primary Source is Ozone-hydrogen reaction -

Largest contributor to chemical heating



OH (6 – 2) Airglow & Rotational Temperature

60 % of released as heat Rest radiated as OH airglow

- Rotational transitions from $\upsilon = 6$ to $\upsilon = 2$. **@**
- Band origin 11980.50 cm $^{-1}$ (834.46 nm). 0
- Integrated band intensity ~ 1.7 KR. 0
- Collisions suffered before de-excitation \sim 180. 0 Sufficient for thermalization of OH* in $\upsilon = 6$ level. Rotational temperature represents Mesopause temperature.
- Rotational temperatures are derived from ratio of $P_1(2)$ 0 to $P_1(4)$ line intensity.

Ratio Vs Rotational Temperature Curve

<u>Term values</u>: Kendall & Clark (1979) <u>Transition Probabilities</u>: Mies = Mies, F. H. (1979); LWR = Langhoff et al. (1986); T & L = Turnbull & Lowe (1989); AAD = French et al. (2000)

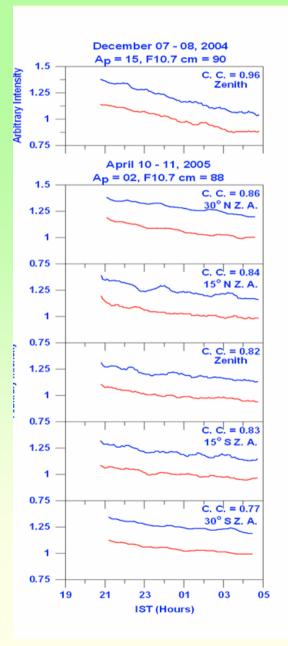
Experimental Set Up

- Observation Site:
 Kolhapur (16.8°N, 74.2°E, Dip lat. 10.6° N)
- Instrument Deployed:
 All Sky Scanning Photometer
 FoV = 7.24°, Photomultiplier Used GaAs
 Temporal Resolution 10 to 60 minute
 Scan mode North-South Scan
 Data used December 2004 to May 2005.

Lines & Filters:

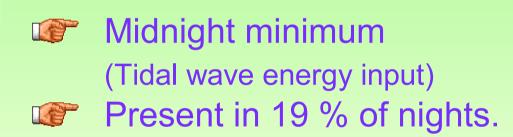

P₁ (2) Line – 839.92 nm (λ_c = 840 nm, bw = 0.8 nm) P₁ (4) Line – 846.54 nm (λ_c = 846.6 nm, bw = 1.2 nm) Background Filter - (λ_c = 857.2 nm, bw = 1 nm)

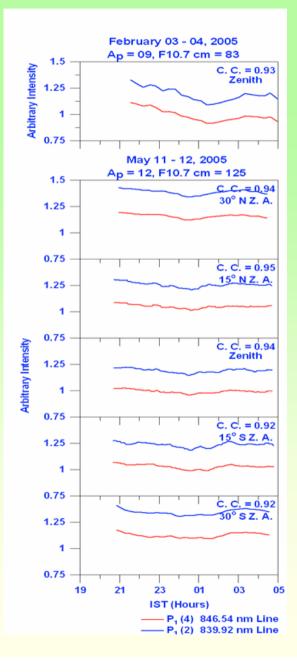
Results & Dicussions

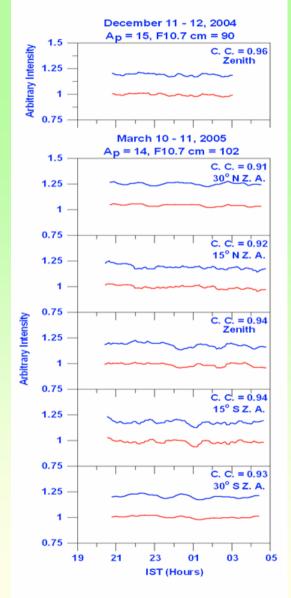

Correlation amongst P₁(2) & P₁(4) emissions

Angle w. r. t. zenith	Percentage of nights having correlation coefficient ≥ 0.85	Minimum value of correlation coefficient	
30° N	100	0.86	
15° N	88	0.77	
0 °	90	0.82	
15° S	94	0.83	
30° S	94	0.77	

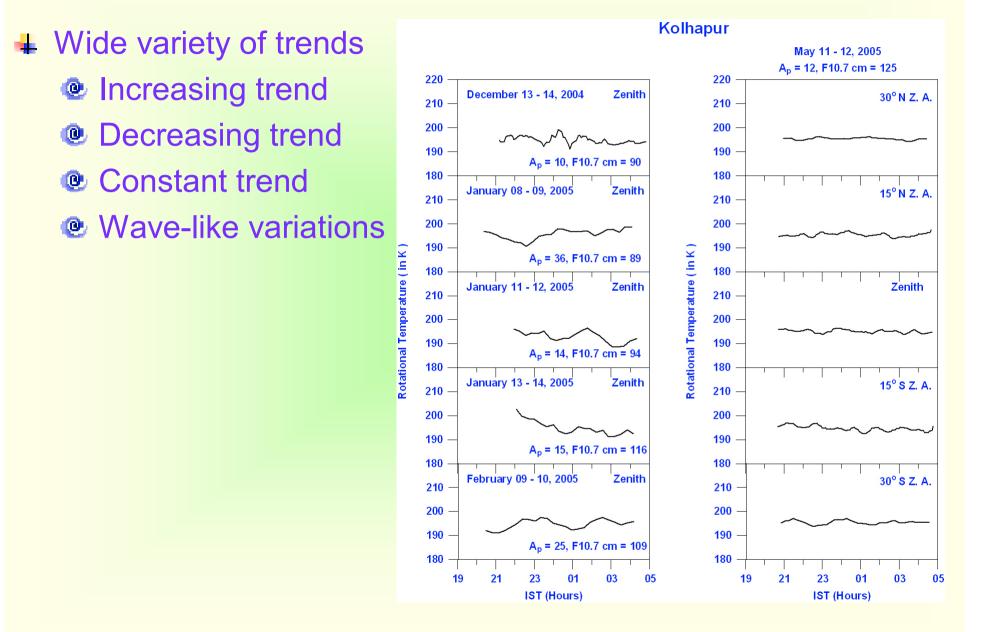
Kolhapur

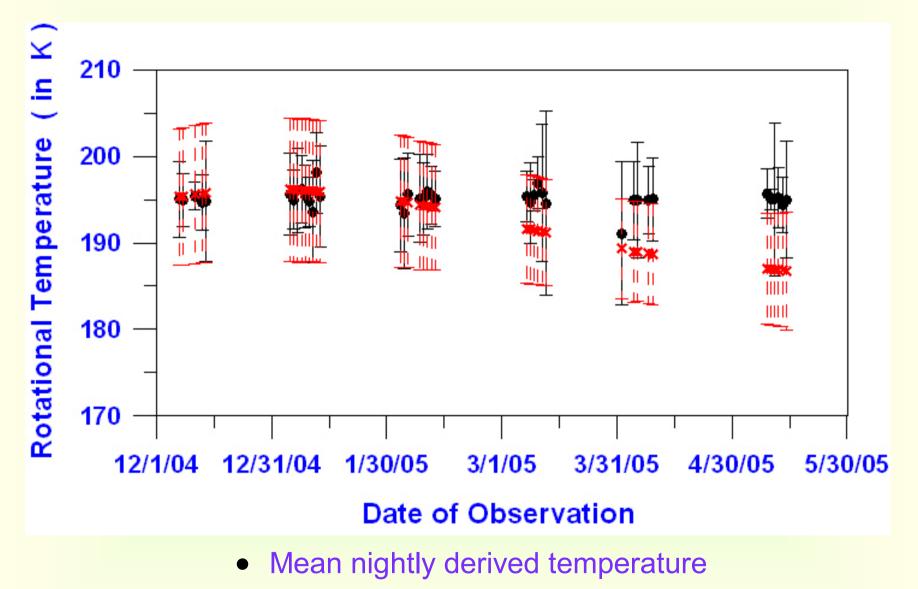



05



Decreasing Intensity (decreasing H & O concentration) Present in 48 % of nights.


Kolhapur



• Small wave-like variations superimposed over long term variations were also observed.

Temporal Temperature Variations

Comparison with MSISE 90 Model

× Mean nightly MSISE 90 predicted temperature

Average Temperature (in K) along Zenith and

<u>± 15° & ± 30° Off-zenith directions</u>

Direction	LWR	Mies	L & T	AAD
30° N Z. A.	195 ± 5	201 ± 5	207 ± 5	194 ± 5
15° N Z. A.	195 ± 5	200 ± 5	207 ± 5	194 ± 5
Zenith	195 ± 5	200 ± 5	207 ± 5	194 ± 5
15° S Z. A.	195 ± 5	200 ± 5	207 ± 6	194 ± 5
30° N S. A.	195 ± 5	200 ± 5	207 ± 5	194 ± 5

Dependence on Choice of Transition Probabilities

- **AAD values** are the lowest one.
- **LWR values** are **1 K higher** than **AAD values**.
- Mies values are 5 K higher than AAD values.
- **T & L values** are **13 K higher** than **AAD values**.

Conclusions

- High Degree of Correlation is observed amongst $P_1(2) \& P_1(4)$ line emissions of OH (6 2) band.
- Wave-like variations are observed in temporal variation of both intensity & temperature.
- No significant diurnal & seasonal variation is observed in mean nightly variation of both intensity & derived temperature.
- Derived temperatures are in good agreement with MSISE 90 predicted values.
- Poor correlation of temperature with Ap & F 10.7 cm flux is observed.
- Average temperature of mesopause at Kolhapur is
 195 ± 5 K (using Langhoff et al., 1986 transition probabilities).

