

The Abdus Salam International Centre for Theoretical Physics

310/1749-29

ICTP-COST-USNSWP-CAWSES-INAF-INFN International Advanced School on Space Weather 2-19 May 2006

Thermosphere-Ionosphere-Electrodynamics General Circulation Model TIEGCM

> Maura HAGAN National Center for Atmospheric Research 1850 Table Mesa Drive Boulder, CO 80307-3000 U.S.A.

These lecture notes are intended only for distribution to participants

Thermosphere-Ionosphere-Electrodynamics General Circulation Model TIEGCM

Maura Hagan

Jiuhou Lei, Gang Lu

Ray Roble, Art Richmond, Stan Solomon Ben Foster, Astrid Maute, Liying Qian

> High Altitude Observatory National Center for Atmospheric Research Boulder, Colorado USA

ICTP Space Weather School

Maura Hagan - 1 -

TIEGCM Objectives

- Describe the chemistry, dynamics and electrodynamics of the Earth's upper atmosphere within a mathematical framework
- **Diagnose** the Earth's upper atmosphere; develop understanding by comparing model results with observations
- Predict future conditions of the Earth's upper atmosphere (e.g., thermospheric cooling associated with increased CO₂)
- Strategies:
 - 1-D: column model (global mean)
 - 2-D: zonal averages (height & latitude)
 - 3-D: global

Historical Development of TIEGCM

- TGCM; an adaptation of the NCAR climate model (ca.1970)
 - 97 to 500 km (solar minimum)
 - solar EUV heating
 - thermospheric composition
 - molecular diffusion
 - parameterized ionosphere
- TIGCM (ca. 1988)
 - added ionospheric chemistry and dynamics
 - parameterized electric fields
- TIEGCM (ca. 1992)
 - added self-consistent low and middle latitude electrodynamics
 - parameterized high-latitude electrodynamics

Ray Roble

Art Richmond

ICTP Space Weather School

Maura Hagan - 3 -

Thermosphere-Ionosphere-Electrodynamics General Circulation Model TIEGCM

Part 1: Model Overview

- functional description
- references
- select formulations and numerical schemes

TIEGCM Functional Description

- comprehensive, first-principles, three-dimensional, non-linear representation of the coupled thermosphere and ionosphere system, including a self-consistent solution of the middle and lowlatitude dynamo field,
- solves the 3-D momentum, energy and continuity equations for neutral and ion species at each time step (typically 120–180s),
- employs a semi-implicit, fourth-order, centered finite difference scheme on each pressure surface in a staggered vertical grid,
- runs in either serial or parallel mode on a variety of platforms, including Linux workstations and supercomputers.

The standard low-resolution grid parameters are:

- Latitude: -87.5° to 87.5° in 5° increments
- Longitude: -180° to 180° in 5° increments
- Altitude: 29 pressure levels from -7 to +6.5 in increments of

2 grid points per scale height

- Lower boundary: ~97 km
- Upper boundary: ~500–700 km depending on solar activity

NCAR TIEGCM Development

References:

- Dickinson, R. E., E. C. Ridley and R. G. Roble, A three-dimensional general circulation model of the thermosphere, *J. Geophys. Res.*, 86, 1499-1512, 1981.
- Dickinson, R. E., E. C. Ridley and R. G. Roble, Thermospheric general circulation with coupled dynamics and composition, *J. Atmos. Sci.*, 41, 205-219, 1984.
- Richmond, A. D., E. C. Ridley and R. G. Roble, A Thermosphere/Ionosphere General Circulation Model with coupled electrodynamics, *Geophys. Res. Lett.*, 19, 601-604, 1992.
- Roble, R. G., and E. C. Ridley, An auroral model for the NCAR thermospheric general circulation model (TGCM), *Annales Geophys.*, 5A, 369-382, 1987.
- Roble, R. G., E. C. Ridley and R. E. Dickinson, On the global mean structure of the thermosphere, *J. Geophys. Res.*, 92, 8745-8758, 1987.
- Roble, R. G., E. C. Ridley, A. D. Richmond and R. E. Dickinson, A coupled thermosphere/ionosphere general circulation model, *Geophys. Res. Lett.*, 15, 1325-1328, 1988.
- Roble, R. G., and E. C. Ridley, A thermosphere-ionosphere-mesosphere-electrodynamics general circulation model (time-GCM): equinox solar cycle minimum simulations (30-500 km), *Geophys. Res. Lett.*, 21, 417-420, 1994.
- Roble, R. G., Energetics of the mesosphere and thermosphere, AGU, *Geophysical Monographs*, eds. R. M. Johnson and T. L. Killeen, 87, 1-22, 1995.

Thermodynamic equation - general form

12 May 2006

ICTP Space Weather School

Maura Hagan - 7 -

TIEGCM Thermodynamic equation

$$\frac{\partial T}{\partial t} = \frac{ge^Z}{P_o C_p} \frac{\partial}{\partial Z} \left\{ \frac{K_T}{H} \frac{\partial T}{\partial Z} + K_E H^2 C_p \rho \left[\frac{g}{C_p} + \frac{1}{H} \frac{\partial T}{\partial Z} \right] \right\}$$

$$-\underline{U} \cdot \nabla T - \omega \left[\frac{\partial T}{\partial Z} + \frac{RT}{C_p \overline{m}} \right] + \frac{(Q-L)}{C_p}$$

- *g* gravitational acceleration
- P_o reference pressure; 5x10⁻⁴ µbar

$$K_T$$
 molecular thermal conductivity

- K_E eddy diffusion coefficient = eddy thermal conductivity
- $\underline{\rho}$ total mass density
- *m* mean molecular mass
- *Q* heating rate
- *L* total cooling rate

TIEGCM Thermodynamic equation

diabatic heating

- absorption of solar radiation UV and EUV
- absorption of energetic particles
- chemical heating exothermic reactions
- ion neutral collisions; Joule heating

diabatic cooling

- airglow
- CO₂ infrared cooling
- nitric oxide (NO) infrared cooling

Schematic absorption of UV and EUV.... up next

Continuity Equation - general form

mass density of species, n

 $\frac{\underline{U}}{CS_n}$ wind velocity vector

mass source of minor species, n

mass sink of minor species, n

 CR_n $\Psi_n = \frac{\rho_n}{\rho_n}$

 S_n

 R_n

 ρ_n

mass mixing ratio of species, *n*, for total mass density, ρ

$$\frac{\partial \Psi_n}{\partial t} + \underline{U} \cdot \nabla \Psi_n = S_n - R_n$$

source of minor species, n sink of minor species, n

$$S_n - R_n = \frac{CS_n - CR_n}{\rho_n}$$

12 May 2006

ICTP Space Weather School

Maura Hagan - 11 -

TIEGCM Minor Neutral Species Transport:

$$\frac{\partial \Psi_n}{\partial t} = -e^{-Z} \frac{\partial}{\partial Z} D_n \left[\frac{\partial}{\partial Z} - E_n \right] \Psi_n + S_n - R_n$$

$$-\left[\underline{V}\cdot\nabla\Psi_{n}+\omega\frac{\partial\Psi_{n}}{\partial Z}\right]+e^{Z}\frac{\partial}{\partial Z}e^{-Z}K_{E}(Z)\left[\frac{\partial}{\partial Z}+\frac{1}{\overline{m}}\frac{\partial\overline{m}}{\partial Z}\right]\Psi_{n}$$

$$\begin{array}{ll} \Psi_{n} & \text{mass mixing ratio of minor species, } n \\ D_{n} & \text{molecular diffusion coefficient} \\ E_{n} & \text{gravitational, thermal diffusion, and frictional interaction} \\ & \text{with the major species;} & \left[1 - \frac{m_{n}}{\overline{m}} - \frac{1}{\overline{m}} \frac{\partial \overline{m}}{\partial Z}\right] - \alpha_{n} \frac{1}{T} \frac{\partial T}{\partial Z} + \underline{F} \Psi_{n} \end{array}$$

 m_n mass of the minor species, n

 \overline{m} average mass of the major species

ICTP Space Weather School

TIEGCM Solution - Continuity Equations - 1

derivatives become finite differences at model grid points

- for each specie, *i*
- at every grid point, x grid spacing, Δx
- at every time, t time step, Δt

Chemistry

$$\frac{\partial \Psi_i}{\partial t} = S_i - R_i$$

Sufficiently small time step - explicit:

 $\Psi_i^{m+1} = \Psi_i^m + \Delta t \cdot \left[S_i \left(t_m, \Psi_i^m \right) - R_i \left(t_m, \Psi_i^m \right) \right]$

Otherwise - implicit:

$$\Psi_{i}^{m+1} = \Psi_{i}^{m} + \Delta t \cdot \left[S_{i} \left(t_{m+1}, \Psi_{i}^{m+1} \right) - R_{i} \left(t_{m+1}, \Psi_{i}^{m+1} \right) \right]$$

ICTP Space Weather School

Maura Hagan - 13 -

TIEGCM Solution - Continuity Equations - 2

derivatives become finite differences at model grid points

- for each specie, *i*
- at every grid point; grid spacing, Δx
- at every time step, Δt

Eulerian Transport

$$\frac{\partial \Psi_i}{\partial t} + \frac{\partial F_i}{\partial x} = 0 \quad \text{for flux, } F_i = c \Psi_i$$

leap-frog method:

$$\Psi_{i,j}^{m+1} = \Psi_{i,j}^{m-1} - \frac{\Delta t}{\Delta x} \cdot \left[F_{i,j+1}^{m} - F_{i,j-1}^{m} \right]$$

if $|c| \frac{\Delta t}{\Delta x} \le 1$ (CFL stability condition)

ICTP Space Weather School

Maura Hagan - 14 -

TIEGCM Solution - Continuity Equations - 3

derivatives become finite differences at model grid points

- for each specie, *i*
- at every grid point; grid spacing, Δx
- at every time step, Δt

Diffusion

$$\frac{\partial \Psi_i}{\partial t} = \frac{\partial}{\partial x} \left(K \frac{\partial \Psi_i}{\partial x} \right) \text{ for diffusion coefficient, } K > 0$$

explicit:

$$\frac{\Psi_{i,j}^{m+1} - \Psi_{i,j}^{m}}{\Delta t} = \frac{K}{\left(\Delta x\right)^{2}} \left(\Psi_{i,j+1}^{m} - 2\Psi_{i,j}^{m} + \Psi_{i,j-1}^{m}\right) \quad \text{stable if } 2K \frac{\Delta t}{\left(\Delta x\right)^{2}} \le 1$$

implicit:

$$\frac{\Psi_{i,j}^{m+1} - \Psi_{i,j}^{m}}{\Delta t} = \frac{K}{\left(\Delta x\right)^2} \left(\Psi_{i,j+1}^{m+1} - 2\Psi_{i,j}^{m+1} + \Psi_{i,j+1}^{m-1}\right)$$

ICTP Space Weather School

Maura Hagan - 15 -

Equations of Neutral Motion

$$\frac{\partial}{\partial t}U_{\theta} = -\frac{U_{\theta}}{r}\frac{\partial}{\partial \theta}U_{\theta} - \frac{U_{\phi}}{r\sin\theta}\frac{\partial}{\partial \phi}U_{\theta} - \omega\frac{\partial}{\partial p}U_{\theta} - \frac{g}{r}\frac{\partial}{\partial \theta}Z + \left(2\Omega + \frac{U_{\phi}}{r\sin\theta}\right)V_{\phi}\cos\theta + g\frac{\partial}{\partial p}\left[\left(\mu_{m} + \mu_{T}\right)\frac{p}{H}\frac{\partial}{\partial p}U_{\theta}\right] - v_{ni}\left(U_{\theta} - V_{\theta}\right)$$

$$\frac{\partial}{\partial t}U_{\phi} = -\frac{U_{\theta}}{r}\frac{\partial}{\partial \theta}U_{\phi} - \frac{U_{\phi}}{r\sin\theta}\frac{\partial}{\partial \phi}U_{\phi} - \omega\frac{\partial}{\partial p}U_{\phi} - \frac{g}{r}\frac{\partial}{\partial \phi}Z - \left(2\Omega + \frac{U_{\phi}}{r\sin\theta}\right)U_{\theta}\cos\theta + g\frac{\partial}{\partial p}\left[\left(\mu_{m} + \mu_{T}\right)\frac{p}{H}\frac{\partial}{\partial p}U_{\phi}\right] - v_{ni}\left(U_{\phi} - V_{\phi}\right)$$

advectionpressureCoriolisviscosityion drag $\frac{1}{p} \frac{\partial p}{\partial Z} = -\frac{g}{RT}$ $U_z = \left(\frac{\partial Z}{\partial t}\right)_p - \frac{\omega}{\rho g}$ $\frac{\partial \omega}{\partial p} = -\nabla_p \cdot \underline{U}$

- radius of the Earth
- Ω rotation rate of the Earth
- v_{ni} ion-neutral collision frequency
 - k component of ion velocity, V
 - molecular viscosity coefficient
- μ_T thermal viscosity coefficient

r

 V_k

 μ_m

ICTP Space Weather School

TIEGCM Ionosphere **Continuity Equation** electron $\frac{\partial [n]}{\partial t} = q - l - \nabla \cdot [n] \underline{V}$ $q_e = \sum_{i} q_i \qquad n_e = \sum_{i} n_i$ Bb $\underline{V} = \underline{V}_{\parallel} + \underline{V}_{\perp}$ where $\underline{V}_{\parallel}, \underline{V}_{\perp}$ are the parallel, perpendicular components of \underline{V} For example, O⁺

$$\underline{V}_{\parallel} = \left\{ \underline{b} \cdot \frac{1}{\nu} \left[g - \frac{1}{\rho_i} \nabla (p_i + p_e) \right] + \underline{b} \cdot \underline{U} \right\} \underline{b}$$

$$\underline{V}_{\perp} = \frac{1}{|B|} \underline{E} \times \underline{b}$$

Need a global specification of \underline{B} in order to solve for \underline{E} and \underline{V}

 $\otimes E$

ion

TIEGCM Geomagnetic Coordinates

Note the offset between the geographic and geomagnetic poles.

12 May 2006

ICTP Space Weather School

Maura Hagan - 18 -

TIEGCM Calculations

- Upper Boundary specify
 - solar flux
 - aurora
 - high latitude convection electric field

(cross-cap potential drop)

- Lower Boundary specify
 - tides coming from the lower atmosphere
- specify some initial state of the T-I system
- on the geographic grid
 - calculate composition (neutral and ion)
 - solve the thermal energy equations
 - solve the neutral equation of motion
- on the geomagnetic grid
 - solve the dynamo equation (low-mid latitudes)
 - solve the ion and electron equations of motion

ICTP Space Weather School

Maura Hagan - 19 -

TIEGCM Ionosphere-Thermosphere Coupling

Why is TEC largest near 0° longitude? Why is TEC comparatively larger in the summer hemisphere?

12 May 2006

ICTP Space Weather School

Maura Hagan - 20 -

TIEGCM Ionosphere-Thermosphere Coupling

The sub-solar point is at 0° longitude at 12UT; in the Southern hemisphere during December.

Thermospheric winds blow from "hot" to "cold" (pressure gradient-ion drag balance) \Rightarrow decreased (increased) Recombination in the Southern (Northern) hemisphere

ICTP Space Weather School

Thermosphere-Ionosphere-Electrodynamics General Circulation Model TIEGCM

Part 2: Model Validation

- exemplary effort
- highlights of a recent study
- a set of 1-D assessments
- climatologies of Incoherent Scatter Radar (ISR) data
- led by Jiuhou Lei
- HAO/ASP Postdoctoral Fellow
- PhD 2005, Chinese Academy of Sciences

Global Incoherent Scatter Radar Network

Millstone Hill, Massachusetts, USA

Arecibo, Puerto Rico

Primary measurements:

- electron density, N_e
- electron temperature, T_e
- ion temperature, T_i
- line-of-sight ion velocity, V_i

ICTP Space Weather School

Maura Hagan - 23 -

Sample ISR Climatologies

- electron density (N_e)
- electron temperature (T_e)
- ion temperature (T_i)
 - Millstone Hill: 1976-2002
 - Arecibo: 1966-2000
- geomagnetically undisturbed
 - **-** Ap < 30

solar cycle

- minimum: F_{10.7} < 100
- maximum: F_{10.7} > 170

season

- equinox: March & April
- summer: June & July
- winter: December & January

ICTP Space Weather School

after *Lei et al.,* 2006 Maura Hagan - 24 -

TIEGCM Validation

Objective: account for ionosphere - plasmasphere coupling

1- Assess Upper Boundary Conditions using ISR data

• electron heat flux **before**:

 $F_{day} = -6 \times 10^{7} (F_{10.7} A(\theta)) - 4.8 \times 10^{7} (F_{10.7})$ $A(\theta) = 1 \quad \text{for } \theta > 45^{\circ} \text{ latitude}$ $= \sin\theta \text{ for } \theta < 45^{\circ}$ $F_{night} = F_{day}/2 \text{ at night}$ • electron heat flux after: $F_{day} = -4 \times 10^{7} (F_{10.7} A(\theta)) - 2 \times 10^{7} (F_{10.7})$ $A(\theta) = 1 \quad \text{for } \theta > 45^{\circ} \text{ latitude}$ $= \sin\theta \text{ for } \theta < 45^{\circ}$ $F_{night} = F_{day}/B(\theta) \text{ at night}$ $B(\theta) = 5 \text{ for } \theta = 45^{\circ}$ $= 10 \text{ for } \theta = 0^{\circ}$

ICTP Space Weather School

after *Lei et al.,* 2006 Maura Hagan - 25 -

TIEGCM Validation

2 - Assess Upper Boundary Conditions using ISR data

• O⁺ flux **before**:

 Φ_{day} = 2 x10⁸ cm⁻² s⁻¹ during daytime (out) Φ_{night} -2 x10⁸ cm⁻² s⁻¹ at night (in)

no seasonal or solar cycle dependence

• O⁺ flux after:

$$\Phi_{day} = [1 + F_{10.7}r - (.25 + .25F_{10.7}r)\beta] \times 10^8 \text{ cm}^{-2} \text{ s}^{-1}$$

= [1 + F_{10.7}r - .1β] ×10⁸ cm⁻² s⁻¹

 $\Phi_{\text{night}} = -[.5+.7F_{10.7}r - (.5+.8F_{10.7}r)\beta] \times 10^8 \text{ cm}^{-2} \text{ s}^{-1}$ = -[.5+.7F_{10.7}r - .1\beta] \times 10^8 \text{ cm}^{-2} \text{ s}^{-1}

$$\begin{split} \beta = 1 + \sin(\pi[(\phi - \pi/8)/(\pi/4)]) & \phi = (d - 171.25)/(\pi/365) \\ F_{10.7} r = 8.3 \ x 10^{-3} F_{10.7} - 0.67 \end{split}$$

after Lei et al., 2006

ICTP Space Weather School

Maura Hagan - 26 -

Improving the TIEGCM Upper Boundary Condition

T_e before

T_e after

N_e before

TIEGCM/ISR Comparisons - Millstone (42.6°N, 71.5°W)

TIEGCM/ISR Comparisons - Millstone (42.6°N, 71.5°W)

TIEGCM/ISR Comparisons - Millstone (42.6°N, 71.5°W)

TIEGCM/ISR Comparisons - Arecibo (18.3°N, 66.7°W)

TIEGCM/ISR Comparisons - Arecibo (18.3°N, 66.7°W)

TIEGCM/ISR Comparisons - Arecibo (18.3°N, 66.7°W)

TIEGCM T_e-N_e Relationship over Millstone

Electron temperature, T_e , is expected to decrease with solar activity, as electron density, N_e , increases. But, *Lei et al.* (2006) show that ...

after Lei et al., 2006

ICTP Space Weather School

Maura Hagan - 34 -

Thermosphere-Ionosphere-Electrodynamics General Circulation Model TIEGCM

Part 3: Case Studies

- October-November 2003 Halloween Storms
- community effort realistic drivers assimilated data
- led by Gang Lu
 - HAO Scientist

ICTP Space Weather School

ICTP Space Weather School

Case Studies with the NCAR/HAO GCMs High-Latitude Forcing

• GPI forcing:

<u>**G**</u>eo<u>P</u>hysical Indices \Rightarrow Kp & F_{10.7}

empirical convection electric fields, aurora and solar irradiance forcing

• SPE forcing:

Solar **P**roton **E**vent \Rightarrow energetic particle observations (TIME-GCM)

• AMIE forcing:

convection electric fields and auroral forcing from assimilated ground-based and satellite observations

October - November 2003 Halloween Storms

TIEGCM Electron Column Densities on 29 October 2003

TEC $DAY = 302 \ UT = 0.33 \ ZP = 7.00$

NCAR

GPS Total Electron Content

courtesy of Anthea Coster and Bill Rideout

ICTP Space Weather School

Maura Hagan - 44 -

TIMED-GUVI Observations of Neutral Composition

Oct 28, 2003 GUVI O/N₂ Ratio

-150 -120 -90

GUVI O/N₂ Ratio

Note increase in N_2 at high latitudes as the storm progresses, in response to auroral heating and associated thermospheric upwelling

Oct 29, 2003

courtesy of Larry Paxton

ICTP Space Weather School

Maura Hagan - 45 -

CHAMP Neutral Density Observations at 400km

NCAR

Neutral Temperature Difference at ~400 km

NEUTRAL TEMPERATURE (DIFFS DEGK) DAY = 302 UT = 0.00 ZP = 2.50

TIEGCM Diagnostics - Ionosphere

Recap - Halloween Storm Simulation

- Strong geomagnetic activity with Dst ~ 450 nT, AE ~ 3500 nT; cross-polar-cap potential drop reaches 350 ~ 400 kV, and Joule heating peaks ~ 5000 GW
- Solar energetic protons produce significant ionization in the Dregion, causing enhanced riometer absorption in both northern and southern polar regions in TIME-GCM
- Large Joule heating dissipation increases T_N in the thermosphere by 700°K (global average), and reaches ~1700°K in local regions
- Significant decrease of O/N₂ ratio in the middle latitude region and auroral and subauroral zones
- The global average HmF₂ increased by more than 100 km and NmF₂ decreased by 70%

Other GCM Development Efforts

- TIME-GCM (ca. 1992)
 - moved lower boundary down to 30km
 - added stratospheric and mesospheric constituents and chemistry
 - added parameterized gravity wave effects
- Ongoing
 - adding a self-consistent plasmasphere
 - contributing to the Center for Integrated Space Weather Modeling (CISM) effort
 - working with other NCAR scientists to extend the Whole Atmosphere Community Climate Model (WACCM) into the thermosphere

ICTP Space Weather School

Extra Slides:

Plasmaspheric Model Development

SEP during Halloween Storms

Plasmasphere Model Development Plan

Solar Energetic Protons Observed by NOAA-POSE

00 UT, 28 October 2003

Solar Energetic Protons Observed by NOAA-POSE

06 UT, 29 October 2003

NCA

Electron Density Enhancement due to SEP

ICTP Space Weather School

Maura Hagan - 59 -