
 

 

 
 

 
 
 

310/1749-6 
 
 
 

ICTP-COST-CAWSES-INAF-INFN  
International Advanced School 

 on 
 Space Weather 
2-19 May 2006 

 
_____________________________________________________________________ 

 
 
 
 

Basic Physics of Magnetoplasmas-II: Fluid 
Description and MHD 

 
 

Vladimir CADEZ 
Astronomical Observatory 

Volgina 7 
11160 Belgrade 

SERBIA AND MONTENEGRO 
 

 

 
 

 
 
___________________________________________________________________________ 

These lecture notes are intended only for distribution to participants 
 



LECTURE 2

FLUID DESCRIPTION AND MHD

Vladimir M. Čadež

Astronomical Observatory Belgrade
Volgina 7, 11160 Belgrade, Serbia&Montenegro

Email: vladimir.cadez@phy.bg.ac.yu

In many magnetized plasmas in nature and laboratory, we may introduce
certain realistic assumptions that simplify mathematical procedures and help
making a better insight into physical processes involved. Thus, a common way
to study a system with a large number of charged particles is to introduce the
fluid approximation in which we deal with a number of macroscopic quantities
of the system that are averages of microscopic physical properties of individ-
ual particles. This approach assumes a sufficiently large number of particles
in an elementary plasma volume dV = dxdydz so that their mean free path ¯̀
obeys dx, dy, dz À ¯̀. In other words, the plasma is considered as a continu-
ous fluid characterized by its macroscopic properties: the density ρ ≡dm/dV,
temperature T, pressure p, fluid velocity ~v etc.

When motions of a single charged particle were considered, we took the ex-
ternal electric and magnetic fields unaffected which, however, may easily not be
true in presence of a large number of particles. Namely, each moving charged
particle creates its own electric and magnetic field that add up and may sig-
nificantly modify the initial magnetic and electric field configurations. This
has a further feedback effect on particle motions and, consequently, the plasma
dynamics becomes more complex and requires a full self-consistent description
of plasma dynamics with macroscopic electromagnetic field and macroscopic
plasma parameters mutually coupled. From the mathematical point of view,
this means that we have to use the full system of fluid dynamic equations to-
gether with Maxwells equations.

Plasma can often be considered globally electro-neutral meaning the equality
of the total positive and negative electric charge. On a local scale, however, a
charge separation may occur which results into local electric fields according to
the Gauss law.

The fluid approach can be utilized also for a plasma composed of several
different species when each of them is treated as a separate fluid with some
interaction force acting among them like, for example, electric force, viscous
friction etc. A multi-component plasma fluid approach is commonly used in
plasma studies with typical components composed of electrons, ions, electro
neutral particles, and dust particles of practically arbitrary size and charge.
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In many situations, one can treat plasma as a single fluid when electrons and
their motions are not recognizable as a separate plasma component, instead they
are treated as electric currents in a moving electro-conducting fluid satisfying
Maxwells equations and fluid equations of motion. Such a single fluid treatment
of a plasma in a magnetic field is the essence of the magneto-hydrodynamical
or MHD approximation. Although simplified, the MHD treatment reveals and
describes many real plasma features existing and observed in nature.

2.1 Basic equations of fluid dynamics

All physical variables of plasma dynamics are field variables in the hydrodynamic
approach meaning they are functions of the position ~r and time t:

~v = ~v(~r, t); p = p(~r, t); ρ = ρ(~r, t); ~B = ~B(~r, t); etc. (1)

Their space-time behavior is governed by standard fluid equations which are de-
rived either directly from the conservation laws of mass, momentum and energy,
for an arbitrary fluid volume, or by averaging statistic equations of the kinetic
theory for individual particles. These equations are supplemented by macro-
scopic Maxwells equations obtained from microscopic equations for a system of
individual particles by the same averaging procedure.

The fluid equations govern the dynamics of a fluid parcel with mass dm
occupying the elementary volume dV at location ~r ≡ (x, y, z) at time t. After
the division by dV, the resulting equations involve physical quantities related to
the unit volume i.e. their densities: the mass density ρ ≡ dm/dV, force density
~f ≡ ~dF/dV , charge density ρq ≡ dq/dV, electric current density ~j etc.

The set of equations fully describing the dynamics of an electro-conducting
plasma is as follows:

The continuity equation resulting from the conservation of mass law:

∂ρ

∂t
+∇ · (ρ~v) = 0. (2)

The momentum equation resulting from the momentum conservation
law:

ρ
d~v

dt
= −∇p + ~fg + ~fL + ~f. (3)

The acceleration term in Eq (3) can be expressed as:

d~v

dt
≡ ∂~v

∂t
+ (~v · ∇)~v (4)

The derivative ∂~v/∂t is related to the local time variation of the velocity
field, and ~v · ∇~v is the convection term resulting from velocity variation as the
fluid moves with velocity ~v in a spatially dependent velocity field ~v(~r). The
convective term can further be written as:

~v · ∇~v = ∇v2

2
+ (∇× ~v)× ~v. (5)
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On the right-hand side of Eq (3) we have acting forces per unit volume.
Typically they are the pressure gradient force −∇p, the gravitational force ~fg:

~fg = −∇φg where ∇2φg = 4πGρ (6)

(G=6.672× 10−11 N m2kg−2 - the gravitational constant), the Lorentz force ~fL:

~fL = ρq
~E +~j × ~B, (7)

with ρq and ~j being the charge density and electric current density respectively.
In addition, there is ~f that stands for any other possible force acting per unit
volume that may be present in Eq (3).

The energy equation depends on types of energy involved and on dissi-
pative properties of plasma in the considered problem. In this lecture, we make
a frequent assumption of plasma behaving as an ideal gas obeying the perfect
gas law:

p =
R
MρT,

(R=8.314 J mol−1K−1 - the universal gas constant; M - molar mass) with
negligible effects of thermal, viscous and Joule heating energy dissipations. In
absence of other energy sources (possible chemical reactions, latent heat in phase
transitions, etc), the energy conservation can be expressed as the adiabatic law:

δQ ≡ cvdT + pd(1/ρ) = 0

which together with the perfect gas law yields the equation for adiabatic pro-
cesses:

d

dt
ln p = γ

d

dt
ln ρ (8)

(γ=cp/cv; cv, cp=cv+R - specific heats at constant volume and pressure respec-
tively).

Macroscopic Maxwell’s equations are represented by:

∇ · ~E =
1
ε
ρq, ∇× ~E = −∂ ~B

∂t
,

∇ · ~B = 0, ∇× ~B = µ0
~j + µ0ε

∂ ~E

∂t

(9)

and they have to be supplemented by Ohm’s law for a moving electro-conducting
plasma:

~j = σ ~E′ ≡ σ( ~E + ~v × ~B) (10)

If the plasma electrical conductivity σ is finite, the Joule heating is not
negligible and, strictly speaking, the adiabatic law of no heat transfer in the
considered process is not applicable. Yet, in many cases, one may keep σ fi-
nite and assume the Joule heating ineffective to influence the energy balance
appreciably.

3



2.2 MHD approximation

In the non-relativistic MHD approximation, we shall now be dealing with, the
plasma is considered an electro-conducting fluid moving with typical speed v∗

that is much smaller than the speed of light c: v∗ ¿ c.
The plasma is fully ionized, globally electro-neutral, permeated by a macro-

scopic external magnetic field but no macroscopic external electric field is as-
sumed to be present. All electric fields are therefore induced by motions of a
conducting plasma in a magnetic field.

The dynamics of plasma motions and changes in electric and magnetic fields
are characterized by the same typical time and length scales τ∗ and `∗ respec-
tively.

As individual particles are undistinguishable in a fluid approach, we take
r∗L ¿ `∗ for a typical Larmor radius r∗L.

Introducing typical values X∗ for each physical quantity X in Eqs (2)-(10)
we can compare contributions of individual terms in these equations and show
that some of them are negligible and can be ignored and, as a result, we obtain
what is called a set of MHD equations. In this sense, let us first look at Ohm’s
law (10) and take both terms to be of the same order of magnitude:

| ~E| ∼ |~v × ~B| ⇒ E∗ ∼ v∗B∗ where v∗ ∼ `∗

τ∗
(11)

which gives an estimate of the magnitude of induced electric field in terms of
typical fluid speed and magnetic field.

Looking at Maxwell’s equations (9) and taking for the derivatives:

|∇| ∼ 1
`∗

and
∣∣∣∣
∂

∂t

∣∣∣∣ ∼
1
τ∗

,

we establish additional relations among typical values.
Thus:

|∇ · ~E| =
∣∣∣∣
1
ε
ρq

∣∣∣∣ ⇒ ρ∗q ∼
E∗ε
`∗

=
B∗

τ∗
ε (12)

offers an estimate for the net charge separation induced by fluid motions in a
~B-field.

The ratio of two terms in the fourth Maxwell’s equation i.e. in Ampère’s
law: ∣∣∣∣∣µ0ε

∂ ~E

∂t

∣∣∣∣∣
∣∣∣∇× ~B

∣∣∣
∼

E∗

τ∗

c2 B∗

`∗

=
(

v∗

c

)2

¿ 1 (13)

shows a negligible contribution of the polarization current and Ampère’s law in
the MHD approximation reads as:

∇× ~B = µ0
~j. (14)
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A comparison of two terms in the Lorentz force (7):
∣∣∣ρq

~E
∣∣∣

∣∣∣~j × ~B
∣∣∣
∼ ρ∗qE

∗

j∗B∗ ∼
εE∗2

`∗

B∗2
µ0`

∗
=

(
v∗

c

)2

¿ 1 (15)

indicates the major contribution to ~fL coming from the magnetic field only and
we may write in the MHD approximation:

~fL = ~j × ~B. (16)

As the net charge density ρq appears solely in the Lorenz force through the
term ρq

~E which turned out to be negligible in Eq (16), we conclude that ρq,
determined from the Gauss law for the ~E-field (the second Maxwell equation)
plays no role in the MHD dynamics.

The third Maxwell’s equation, the Lenz rule, combined with Ohm’s law (10)
and Ampère’s law (14) becomes

∂ ~B

∂t
= ∇× (~v × ~B) + η∇2 ~B assuming η ≡ 1

µ0σ
= const, (17)

known as the magnetic induction equation for a plasma with constant electric
conductivity: σ=const. This is an important MHD equation telling us that the
magnetic field changes for two reasons: the plasma motions ~v, and the resistive
dissipations given by the diffusion term with magnetic diffusivity η in Eq (17).

To summarize, the full set of MHD equations for a plasma with a constant
electrical conductivity σ consists of standard equations of fluid dynamics sup-
plemented by expressions containing the magnetic field:

∂ ~B

∂t
= ∇× (~v × ~B) + η∇2 ~B, ∇× ~B = µ0

~j,

~fL = ~j × ~B, ~j = σ( ~E + ~v × ~B).
(18)

2.3 Some properties of Lorentz force

Let us look at the Lorentz force and see how it acts in an MHD fluid. For this
purpose, we substitute Ampère’s law (14) into Eq (16) which gives:

~fL ≡ ~j × ~B =
1
µ0

(∇× ~B)× ~B = −∇ B2

2µ0
+

1
µ0

( ~B · ∇) ~B. (19)

The Lorentz force Eq (19) is thus a sum of two terms each related to a
particular type of magnetic force:

The first term, −∇pm, with pm ≡ B2/2µ0 known as the magnetic pressure,
represents a magnetic pressure gradient force acting in the same way as the
thermal pressure gradient force in the momentum equation Eq (3) and we can
introduce the total pressure by ptot ≡ p + pm. The relative significance of these
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two pressures to a given MHD process is defined by a dimensionless number
β ≡ p/pm called the plasma beta parameter. For example, in a case of β ¿ 1,
the magnetic pressure dominates and the dynamics of the considered process
involves primarily magnetic forces.

The second term in Eq (19), ( ~B·∇) ~B/µ0, is a force arising from the curvature
of magnetic field lines as it depends on the change of ~B in the direction of the ~B-
field itself. This type of force appears also in mechanics as a result of curvature
stress in elastic strings and rods. Magnetic field lines thus behave as elastic
material strings whose mass and inertia come from the attached surrounding
plasma.

In MHD, the Lorentz force acting as a combination of magnetic pressure
gradient force and elastic curvature stress plays an important role in formation
of small amplitude disturbances with properties of both the longitudinal (from
the magnetic pressure) and transverse (from the curvature stress) waves.

2.4 Ideal MHD

In a spacial case of a perfectly electro-conducting fluid with infinite electrical
conductivity σ → ∞, i.e. η = 0, we are talking about the ideal MHD. The
induction equation (17) is then:

∂ ~B

∂t
= ∇× (~v × ~B), (20)

while Ohm’s law (10) with σ →∞ reduces to:

~E′ = 0 ⇒ ~E = −~v × ~B (21)

as the electric current ~j has to stay finite according to Ampére’s law even if σis
very large. In the ideal MHD, the electric current ~j cannot be determined by
Ohm’s law (10) and only Ampère’s law (14) has to be used.

The ideal MHD approach can also be applied to real plasmas with some finite
σ provided the scaling parameters, relevant to the considered plasma process,
yield negligible effects of a finite conductivity. In other words, this means that
in the induction equation Eq (17), the diffusive term has to be comparatively
small:

|η∇2 ~B|
|∇ × (~v × ~B)|

¿ 1 ⇒ 1
µ0σ`∗v∗

≡ 1
Rm

¿ 1 (22)

where Rm = µ0σ`∗v∗ is a dimensionless quantity known as the magnetic Reynolds
number. The ideal MHD thus requires the condition Rm À 1 which is easily
satisfied for many large scale processes in the Solar and planetary plasmas.

A large Reynolds number also yields a negligible electric field ~E′ observed in
a reference frame moving with velocity ~v. Namely, according the expression Eq
(10) for Ohm’s law and taking Ampère’s law (14) into account, we can write:

| ~E′|
| ~E|

=
j∗

σv∗B∗ =
1

µ0σ`∗v∗
=

1
Rm

¿ 1, (23)
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which agrees with Eq (21).

2.5 Concept of frozen-in ~B-field

There are two important MHD theorems describing motions of infinitely con-
ducting plasma:

Theorem I: Magnetic flux ΦB through any closed contour L moving freely
with the fluid velocity ~v does not change in time:

dΦB = dΦ(1)
B + dΦ(2)

B = 0 (24)

where:

dΦ(1)
B ≡ ∂ΦB

∂t
dt, dΦ(2)

B ≡ (~v · ∇)ΦBdt and ΦB =
∫∫

S(L)

~B · ~dS,

and S(L) is the surface bounded by the contour L.
To prove Eq (24), we note that the dΦ(1)

B is the local change of the flux ΦB

through the surface S(L) in a time interval dt:

dΦ(1)
B =

∂

∂t

∫∫

S(L)

~B · ~dS dt =
∫∫

S(L)

∂ ~B

∂t
· ~dS dt (25)

while dΦ(2)
B is the change of the magnetic flux through S(L) arising from the

motion of the contour L when some of magnetic field lines initially permeating
the surface S(L), may be lost/gained as they cross the contour L in time interval
dt. The quantity dΦ(2)

B is thus the flux of the ~B-field through the cylindrical
surface SV drawn by the closed contour L as it moves with the fluid velocity
~v(~r, t) in time dt:

dΦ(2)
B =

∫∫

SV

~B · ~dS dt where ~dS = ~v dt× ~dL

which can further be expressed as follows:

dΦ(2)
B =

∮
L

~B · (~v × ~dL) dt = − ∮
L
(~v × ~B) · ~dLdt

= − ∫∫
S(L)

[∇× (~v × ~B)] · ~dS dt.
(26)

Substituting expressions (25)-(26) into Eq (24) and taking the induction equa-
tion (20) into account, we obtain:

dΦB

dt
=

∫∫

S(L)

[
∂ ~B

∂t
−∇× (~v × ~B)

]
· ~dS = 0. (27)

which proves the theorem.
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Theorem II: A fluid particle initially on a given magnetic field line remains
on it at any later time. This statement follows from Theorem I and we shall
give no further proof of it.

These two theorems show that plasma motions in the ideal MHD approxi-
mation take place with fluid and magnetic field lines moving together as if they
were mutually frozen-in. Magnetic field lines are thus being stretched, twisted
and bent by fluid motions ~v(~r, t) and vice-versa, the fluid velocity field is con-
stantly being affected by the magnetic field ~B(~r, t). Such a ’frozen-in’ concept
of ideal plasma, helps us in making visualizations of plasma dynamics in many
natural phenomena: solar wind interaction with planetary magnetic fields, oc-
currence of MHD waves, dynamo processes of generation and amplification of
astrophysical magnetic fields by fluid motions, magnetic field reconnections, etc.

2.6 MHD waves in ideal plasma

In the ideal MHD, a plasma and magnetic field form a unified elastic medium
whose dynamics is governed by the full set of the described equations which put
together look are:

∂ρ

∂t
+∇ · (ρ~v) = 0,

ρ
∂~v

∂t
+ ρ(~v · ∇)~v = −∇

(
p +

~B · ~B

2µ0

)
+

1
µ0

( ~B · ∇) ~B + ~fg + ~f,

d

dt
ln p =

Cp

Cv

d

dt
ln ρ,

∂ ~B

∂t
= ∇× (~v × ~B).

(28)

In what follows, we shall exclude the gravity and all other non-magnetic forces,
i.e. ~fg, ~f=0.

We shall now present a short outline on MHD waves, small amplitude per-
turbations with harmonic dependence on time t and spatial coordinates x, y, z.
Small amplitude here means that each unknown physical quantity Ψ(x, y, z, t)
in Eqs (28) can be expressed as a superposition of its initial unperturbed value
Ψ0(x, y, z, t) and a small perturbation Ψ1(x, y, z, t):

Ψ(x, y, z, t) = Ψ0(x, y, z, t) + Ψ1(x, y, z, t) where |Ψ1| ¿ |Ψ0|. (29)

We shall study small amplitude MHD waves in a uniform, static basic state
of a plasma behaving as a perfect gas with a given constant density ρ0, pressure
p0, temperature T0, and permeated by a uniform magnetic field ~B0 = (B0, 0, 0)
oriented along the x-axis. In this case, the MHD equations (28) are automati-
cally satisfied in the zero order while in the first order of approximation, they
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yield the following set of linear equations for perturbations:

∂ρ1

∂t
+ ρ0∇ · (~v1) = 0,

ρ0
∂~v1

∂t
= −∇

(
p1 +

~B0 · ~B1

µ0

)
+

1
µ0

( ~B0 · ∇) ~B1,

p1 = γ
p0

ρ0
ρ1 where γ ≡ Cp

Cv
,

∂ ~B1

∂t
= ∇× (~v1 × ~B0).

(30)

We are looking now for harmonic wave solutions of Eqs (30) given by:

Ψ1(x, y, z, t) = Ψ̂ exp i(kxx + kyy + kzz − ωt) (31)

where Ψ̂ is the perturbation amplitude depending on the wave parameters
kx, ky, kz and ω.

Due to the axial symmetry of the basic state with regard to the uniform
~B-field oriented along the x-axis, the wave propagation will be considered in
two dimensions only, say in the (x, y)-plane, meaning that we can take kz = 0
without loosing the generality. In this case, Eqs (30) with (31) reduce to a set
of homogeneous algebraic equations for perturbation amplitudes that can be
grouped in two independent sets:

ωv̂z + v2
Akxb̂z = 0 and kxv̂z + ωb̂z = 0, (32)

and:
ωr̂ − kxv̂x − ky v̂y = 0,

v2
skxr̂ − ωv̂x = 0,

v2
sky r̂ − ωv̂y + v2

Aky b̂x − v2
Akxb̂y = 0,

ωr̂ − kxv̂x − ωb̂x = 0,

kxv̂y + ωb̂y = 0.

(33)

where:

b̂x,y,z ≡ B̂x,y,z

B0
and r̂ ≡ ρ̂

ρ0

while:

v2
A ≡ B2

0

µ0ρ0
and v2

s ≡ γ
p0

ρ0

are squares of the Alfvén speed and adiabatic speed of sound respectively.
The first set of equations Eq (32) relates only to the z−components of per-

turbed magnetic field and fluid velocity amplitudes while Eqs (33) involve all
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the remaining amplitudes not showing up in Eq (32). These two sets of homoge-
neous algebraic equations then yield two independent conditions for existence of
non-trivial solutions, i.e the vanishing determinants ∆1 of the system Eq (32):

∆1 ≡
∣∣∣∣∣

ω v2
Akx

kx ω

∣∣∣∣∣ = 0 (34)

and ∆2 of the system Eq (33):

∆2 =

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

ω −kx −ky 0 0

v2
skx −ω 0 2v2

Akx 0

v2
sky 0 −ω v2

Aky −v2
Akx

ω −kx 0 −ω 0

0 0 kx 0 ω

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

= 0. (35)

Eqs (34) and (35) are the dispersion relations whose three solutions for ω2

describe three MHD wave modes: the Alfvén wave and two magnetoacoustic
waves.

The Alfvén wave is incompressible and therefore induces no density or pres-
sure perturbations in the fluid. Its dispersion relation ∆1 = 0 is

ω2 − k2v2
A cos2 θ = 0 (36)

with the wave vector components expressed in terms of the wave vector intensity
k and the angle θ between ~k and ~B:

kx = k cos θ, ky = k sin θ.

The Alfvén wave has no dispersion as its phase speed VA ≡ ω/k does not depend
on the wave vector i.e. it is independent of the perturbation wavelength. The
fastest phase speed is VA = vA occurring for propagation parallel to the ~Bfield
when θ = 0, π and VA = 0 for transverse propagation with θ = π/2.

The other dispersion relation ∆2 = 0 is quadratic in ω2:

ω4 − (v2
s + v2

A)k2ω2 + v2
sv2

Ak4 cos2 θ = 0 (37)

with two solutions for ω2. The bigger ω2 is related to the fast magnetoacoustic
wave:

ω2 = ω2
f ≡ 0.5

(
v2

s + v2
A +

√
(v2

s + v2
A)2 − 4v2

sv2
A cos2 θ

)
k2 (38)

while the lesser solution describes the slow magnetoacoustic wave:

ω2 = ω2
s ≡ 0.5

(
v2

s + v2
A −

√
(v2

s + v2
A)2 − 4v2

sv2
A cos2 θ

)
k2. (39)
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These two modes induce also pressure and density perturbations in plasma
as can be seen from Eqs (33), and, like the Alfvén wave, they have no dispersion.
The fast mode propagates in all directions though with different phase speeds
Vf ≡ ωf/k depending on θ while the slow mode cannot propagate across the
~B-field when θ = π/2.

MHD waves are of essential importance to many astrophysical processes, like
energy transfer in mechanisms of the non-thermal coronal heating on the Sun,
they have a crucial role in transient phenomena in aftermaths of sudden local
disturbances, etc.

Many new properties and features occur if linear MHD waves are considered
in non-uniform plasmas, if other forces like gravity are present and if the basic
state magnetic fields have more complex structures.

Description of small amplitude MHD waves by linearized equations is only
approximative as the nonlinear terms retain their second order, yet finite contri-
butions to the dynamics. Typical examples for this are the nonlinear steepening
of initially harmonic wave profiles and formation of shock waves, wave-wave in-
teractions, nonlinear saturations of wave amplitude growth during instabilities
etc.
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