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Vertical ionospheric 
sounding: a technique to 
measure the electronic 

density in the ionosphere. 

Cesidio Bianchi INGV - Rome Italy

Electromagnetic waves, radio and the ionosphere



- Brief History related to the ionospheric 
measurements

- Radio wave propagation

- Plasma-wave interaction

- Measurements techniques (Radio & radar 
principles)

- Doppler shift measurements



Electromagnetic waves, radio and ionosphere

• The history of the radio and the related devices is 
strictly connected to  ionospheric measurements. Later, 
the  knowledge of the radio wave propagation  
contributed to determine the existence of the 
ionosphere and its complex structure

• 1862-James Clerk Maxwell completes the foundations of 
classical electrodynamics by adding the displacement 
current in Ampere’s  law. This theory, which was later 
presented in the form of the four Maxwell’s equations, 
predicts electromagnetic waves.

• 1888 - Heinrich Hertz produces the first electro-
magnetic waves. He was able to  radiate electromagnetic 
waves and measure the wavelength and velocity of these 
so-called Hertzian waves. 



1895 - Marconi develops a practical apparatus comprising an aerial, a 
condenser and a connection to ground (first practical radio).

1901- Communication across the Atlantic

1902- Kennelly and Heaviside say that the wave propagation is 
supported by a conducting layer that acts like a reflector 

1902- Hulsmayer develops the  first interferometric radar (2-3 km 
range)

1904 John Ambrose Fleming invents the diode



1906 - De Forest adds a third electrode to the diode 
and produces a sensitive receiver and amplifier.

1912- Edwin H. Armstrong introduces the positive 
feedback (starting from this spectral pure waves were 
generated by simple oscillators)

1913- R.A. Heising invents the superheterodyne receiver 

1924- Larmor (following Eccels)  derives some important 
theoretical results for a collisional medium 



(1925) Breit and Tuve make a pulsed transmitter in order to measure 
delays of vertically reflected pulses by means of an oscillograph. The 
reflection height is simply obtained from the delay time and the speed 
of light. This experiment works as a model for the future ionosondes
and also eventually contributes to the development of the radar.

1926- Appleton and Barnett apply two different methods based on 
continuous transmission. In the first one the elevation angle of the 
signal arriving at the receiver is measured and, when the distance 
between the transmitter and the receiver is known, the altitude of the 
reflecting layer can be calculated. 
In the second method the receiver is close to the transmitter and
changes in the interference pattern of the ground wave and a nearly 
vertically reflected wave are observed when the transmitting 
frequency is slowly varied.

1927- H.S. Black develops the negative feedback 
(automatic gain control AGC)



1927-1932 -Lassen, Appleton, Hartree and Altar present the theory 
for the dispersion of the electromagnetic wave in a medium such as 
the ionosferic plasma. It is an equation of the magneto plasma 
refractive index. 

Rawer and Suchy (1976) demonstrate that Hartree formulation is not 
correct and the correct dispersion equation was really published for 
the first time in a somewhat different form by Lassen (1927). In the 
previous period W. Altar has frequent contacts  with Appleton. In his 
letters Altar derives the tensorial method for a magnetoplasma.
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Electromagnetic wave –magnetoplasma interaction

- The theory  is described by the formula of Appleton-Lassen (to 
not to mention Altar and Hartree) that is a high-frequency
approximation of electro-magnetic waves in cold magnetoplasma. 

The theory does not take into account the velocity distribution of 
the electrons and it approximates the damping due to the collisions
of electrons with the neutrals by introducing a friction term 
controlled by a single collision frequency. 

The formula gives two values of the complex refractive index for 
each frequency, one corresponding to the plus and the other to the 
minus sign in the denominator.

This means that two modes of electromagnetic waves exist in a 
magnetoplasma so that the medium is bi-refractive. The modes are 
usually called the ordinary (o) and extraordinary (x).



Propagation of the  Radio Wave



Electromagnetic Waves

• In order to give a better understanding of the 
ionospheric measurements by means of ionosonde 
(HF-radar) or other radio techniques,   it is useful 
to give a short description of the electromagnetic 
radiation ( e.m. wave).  Electromagnetic  wave 
consists of  time oscillating electric and magnetic 
fields in certain directions able to propagate into 
space. 



Electromagnetic Radiation
• Includes radio waves, light, X-rays, gamma 

rays

VLF               3 – 30      kHz
LF               30 – 300     kHz
MF             300 – 3000   kHz
HF                3 – 30      MHz
VHF             30 – 300    MHz
UHF            300 – 3000  MHz

Radio waves of our interest



Maxwell’s Equations

1) div E =ρ/ε0

2) div B =0

3) rot E =- ∂B/∂t

4) rot B = ε µ ∂E/∂t + µJ



Wave equation 

( )
t
BE
∂
∂

×∇−=×∇×∇

( ) ( )EEE ⋅∇∇+−∇=×∇×∇ 2

t
BE
∂
∂

×∇=∇2

By applying the operator       on the third of the Maxwell’s  
equations  

In the above,  the first member can be substituted by 
the following therefore exploiting the vector identity

∇



Wave equation

The structure of this equation was well known by Maxwell 
because D’Alembert solved a similar equation for the vibrating 
string.  

Exchanging the order of spatial and temporal derivative in the 
second member of the previous equation we obtain:
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Wave equation
∂2 g/ ∂ x2=1/v2 (∂ 2g/ ∂ t2) wave equation

y= f(x-vt) towards  x
y= f(x+vt) opposed to x
v=dx/dt phase velocity
Sinusoidal Wave

y= A sen [kx–ω t)]
y= A cos [kx–ω t)]

λ wavelength
ν frequency
k= 2π/ λ wave number 
ω = 2 π /T       pulsation 

v= λ ν



Propagation

Given the system of Maxwell’s equations the wave 
equation is nearly direct and it is easy to demonstrate 
that E and  B are transversal. Moreover E/B=c.

E=Emaxcos(ωt- kx)
B=Bmaxcos(ω t- kx)

Such equation can be written in terms of complex 
exponential as:

E=Emaxe j(ωt- kx)

B=Bmaxe j(ωt- kx)

Remember the Euler's identity
ejx=cos (x)+j sin(x)





TEM Propagation

• Radio waves in space are transverse 
electromagnetic waves (TEM)

• Electric field, magnetic field and direction 
of travel of the wave are mutually 
perpendicular

• Waves will propagate through free space 
and dielectrics

• Conductors have high losses due to induced 
current



Propagation Velocity

• Speed of light in free space: 3 × 108 m/s
• In dielectric and plasma the velocity of 

propagation is lower:

r

cv
ε

=



Electric and Magnetic Fields

• For waves we use the following units:

– Electric field strength E (V/m)
– Magnetic induction  B (V.s/m2)

- Magnetic field strength  H (A/m)

- Power density PD  (W/m2) 



Ohm’s Law in Space

HEZ /=
– Characteristic impedance Z in a  medium is given 
by Ohm’s law. 

– For free space, Z = 377 Ohm



Power Density
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Plane and Spherical Waves

• Waves from a point in space are spherical

• Plane waves are easier to analyse

• At a reasonable distance from the source, 
spherical waves look like plane waves, as 
long as only a small area is observed



Spherical waves

Isotropic 
antenna 
radiating 
equally in 
every 
direction



Free-space Propagation

• Assume an isotropic radiator at the 
center of a sphere

• Let the receiving antenna be on the 
surface of a sphere

• As we move farther from the 
transmitter the amount of power 
going through the surface remains 
the same but surface area increases



Power flux density

Power flux density= E X H



Geometrical loss

24 πr
PP D =

Because of the power P on the spherical surface is constant 
for every spherical surface (4π r2 ) we consider, the power 
flux density at the distance r from the isotropic antenna must 
decrease as 1/4πr2.

If an isotropic antenna radiates 10 W of power at the 
distance of 1 km the power flux  density (PD)is about 0.796 
µW/m2



Attenuation of Free Space
• Power stays the same but power density is 

reduced with increasing distance r
• Power density is total power divided by 

surface area of sphere
• Unit: watts/meter2

24 r
PP t

D π
=



Transmitting Antenna Gain (G)

• Gain is achieved by radiating more energy 
in some directions than others

• Total radiated power cannot be more than 
power input to antenna

• Gain is usually expressed with reference to 
an isotropic radiator

• By definition G = PD/P (Isotropic radiator)



Antenna gain



Antenna gain 2-D



Power Density at distance r 
including antenna  Gain

24 r
GPP TT

D π
=



Receiving Antenna Effective 
Area

• The receiving antenna can be 
considered to absorb all the power 
passing through a certain area

• This is the antenna’s effective area
• Effective area is related to 

wavelength and gain



Calculation of Effective 
Area

π
λ
4

2
R

eff
GA =



Received Power

24 r
GPA

PAP

TTeff

DeffR

π
=

=



Reflection

• Specular reflection: smooth surface
– Angle of incidence = angle of reflection

• Diffuse reflection: rough surface
– Reflection in all directions because angle 

of incidence varies over the surface due 
to its roughness



Specular Reflection



Polarization

• Polarization of a wave is the direction of 
the electric field vector

• Linearly polarized waves have the vector in 
the same direction at all times
– Horizontal and vertical polarization are common

• Circular and elliptical polarization are also 
possible



Circular polarization



linear polarization



Cross Polarization

• If transmitting and receiving antennas 
have different polarization, some signal is 
lost

• Theoretically, if the transmitting and 
receiving polarization angles differ by 90 
degrees, no signal will be received

• A circularly polarized signal can be 
received, though with some loss, by any 
linearly polarized antenna



Refraction

• Occurs when waves move from one 
medium to another with a different 
propagation velocity

• Index of refraction n is used in 
refraction calculations

rn ε=



Snell’s Law

• Angles are measured with respect to 
the normal to the interface

2211 sinsin θθ nn =



Refraction



Losses
- Geometric (if the wave is not a plane wave)

- Reflection and refraction

- Scattering

- Defocusing surfaces

- Polarization

- Absorption 



Relation of dispersion
Relation of dispersion is an equation able to describe the 
behaviour of a radio wave in the media. This is obtained   
by inserting the wave solution in the last two Maxwell’s 
equations. Let’s consider a plane wave written in terms of 
complex exponentials 

E=Emaxej(ωt- kx)

Introducing it in the third after easy derivation we  
obtain:



Relation of dispersion

( ) ( )kzti
oy

kzti
x eBieikE −− −=− ωω ω0

The above divided by
furnishes:

( )kzti
xeE −ω

0

ω
k

E
B

=



( )
ik

i
E
B σµωµε +
=

ωσµµεω ik −= 22

The same operation on the fourth of the  Maxwell’s 
equations will furnish:

Equating the last two we  obtain:

This is the relation of dispersion. 
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Once again the wave function

E=Eoej(ωt- kx)

Knowing that  k is a complex quantity one can write:

E=Eoe- kix ej(ωt- krx)

The  imaginary part of  k contributes to the exponential 
absorption while the real part of k describes the  oscillating 
wave.  




