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LECTURE 3

MAGNETOHYDROSTATICS AND
MHD WAVES IN GRAVITATIONAL FIELD

Vladimir M. Čadež

Astronomical Observatory Belgrade
Volgina 7, 11160 Belgrade, Serbia&Montenegro

Email: vladimir.cadez@phy.bg.ac.yu

The presence of gravitational field introduces the additional non-magnetic
gravity force ~fg = ρ~g into MHD equations. We shall assume a uniform, initially
prescribed, gravitational field with constant acceleration ~g. This means that
the considered plasma does not affect the gravitational field as typical of stel-
lar atmospheres and planetary plasmaspheres for example. Some other media,
however, like stellar interiors and large interstellar plasma clouds would require
a self-consistent approach with the gravitational field resulting from the density
distribution ρ(~r, t) and gravitational potential φg(~r, t) computed by the Poisson
equation ∇2φg = 4πGρ. Such self-gravitating plasmas with ~g = −∇φg fall off
the scope of this lecture.

In what follows, we shall deal with two aspects of gravitational effects on
magnetized plasmas: static configurations of plasma and magnetic field, and
propagation of linear MHD waves.

3.1 Magnetohydrostatics

An ideal dissipationless plasma in the state of magnetohydrostatic equilibrium
is described by the balance of all acting forces: the pressure gradient force,
magnetic force and gravitational force with ~g = gêz, g=const:

1
µ0

(∇× ~B)× ~B −∇p− ρ~g = 0. (1)

As Eq (1) contains three unknown quantities p, ~B and ρ, only one of them
can be computed while the other two have to be either specified initially or
mutually related by some additional equations. We consider our plasma to be
an ideal and fully ionized gas obeying the perfect gas law:

p = RMρT where RM ≡ R
M (2)

which introduces the temperature profile T as a new unknown physical quantity.
In further treatment, we take T (x, y, z) to be initially prescribed.

Let us now examine some typical examples of magnetohydrostatic equilibria.
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3.1.1 Horizontal ~B-field and T=const

Taking ~B = B(z)êz and T=const, Eqs (1)-(2) yield:

d

dr
ln ρ = − γ

v2
s

(
g + v2

A

d

dz
ln B

)
(3)

which is the equation for the density distribution with the height z in presence
of a magnetic field with given z-dependence B(z).

Eq (3) shows that a horizontal magnetic field influences the plasma density
distribution only through the z-derivative of B(z) i.e. if the ~B-field is nonuni-
form. Moreover, we may conclude that the effect of a magnetic field whose
strength grows with z, i.e. dB/dz > 0, is equivalent to a nonmagnetic case
with enlarged gravitational acceleration g. In other words, a horizontal mag-
netic with dB/dz > 0 compresses the plasma which makes its density to fall off
with z more steeply. The opposite effect occurs if B(z) decreases with z when
dB/dz < 0 reduces the action of gravity in Eq (3), and the inhomogeneity of the
plasma density becomes less pronounced. The density is thus more evenly dis-
tributed with z meaning that such a magnetic field configuration supports mass
against the gravity and increases the potential energy of the system. This ex-
tra potential energy can be released through instability leading to a rearranged
distributions of both the density and magnetic field.

The described effect of magnetic field on plasma density is nicely seen in a
simple plasma configuration with two distinct regions: Region 1 with a uniform
horizontal magnetic field and Region 2 with no magnetic field. At the horizontal
interface separating these two plasma domains, the boundary condition requires
the continuity of the total pressure ptot ≡ p + pm:

ptot(1) = ptot(2) ⇒ p(1) + pm(1) = p(2)

which can be written as follows:

ρ(2)− ρ(1) =
B2(1)

2µ0RMT
(4)

where T ≡ T (1) = T (2)=const. The plasma occupying the domain with the
magnetic field is therefore less dense than plasma in the domain with B = 0:
ρ(2) > ρ(1). The magnetic field therefore tends to reduce the plasma density.

It is now evident that this system of two plasma domains can be both stable
and unstable depending on the vertical arrangement of the domains: The system
is stable if a less dense magnetized plasma with the magnetic field is laid above
a denser plasma without magnetic field . In the opposite case with a denser
plasma located above a lower density plasma with the magnetic field, the system
is buoyantly unstable and the less dense plasma together with the embedded
magnetic field tends to move in the upward direction.

This magnetic buoyancy effect of expelling magnetic field is also typical of
isolated magnetic flux tubes like those related to sunspot formation during the
solar cycle for example.
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3.1.2 Statics of magnetic arcades

Eq (1) can also be used to model static magnetic field topologies under some
realistic assumptions. For example, let the considered magnetic field ~B be
predominantly in the (x,z)-plane and y−invariant like in the case of magnetic
arcades in the solar corona. Thus:

~B ≡ (Bx(x, z), 0, Bz(x, z)) = ∇× ~A = ∇A× êy (5)

where ~A = A(x, z)êy is the vector potential of the ~B-filed.
Eq (5) implies

~B · ∇A = 0 (6)

meaning that A=const along the magnetic field lines whose analytical expres-
sions are then A(x, z)=const curves.

Substituting the expression (5) for ~B into Eq (1) and taking êz = ∇z, we
obtain:

∇p = −ρg∇z − 1
µ0

(∇2A
)∇A (7)

indicating p = p(A, z) and:

∂p

∂A
= − 1

µ0
∇2A, (8)

∂p

∂z
= −ρg. (9)

Let us further assume an isothermal plasma with T=const and integrate Eq (9)
which yields:

p ≡ p(A, z) = p0(A)e−z/H (10)

where p0(A) is the boundary value for the pressure distribution on magnetic
field lines A(x, z) =const at z = 0, and H ≡ RMT/g. Inserting Eq (10) for
p(A, z) into Eq (8) we obtain the final equation for the potential A = A(x, z):

∇2A + µ0
dp0(A)

dA
e−z/H = 0 (11)

and the magnetic field components:

Bx(x, z) = −∂A

∂z
,

By(x, z) = 0,

Bz(x, z) =
∂A

∂x
.

(12)

Knowing the pressure p(A, z), we obtain the density ρ from the perfect gas law
ρ(A, z) = p(A, z)/RMT with T=const given initially.
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3.2 MHD waves in stratified plasmas

Let us now briefly look at MHD waves in an isothermal magnetized ideal plasma
in a gravitational field with ~g = gêz, g=const. The magnetic field is taken
horizontal ~B = B(z)êx and we choose the functional dependence B(z) so that
vA =const:

v2
A ≡ B2(z)

µ0ρ(z)
= const ⇒ B(z) = vA

√
µ0ρ(z). (13)

Thus, we consider the unperturbed basic state with vs,vA=const in a mag-
netohydrostatic equilibrium described by Eq (3) with B0(z) given by Eq (13):

d

dz
ln ρ0 = − g

RMT0

β

1 + β
where β ≡ p0

p0m
=

2
γ

v2
s

v2
A

(14)

The solution for ρ0(z) is then:

ρ0 = ρ0(0)e−z/H where H ≡ (1 + β)
RMT0

gβ
. (15)

while B0(z) follows from Eq (13) as:

B0 = B0(0)e−z/2H where B0(0) ≡ vA

√
µ0ρ0(0). (16)

This magnetic field decreases with z which, as mentioned before, may result
into a magnetic buoyancy instability of linear perturbations.

Let us now disturb a z-dependent basic state by small amplitude perturba-
tions whose dynamics is governed by the linearized set of ideal MHD equations
with the gravitational force ~fg = −gêz included:

∂ρ1

∂t
+ ρ0∇ · ~v1 + ~v1 · ∇ρ0 = 0,

ρ0
∂ ~v1

∂t
= −∇p1 + ρ1~g +

1
µ0

(
∇× ~B0

)
× ~B1 +

1
µ0

(
∇× ~B1

)
× ~B0,

∂ ~B1

∂t
= ∇×

(
~v1 × ~B0

)
,

∂ρ1

∂t
=

1
v2

s

∂p1

∂t
+

(
1
γ
− 1

)
dρ0

dz
v1z.

(17)

Since the basic state quantities Ψ0 in Eq (17) are z-dependent we can take
all perturbations Ψ1 as harmonic functions of time t and two spacial coordinates
x and y while their amplitudes are some functions of z:

Ψ1(x, y, z, t) = Ψ̂1(kx, ky, ω; z)e−iωt+i(kxx+kyy) (18)

The full set of linearized MHD equations Eq (17), reduce to the following
system of two equations for the total pressure perturbation P̂1 ≡ p̂1 + B0B̂1/µ0

and the Lagrangian displacement ξ̂z ≡ iv̂1z/ω:
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D
dξ̂1z

dz
= C1ξ̂1z − C2P̂1,

D
dP̂1

dz
= C3ξ̂1z − C1P̂1.

(19)

where:

D = ρ0(z)(v2
s + v2

A)(ω2 − ω2
A)(ω2 − ω2

c ),

C1 = ρ0(z)gω2(ω2 − ω2
A),

C2 = (ω2 − ω2
A)(ω2 − ω2

s)− k2
y(v2

s + v2
A)(ω2 − ω2

c ),

C3 = ρ2
0(ω

2 − ω2
A)[(v2

s + v2
A)(ω2 − ω2

A)(ω2 − ω2
c ) + g2(ω2 − ω2

A)

+g(v2
s + v2

A)(ω2 − ω2
c )

d

dz
ln ρ0]

(20)

with:

ω2
A ≡ v2

Ak2
x, ω2

c ≡
v2

Av2
s

v2
A + v2

s

k2
x and ω2

s ≡ v2
sk2

x.

Here, vA, vs=const while ρ0(z) is given by Eq (15). Due to the exponential func-
tional dependence of ρ0(z), Eqs (20) can be transformed to a system of equations
for unknown quantities [ρ0(z)ξ̂1z] and P̂1 which has constant coefficients:

d

dz
[ρ0(z)ξ̂1z] =

(
a1 − 1

H

)
[ρ0(z)ξ̂1z]− a2P̂1,

dP̂

dz
= a3[ρ0(z)ξ̂1z]− a1P̂1,

(21)

where:

a1 =
gω2

(v2
s + v2

A) (ω2 − ω2
c )

,

a2 =
ω2 − ω2

s

(v2
s + v2

A) (ω2 − ω2
c )
− k2

y

ω2 − ω2
A

,

a3 = ω2 − ω2
A −

g

H
+

g2(ω2 − ω2
A)

(v2
s + v2

A)(ω2 − ω2
c )

.

(22)

The solutions of Eqs (21) have now an exponential z-dependence:

ρ0(z)ξ̂1z, P̂1 ∼ eκzz with κz = − 1
2H

± ikz

where:

k2
z = a2a3 −

(
a1 − 1

2H

)2

(23)

is the dispersion relation for the considered MHD waves.
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Finally, the wave amplitudes ξ̂1z and P̂1 have the following z-dependence:

ξ̂1z = ξ̂1z(0)ez/2Heikz and P̂1 = P̂1(0)e−z/2Heikz . (24)

The dispersion relation Eq (23) can be written in an explicit form as an
algebraic equation that is cubic in ω2:

−ω6 +A4ω
4 +A2ω

2 +A0 = 0 (25)

with the coefficients:

A4 = v2
Ak2

x + (v2
A + v2

s)
(

k2 +
1

4H2

)
,

A2 = g2(k2
x + k2

y)− [(v2
A + v2

s)k2
y + v2

sk2
x]

g

H
− (v2

A + 2v2
s)v2

A

(
k2 +

1
4H2

)
k2

x,

A0 = v4
Av2

s

(
k2 +

1
4H2

)
k4

x − gv2
A

(
g − v2

s

H

)
(k2

x + k2
y)k2

x.

(26)
Three solutions of Eq (25) for ω2 are related to the Alfvén, slow and fast

magneto-acoustic MHD modes modified by the gravity.
In a very short wavelength limit of kx, ky, kz À 1/H, the gravitational effect

becomes negligible and Eq (25) reduces to the dispersion relation for the MHD
waves in a uniform magnetized plasma.

In the opposite case of a large wevelength limit when kx, ky, kz ¿ 1/H, the
dispersion relation Eq (25) has one solution for ω2:

ω2 =
v2

A + v2
s

4H2
(27)

that describes oscillations of the system as a whole existing only in plasmas in
a gravitational field.

Instability occurs if the dispersion relation Eq (25) has non real solutions
for ω. This happens if ω2 is either real and negative, or complex. The latter
case cannot occur in ideal non dissipative plasmas while negative solutions for
ω2 are possible in our case.

A simple example of unstable perturbations follows from Eq (25) in the limit
of small kx: kx ¿ ky, kz, 1/H when Eq (25) becomes quadratic in ω2 and easy
to analyze.

Thus, taking first kx = 0 i.e. perturbations with straight magnetic field
lines, the dispersion relation Eq (25) reduces to:

−ω6 +A4ω
4 +A2ω

2 +A0 = 0 (28)

with the coefficients written as:

A4 =
(

1 +
2

γβ

)
v2

s

(
k2

y + k2
z +

1
4H2

)
,

A2 = −1 + (γ − 1)β
1 + β

g2k2
y,

A0 = 0,

(29)
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where β ≡ p0/pm0 = 2v2
s/(γv2

A).
Among three solutions of Eq (28)-(29) for ω2 two are non-zero and positive,

corresponding to the modified Alfvén and fast magnetoacoustic waves, while the
third solution is ω2 = 0.

Let us next look at perturbations with a small non-zero kx, i.e. kx ¿
ky, kz, 1/H. In this case, the magnetic field lines are not straight anymore, they
are slightly rippled with comparatively long wavelengths λx = 2π/kx.

Such a small non-zero kx leaves the coefficients A2 and A4 practically un-
changed while A0 is not equal to zero any longer. Consequently, the modified
Alfvén and fast magnetoacoustic modes will not be significantly changed by a
small finite kx while the third mode, the modified slow magnetoacoustic mode,
will appear too due to the third non vanishing solution for ω2. This solution,
however, can be either positive or negative depending on the sign of the coeffi-
cient A0. Thus, if A0 > 0 the third solution for ω2 is positive too and we have a
stable gravitationally modified slow magnetoacoustic mode, and v.v. if A0 < 0,
this solution for ω2 is negative i.e. ω is purely imaginary and perturbations
grow exponentially in time indicating the system is unstable. Up to terms of
the order ∼ k2

x, the coefficient A0 then reads:

A0 = 2
(γ − 1)β − 1
γβ(1 + β)

g2v2
sk2

yk2
x. (30)

The instability occurs if A0 < 0 or:

β <
1

γ − 1
.

Small β plasmas are thus unstable in this case with the magnetic buoyancy
being the main driving mechanism for the instability. On the other side, compar-
atively weak magnetic fields corresponding to large parameters β cannot provide
for a sufficiently intense magnetic buoyancy action and these perturbations are
stable oscillations.
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