Fifth International Conference on
PERSPECTIVES IN HADRONIC PHYSICS
Particle-Nucleus and Nucleus-Nucleus Scattering at Relativistic Energies

22 - 26 May 2006

Searching for Strange Quark Matter with the
CMS/CASTOR Detector at the LHC

A.D. PANAGIOTOU
University of Athens
Department of Physics
Nuclear and Particle Physics Section
Panepistimioupolis, Ilisia
15771 Athens
GREECE

These are preliminary lecture notes, intended only for distribution to participants
Searching for Strange Quark Matter with the CMS/CASTOR Detector at the LHC

Apostolos D. Panagiotou, University of Athens for the CMS/CASTOR Group

http://cmsdoc.cern.ch/castor/

V International Conference on PERSPECTIVES IN HADRONIC PHYSICS Particle-Nucleus and Nucleus-Nucleus Scattering at Relativistic Energies

ICTP 22-26 May, 2006
CASTOR Calorimeter at CMS
Exotic Events in Cosmic Rays
Phenomenological Models & MC Simulations
“Strangelet” Identification Analysis
CASTOR Prototypes - Beam test Results
Summary
CASTOR Calorimeter at CMS
CMS Forward Detectors

CASTOR
5.2 < η < 6.6

TOTEM T2

HF

TOTEM T1

IP
CASTOR Calorimeter

Segmentation: 16(azimuth) x 14(in depth) = 224 channels
CASTOR Calorimeter

Stage I
16x10 = 160 Channels

Stage II
16x4 = 64 Channels

PMT

Air-core Light Guide subtending 5 W/Q plates

W/Q plates

EM section 20 X₀

H section 10.3 λ₁
Exotic Events in Cosmic Rays
Typical Emulsion / Lead Chambers
Exotic Cosmic Ray Events

CENTAURO SPECIES

Abnormal hadron dominance (in N and E), high p_T, low multiplicity

- CENTAURO of original type (5 “classical” Chacaltaya + over a dozen others)
 $N_h \sim 100$, $p_T \sim 1.75$ GeV/c

- MINI-CENTAUROS
- CHIRONs

STRONGLY PENETRATING COMPONENT

cascades, clusters, halos,
frequently accompanying CR hadron-rich events.

Figure 2.5: Diagram of the number of hadrons and hadronic energy fraction: Chacaltaya events with the total visible energy greater than 100 TeV [38]: (o) Centauro, (x) Mini-Centauro, (●) others; (⋆) C-K [36].
Long Flying Component
(Strangelet ?)

Measurement settings:
100 µm shower core diameter → threshold ~ 3 TeV

1.5 λ_I Hadron limit
3.6 λ_I

3.6 λ_I
3.2 λ_I
Phenomenological Models
MC Simulations
Estimates for Centauro at LHC

- **Energy density**
 \[\varepsilon \sim 3 - 25 \text{ GeV/fm}^3, \]

- **Temperature**
 \[T \sim 130 - 300 \text{ MeV} \]

- **Baryo-chemical potential**
 \[\mu_b \sim 0.9 - 1.8 \text{ GeV/fm}^3 \]

CNGEN

Centauro & Strangelet Generator

- Central collision at the top of the atmosphere
 \[E_p \sim 1740 \text{ TeV} \]

- QUARK MATTER FIREBALL in the baryon-rich fragmentation region
 - High \(\mu_q \) suppresses production of \((u \bar{u}), (d \bar{d})\), favoring \(g \rightarrow s \bar{s} \)

- **SQM FIREBALL**
 - Stabilizing effects of \(s \) quarks \(\rightarrow \) long lived state

- **EXPLOSION**
 - \(\sim 75 \) non strange baryons + strangelet \((A \sim 10 - 15)\)

- Strangelessness distillation mechanism

C. Greiner et al.,

Astroparticle Phys. 2(1994)167
Pressure of (u,d) quark-gluon plasma

Minimization of Bag energy \((dE/dR = 0)\) in spherical DQM distribution with radius \(R\) and \(N_q\) massless quarks.

\[
P_{qg} = \frac{8}{45}\pi^2 T^4 + \mu_q^2 T^2 + \frac{\mu_q^4}{2\pi^2} = (2.034N_q/4\pi)(1/R^4) = B
\]

For CR Centauro \((\mu_q \sim 600 \text{ MeV}, T \sim 130 \text{ MeV}, N_q \sim 225)\)

\[R = r_o N_b^{1/3} \sim 1.43 \text{ fm} \quad \Rightarrow \quad r_o = 0.34 \text{ fm} \quad (\sim r_o \text{ ‘collapsed’ nucleus})\]

Ground state of hadronic matter

QCD true Ground State

SQM: “Strangelet” Neutron Star
Stable Strangelet interaction in CASTOR MC-algorithm

Strangelet is considered with radius: \(R = r_0 A^{1/3} = \left[\frac{3\pi \cdot A_{\text{str}}}{2 \left(1 - \frac{2a_s}{\pi} \right) \left(\mu_s^3 + \left(\mu_s^2 - n_s^2 \right)^{3/2} \right)} \right]^{1/3} \)

The rescaled \(r_0 \) is determined by the number density of the strange matter: \(n = A/V = (1/3)(n_u+n_d+n_s) \)

where \(n_i = \partial \Omega_i/\partial \mu_i; \Omega(m_i,\mu_i,a_s) \), taking into account the QCD \(O(a_s) \) corrections to the properties of SQM.

Mean interaction path: \(\lambda_{\text{str-W}} = \frac{A_w \cdot m_N}{\pi \left(1.12 \cdot A_w^{1/3} + r_0 A_{\text{str}}^{1/3} \right)^2} \)

Strangelets passing through the detector collide with W nuclei:

Spectator part is continuing its passage.

Wounded part produces particles in a standard way.

\[\Rightarrow A'_{\text{str}} = A_{\text{str}} - N_n \]

Particles produced in successive interactions initiate electromagnetic-nuclear cascades.

Process ends when strangelet is destroyed.

MC - Stable Strangelet in CASTOR

Stable Strangelets: $E = 5-7.5$ TeV; $E = 12-16$ TeV

CASTOR Geometry configuration

1 layer: 5mm W+2mm quartz plate $\sim 2.37 X_0$
1 RU = 7 layers per readout unit
16 (in ϕ) x 18 (in z) readout channels
Total depth: $\sim 300 X_0$, 10.5 Λ_{int}

LOW ENERGY STRANGELETS (~ 5 TeV)
MAY BE SEEN ABOVE BACKGROUND

P. Katsas
Strangelet Identification Analysis

P. Katsas
CASTOR Calorimeter

Segmentation

14 Sections/Sector (longitudinal)

16 Sectors (azimuthal)

Figure 1: CASTOR front view.
HIJING Pb+Pb Event at $\sqrt{s} = 5.5$ TeV

$E_{\text{tot}} \sim 130$ TeV
~ 8 TeV/sector

$N < 100/$sector

Figure 3: Pseudorapidity and energy distribution of the produced particles for a central HIJING event.
Total Energy Distribution in Sectors - HIJING

Calorimeter Depth (RUs)

Energy
Energy distributions in CASTOR

HIJING

Total Energy in Sector | Energy in RU

Strangelet in one sector

Total Energy in Sector | Energy in RU

Average of 16 Sectors

A = 15
E = 7.5 TeV

Sector | (Depth) | RU
Strangelet identification & Analysis

- Event-by-event analysis
- Analysis procedure in 2 steps:

\[\sigma_E = \frac{E_i - \langle E \rangle}{\sigma_{sd}} \]

\[\sigma_{\text{fluctuations}} = \frac{\text{energy distribution per RU}}{\text{average distribution}} \]

\[\langle E \rangle = \text{mean energy in sectors} \]

(i = 1 – 16 sectors)

Large magnitude of energy fluctuations in RUs manifest abnormal transition curves
Analysis Results w/t background

$E_{\text{str}} = 7.5 \text{ TeV}$

$E_{\text{str}} = 10 \text{ TeV}$

$\sigma_{\text{fluctuations}}$

sector containing Strangelet + HIJING

sectors containing HIJING Pb+Pb

EM+H section

EM-cut only H-section
Prototypes - Beam test Results

L. Gouskos

CMS Reports
NIM publications
CASTOR Proto I Beam Test
Energy Resolution - Electrons

Resolution of CASTOR Proto II: 4 APD's

- $\chi^2 / \text{ndf} = 0.2937 / 3$
- $p0 = 0.001154 \pm 0.2115$
- $p1 = 0.4767 \pm 0.09652$
- $p2 = 1.967 \pm 0.7082$

Resolution of CASTOR Proto II: 6 APD's

- $\chi^2 / \text{ndf} = 0.1439 / 3$
- $p0 = 0.03247 \pm 0.007557$
- $p1 = 0.3586 \pm 0.1063$
- $p2 = 1.743 \pm 0.6166$

Resolution of CASTOR Proto II, PMT's

- $\chi^2 / \text{ndf} = 2.816 / 2$
- $p0 = 3.485e-10 \pm 0.01674$
- $p1 = 0.5085 \pm 0.0287$
- $p2 = 1.34 \pm 0.5643$
Energy Resolution - Hadrons

Resolution of Castor Proto II: Pions with 4 APD's

Resolution of Castor Proto II: Pions with 6 APD's
$E_e = 200 \text{ GeV}$
Spatial X-scan – Electrons
Width of Shower

$\sigma_{EM} = 1.9 \text{ mm}$
Spatial X-scan – Pions
Width of Shower

\[\sigma_H = 5.3 \text{ mm} \]
CASTOR is the experimental tool for ‘Centauro’ and ‘Strangelet’ search in the forward rapidity at CMS.

Identification through measurements of:

- Extreme imbalance between hadronic and electromagnetic energy.
- Non-uniform azimuthal energy deposition.
- Penetrating objects beyond the range of normal hadrons → abnormal longitudinal energy deposition pattern.

Observation of Centauro and (meta) stable SQM will have significant implications for QM-Physics and Astrophysics.