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Plan of the Talk
I. String Inflation Status Report
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II. A Large-Field Model in String Theory
i. Tool 1: Assisted Inflation
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Key Questions:

What can string theory teach us 
about inflation?

Can we use inflation to constrain 
string theory?



Why String Inflation?
• Inflationary paradigm is highly successful!
• After 25 years, still no compelling microscopic theory.

Maybe this is just too hard in QFT+GR?
• Sensible to try for a realization (or toy model) in full QG.
• String theory can provide:

– fundamental scalar fields
– some amount of UV control
– fresh ideas on which systems are natural

• Now is a good time:
– spectacular, ongoing observational progress
– advances in string theory (moduli stabilization,

D-branes, etc.) may have put solution within reach



WMAP 3



Achieving Inflation

• Key goal of inflationary model-building:
find such a field and such a potential in a
controllable, well-motivated, natural
setting.
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• Typically requires a scalar field φ with a
   rather flat potential V(φ).



Can one find ____ examples of ____ inflation 
in string theory?

any
satisfactory

non-fine-tuned
controllable
consistent

natural
predictive

slow-roll
large-field
small-field

hybrid
k-

my favorite
natural
stringy



Problems from Moduli

• Store energy during inflation:
– spoil BBN   (100 MeV < m < 30 TeV)
– overclose universe   (m < 100 MeV)

• Fluctuate now:
– cause ‘constants’ to vary
– create fifth-force effects

• Cause runaway decompactification!
• Solution: stabilize the moduli.



The Eta Problem
In supergravity and string theory,
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   Reason: corrections from gravity.
                 e.g. Rφ2 coupling

Extremely hard to forbid all such terms!
Copeland,Liddle,Lyth,Stewart,Wands

Moduli stabilization often generates such terms,
 even if naively absent.

Kachru,Kallosh,Linde,Maldacena,L.M.,Trivedi



Approaches to the Eta Problem

Try to find special parameter values
where η happens to be small.

•  Hard to achieve explicitly.
•  Considerable loss of predictivity.

Fine-tuning:

Symmetry
Impose a symmetry that forbids
undesired mass terms.

•  Surprisingly hard to achieve in
   concrete models.

We’ll try this.



String Inflation Status Summary
• Much recent progress due to moduli stabilization,

i.e. solution of moduli problem.

• But most models still suffer from eta problem.

• Fundamentally superior models would be nice.

• Lacking that, much detailed work still needed to
make known models fully explicit: more precise
potentials, reheating, perturbations, etc.



Some Models
• Brane-Antibrane Dvali&Tye; Alexander; Dvali,Shafi,Solganik;

Burgess,Majumdar,Nolte,Rajesh,Zhang; Sarangi&Tye.
• Branes at Angles.  Garcia-Bellido, Rabadan, Zamora.
• D3-D7.  Dasgupta,Herdeiro,Hirano, Kallosh; Hsu,Kallosh, Prokushkin;

Hsu&Kallosh.
• warped brane-antibrane Kachru,Kallosh,Linde,Maldacena,L.M.,Trivedi;

Firouzjahi&Tye; Burgess,Cline,Stoica,Quevedo; Iizuka&Trivedi; Berg,Haack,
Körs; Cline&Stoica; Kofman&Yi; Frey, Mazumdar, Myers; Chialva, Shiu,
Underwood; Shandera&Tye.

• DBI.  Silverstein&Tong; Alishahiha,Silverstein,Tong; Chen; Kecskemeti,
Maiden, Shiu, Underwood.

• Giant Inflaton. DeWolfe,Kachru,Verlinde.
• Racetrack. Blanco-Pillado,Burgess,Cline,Escoda,Gomez-

Reino,Kallosh,Linde,Quevedo; Greene&Weltman.
• M5-brane.  Buchbinder; Becker, Becker, Krause.
• Warped tachyonic.  Cremades, Quevedo, Sinha.
• N-flation.  Dimopoulos, Kachru, McGreevy, Wacker; Easther&L.M.
• Kahler.  Conlon&Quevedo; Westphal; Simon, Jimenez, Verde, Berglund,

Balasubramanian.



The Problem of Planckian Vevs
  The simplest model of inflation: a scalar field with a mass.

The conditions for slow-roll inflation:

Super-Planckian vevs characteristic of large-field inflation.
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But, in an effective field theory with cutoff M, the quadratic
potential is shorthand for

Flatness over distance Δφ >M requires tuning all the λ’s:
“functional fine-tuning”!

Do parametrically super-Planckian vevs even make sense?
Can we get them in string theory to check this?

plM MClearly we can’t take the cutoff
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SUSY theory:

Hard to forbid these!

So far, supergravity and string theory haven’t helped
at all.  Super-Planckian distances are surprisingly
rare in string theory.

Espcially hard to avoid coupling to curvature, Rφ2



EFT vs. Detectable Tensors
• ‘Lyth Bound:’

• If primordial tensors are seen:
   - It will be difficult to explain them in a
     satisfactory field theory.
   - Even harder in string theory!  (Expected
     it to be easier there, because of UV data.)
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Large-Field Models are Worth the Trouble
• Super-Planckian vevs are very troublesome in

an EFT with a Planckian cutoff.
• But forthcoming observations might force us to

address this problem.
• This is a true QG problem whose solution(s)

may well be testable.
• Large field models are falsifiable: they predict a

red spectrum + substantial gravitational waves.
• Large-field models can have chaotic initial

conditions, and can easily be eternal.
• As I’ll show in Part II, certain large-field models

turn out to be surprisingly common and
computable in string theory.



End of Status Report



Goal

• Construct a reliable string theory
realization of m2φ2 inflation.

• To achieve this: develop methods for
computing the axion mass spectrum
in a stabilized compactification.



Motivation
• m2φ2 inflation is an important paradigm (e.g. the

key example of chaotic, large-field inflation) but is very
hard to realize in field theory or string theory.

• The key obstacle is a need for trans-Planckian
vevs.

• This problem is common in inflation, but
especially stark here.  Solving it here could be
instructive.

• I’ll describe a solution that is natural in stabilized
vacua, and, thanks to random matrix theory, is
surprisingly predictive.



Plan of Part II

A Large-Field Model in String Theory
i. Tool 1: Assisted Inflation
ii. The N-flation proposal
iii. Tool 2: Random Matrix Theory
iv. N-flation via RMT
v. Predictions
vi. Conclusions



Assisted Inflation
Liddle, Mazumdar, and Schunck, astro-ph/9804177

Given N fields with identical potentials:

The Hubble friction is enhanced!

1/ 2
H N!

Challenge: how to get many identical potentials?

heterotic M-theory realization: Becker, Becker, Krause 



N-flation.
Dimopoulos, Kachru, McGreevy, and Wacker, hep-th/0507205.
 I would call it “assisted quadratic inflation with string axions”
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Having N fields does not suffice
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Eta-problem terms are 
consistent with O(N) symmetry.

We need a protective symmetry.



Why N-flation Works
Axions have shift symmetries, only broken nonperturbatively.
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Axion Shift Symmetries

ij
B! " #

ijklC! " # IIB  (partners of Kähler moduli)

    Symmetry comes from 10D gauge
    invariance.

heterotic

Broken only nonperturbatively.



Crucial Questions
• Realize in a stable compactification?
• Masses can’t be identical, so:

1. What spectrum of masses can we expect?
2. Does the model still work with these masses?
3. How do the predictions change?

• Radiative stability?  (not today’s focus)



Realizing N-flation
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String compactifications have many axions.
Nonperturbatively-stabilized vacua have axion potentials.

IIB:

for small displacements from the F-flat vacuum.
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rotate to canonical fields

Redefine and simplify:

then diagonalize

Complete data of a model: the masses



Can We Compute the Masses?

( )K AB

A B
e K D C D C=ij i jM

In a KKLT vacuum, Ci depends on threshold corrections to
gaugino condensates or fluctuation determinants for
Euclidean D3-branes, both hard to compute.  Even K can be
complicated.

Moreover, this matrix is at least 300x300!

With present techniques,
computing all the entries of M is out of reach.



Can we take advantage of
   the large size of M?



Random Matrix Theory (RMT)
• Specifically, we will use the spectral theory of

large random matrices.
• This is a rich and beautiful subject, but we

only need a few easy results.
• We just need to know

– how to compute the eigenvalue spectrum of a
large matrix whose entries are drawn from a
given distribution.

– which matrix ensemble describes N string axions.
– how to ensure that this gives a faithful description

of the system



The Beginning of RMT in Physics
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Classic problem: to find the energy spectrum of a highly-
excited nucleus.
Full quantum mechanics problem? Impossible.
However, if we only need the density of levels,

AND using the bold guess (Wigner 1958) that this is
determined just by the symmetries of the Hamiltonian
(without microscopic details) then the associated toy model
is highly tractable.

The problem is therefore to find the spectrum (density ρ) 
 of eigenvalues of a large matrix whose symmetries are given.



Wigner’s Semicircle Law
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• The simplest sort of toy Hamiltonian is a symmetric real matrix.
Suppose A is an NxN matrix whose real entries Aij

are drawn from a Gaussian distribution with mean
zero and variance σ2/Ν.

Let M = A + AT .
Then the spectrum of M is

(mathworld)



Marčenko-Pastur Law
Suppose R is an N x (N+P) matrix whose real entries Rij are
drawn from a distribution Ω with mean zero and variance σ2/N.

And let (cf. M = A + AT for Wigner Law)

Spectrum of M (Marčenko-Pastur 1967):
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Marčenko-Pastur Spectrum
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Marčenko-Pastur Governs N Axions
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Can incorporate rotation 
diagonalizing kinetic terms (not shown).

An excellent approximation when N is large.



Scope of the RMT Approach
The Marčenko-Pastur law is robust:
• the distribution Ω need not be Gaussian
• the mean of Ω need not be small
• the entries can have some correlations (more soon)

General result from Z.D.Bai’s review:

If M is a matrix whose constituent entries are drawn from any
distribution with appropriately bounded moments, then in the
large N limit the spectrum of M approaches that of a matrix
whose constituent entries have a Gaussian distribution with
mean zero!

We won’t need to invoke this universality explicitly, but it is a
strong motivation.



Monte Carlo Check

1
10

! =

1
3

! =

9
10

! =

mass

pr
ob

ab
ili

ty
 

300,# 100N = =



What is the ensemble?

• RMT gives an eigenvalue distribution that
is a good guide even for a single, large
matrix.

• It is not necessary to average over an
ensemble of matrices.

• Roughly, the size of the matrix already
gives an ‘ensemble’.



Central Limit Analogy
• recall CLT: the sum of many (appropriately

bounded) i.i.d. distributions Ωi is a Gaussian
distribution.

• Spectrum of one matrix is analogous to this CLT
gaussian!

• Individual matrix entries ~ Ωi

• Sum in row-column contraction ~ sum
   over Ωi

• But, particular structure of matrix contraction
breaks analogy and gives a spectrum richer than
a Gaussian (here, Marčenko-Pastur)



Many Fields, not Many Vacua

• We’ve used large dimension of scalar field space in a
given vacuum

• Large mass matrix              RMT useful
• Don’t need huge space of vacua, except to tune Λ.

(Bousso-Polchinski).
• This is not the statistical reasoning most often used in

the landscape.
• But, cf. Denef & Douglas.
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Cf. D-brane models in KKLT vacua of IIB, where
inflaton mass depends in detail on:

and on the Kähler potential.

            W0                        average mass
            h1,1               N
            h2,1               spread of masses

Large N is actually simpler!

Required data:

RMT N-flation: 3 numbers
IIB brane inflation: at least N functions

Did Compactification Details Matter?



What were the assumptions?
A i
D C• Correlations between entries in 

are not extremely strong.
Wigner Law survives substantial correlations: Schenker&Schulz-
Baldes,math-ph/0505003, show that N2 correlations per row are allowed!

• W0  has been fine-tuned to set overall scale, 

•                             (             is better)1,1
240 300h !

• Standard requirements of moduli stabilization.
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Qualitative Results
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Heavier fields roll faster Mass spectrum affects
 the dynamics



Motion of the Fields



Field Evolution
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Initial Conditions
Quadratic potentials do not give attractor behavior.  
So we must specify the initial conditions.

For now: i
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which follows from postulating a uniform distribution in the 
allowed field space

We’re working on a better model for the initial conditions.
(with D. Baumann and R. Easther)



Computing the Predictions
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Predictions (cont’d)
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Scalar Spectral Index
Current Bound (WMAP3, via Easther & Peiris): 0.982 0.020

s
n = ±

N-flation, β=1/2

single-field: 0.967
s
n =

0.95
s
n =



Observational Signatures
• Noticeably red spectrum.
• High tensors.
• Very modest running.
• Nongaussianity?

Distinguishable from single-field chaotic
unless

   Necessary measurements almost certain
to happen.

0.97
s
n <

0.13r !

0! "



Open Questions
• Understand general initial conditions, and
• Use full cosine potentials, not just masses.

(in progress with D. Baumann & R. Easther)
• Build explicit examples.
• Verify control of quantum corrections.
• Apply RMT methods to other assisted inflation

models.
• Non-Gaussianity? Isocurvature?
• Reheating?



Conclusions
• N-axion systems provide a promising class of

string inflation models.
• We characterized general N-axion models using

random matrix methods.
• Because N is large, compactification details

don’t matter!
• The scalar power spectrum is more red than in

the degenerate case.
• Can be falsified by low tensors or by ns > 0.97
• Can plausibly embed in stabilized vacua of any

string theory (unlike brane models).
• Can expect other applications of RMT to

fluctuations around string vacua.





Radiative Stability
(From original paper.)

Sigma-model corrections to Einstein-Hilbert action:
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N-dependent renormalization of Newton constant!



Controlling the Renormalization

Models with comparable numbers
of axions and other moduli are preferred.

Totally satisfactory resolution will require
concrete examples with correct order-one factors.

Consequence for us:  
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Large non-Gaussianity?

• Inflationary path curves in field space
• Hence, isocurvature sources super-horizon

evolution of curvature (Gordon, Wands, Bassett,Maartens)

• non-Gaussianity from curving path
• enhanced by N?


