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Introduction
What?

String theory beyond Calabi-Yau manifolds

Why?

Emerging language might be of fundamental significance

Are CY vacua special?

Mirror symmetry, topological models...



Generalized complex geometry is the emerging language

reformulates metric in terms of differential forms

Φ =
∑

k

formk
(Φ+,Φ

−
)g determined by pair 

compatible Cl(6,6)
pure spinors

Φ+ = e
iJ

Φ
−

= Ω
Example:

J ∧ Ω = 0

J3/3! = iΩ ∧ Ω̄

Ω defines Gl(3,C) structure

J defines Sp(6,R) structure

IIB:
∂rΦ+ = 0
∂rΦ− = f + i ∗ f + |Z|Φ̄−

black hole attractorvacua

dΦ+ = F + i ∗ F + dA ∧ Φ̄+

dΦ− = 0

makes natural to relate metric and fluxes (as susy should require) 



puts order in arrays of possibilities

know and love: Kahler:

[GatesHullRocek’84]: J+ for right-movers
!=J− for left-movers

... neither is Kahler:

example: (2,2) models (               supergravity vacua, RR=0)∼ N = 2

all these cases are generalized Kahler:

[
⇐ (d + H∧)Φ± = 0

]
[Gualtieri’04]

similarly for supergravity:

SU(3), SU(2)...

different fluxes



Plan

• Worldsheet models; an application (K3s)

• Supergravity vacua

• (Black holes and topological models)



Pure spinors

+ dΩ = 0 ⇒ complex (K = 0)

η1
+ ⊗ η1 †

+ = !eiJ ≡ 1 + i!J − 1
2
!J2 − i

6
!J3

almost symplectic structure

nowhere zeroJ | J3 + deiJ = 0 ⇒ symplectic

Internal spinors define geometries:
Ex.:

ε101 = ε4+ ⊗ η+
1 + c. c.

ε102 = ε4± ⊗ η+
2 + c. c.

6d spinors [Fierz]
η1
+ ⊗ η1 t

+ =
1
6
Ωmnpγ

mnp ≡!Ω

v1,0 ∧ Ω = 0via :

almost complex structure (c1 = 0)

nowhere zeroΩ | Ω ∧ Ω̄(dec.)

(CY: complex and symplectic)



Generalized Calabi-Yau: dΦ = 0 [Hitchin,Gualtieri...]

and      share a propertyeiJΩ
pure Cl(6,6) spinors

bispinors:
!C

rep. for Clifford(6)xClifford(6)

γm!C

!C±γm

= !!!!!!!!!!
[(dxm ∧+gmnιn)C]

=±!!!!!!!!!!
[(dxm ∧ −gmnιn)C±]

“gamma matrices”:

contractions
wedges ω∧

Ω!dJ

v!

differential forms:
C

rep. forClifford(6,6)

Ann(Φ) = 6
Φ is called pure if⇓

Ann(η1
+ ⊗ η2 †

+ ) = 3 + 3

since

γ īη+ = 0

For tensor products:



Pairs of pure spinors determine a metric

(Φ+,Φ−) !→ gmn = Jmp
+ J−p

n + Jm
+ pJ pn

−
SU(3)xSU(3) structure

Φ !→

⊂ (d + H∧)Φ = 0 :

generalized Calabi-Yau

really: generalized
trivial can. bundle

⊂
integrable:

generalized Kahler
(J +,J−) :(d + H∧)Φ± = 0

generalized Calabi-Yau metric

⊂
⊂

J 2 = −16+6

J integrable:
generalized complex

its eigenspaces
are closed

under Courant

“Lie bracket 
for             ”T ⊕ T ∗

(J, j) !→ gmn = jm
pJpnJust as

almost complex
structure

almost symplectic
structure

symmetric:g

(J, j) “compatible”

Jmn = (f ∧ dxm ∧ dxn ∧ f)top
Jm

n = (f ∧ dxm ∧ ∂n!f)top

Jm
n = (f ∧ ∂m!dxn ∧ f)top[ [

J ≡

Jm
n = (f ∧ ∂m!∂n!f)top

(f = ReΦ)

[Kapustin,Orlov’00]
[Hitchin;Gualtieri]



Worldsheet

(2,1):  impose extra susy δ+Xm = ε+jm
n(X)D+X

   is complex structurejsusy algebra ⇒

(1,1) models: no conditions on geometry δXm = εQXm

less directly related to GCG

⇒ N = 1 supergravity vacuum
[Strominger]

invariance of action ⇒ [J = j · g] ∂J = iH2,1 (⇔ dJ = j · H)
[Hull]

(3,0) form∃ Ω for j
and dΩ = WΩ = 0

K = 0(“          ”)

[toy model: 
∫

dθ+SmD+Xm (2,0) ⇔ generalized complex]

[Lindstrom,Minasian,AT,Zabzine]

“one      and a half
are integrable”

Jclosed under Courant
[Grana,Minasian,Petrini,AT]

Ann(Φ+) ∩Ann(Φ−)



(2,2): δ±Xm = ε±j m
(±)nD±X

usual case:  Kahler:⇒j+ = j−

⇒
[Gualtieri]

 Kahler:generalizedin general: j± complex, dJ± = ±j± · H
[GatesHullRocek]

[j+, j−] = 0 ⇒
∫

d2θd2θ̄ K(X, X̄, Y, Ȳ) “twisted chirals”

∫
d2θd2θ̄ K(X, X̄)also:

chiral           superfieldsN = 2

[j+, j−]!=0 algebra only works on-shell

[Lindstrom,Rocek,
vonUnge,Zabzine]

add 
extra 
fields

⇒ off-shell formulation
exists!

∫
d2θd2θ̄ K( , , )chirals

twisted
chirals “semichirals”

generator for canonical transformation
from        to         .zi

+ zi
−

Ex.:  Enriques surface c1 = 0 but K != 0 ⇒ no spacetime susy

Again, closed(3,0) forms∃ ⇒for supergravity vacuumΩ± j± N = 2
(d + H∧)Φ± = 0 [Jeschek,Witt]

[Sharpe]



a nowhere-zero holomorphic top-form, but since K⊗2
X

∼= OX , in essence they have a product
of holomorphic top-forms.

Enriques surfaces provide an entertaining corner case for (2, 2) nonlinear sigma models.
As they are complex and Kähler, a supersymmetric nonlinear sigma model on an Enriques
surface has (2, 2) worldsheet supersymmetry. That is almost, but not quite, enough to
have spacetime supersymmetry. Since Enriques surfaces do not have nowhere-zero holomor-
phic top-forms, there is no spacetime supersymmetry. Recall [19] that the condition in a
worldsheet theory for spacetime supersymmetry is a right-moving N = 2 algebra, plus the
requirement that all physical vertex operators have integral charge with respect to the U(1)R

of the N = 2 algebra. Although Enriques surfaces have (2, 2) worldsheet supersymmetry,
not all the physical vertex operators have integral charges.

In fact, we can see this more nearly explicitly from the description of Enriques surfaces
as freely-acting Z2 orbifolds of K3 surfaces. Since the Z2 acts freely, the massless modes are
just the Z2-invariant massless modes of the sigma model on the K3. The massless modes of
the sigma model on the K3 are described by the Hodge diamond of K3 cohomology:

1
0 0

1 20 1
0 0

1

After performing the Z2 projection, the remaining massless states are described by the Hodge
diamond of Enriques surface cohomology:

1
0 0

0 10 0
0 0

1

These still have integral charges. However, many of the massive states will come from the
Z2-twisted sector, which because of the twisted boundary conditions will no longer have
integral charges.

This (2, 2) theory does not have separate left- and right-moving spectral flow, because
there is no holomorphic top-form to define a top-charge state in chiral sectors. Nevertheless,
it does seem to have a diagonal left-right spectral flow, which acts on the left- and right-
movers simultaneously. As a result, the (R,R) and (NS,NS) sectors can be mapped to
one another, but there is no map to the (R,NS) or (NS,R) sectors. As the latter describe
spacetime fermions and the former, spacetime bosons, this seems consistent with the explicit
spacetime supersymmetry breaking.

29

has signature (3,19) (α, β) ≡
∫

α ∧ βH2(K3)

(Re(Ω), Im(Ω), J) span 3-plane w/ positive signature
(and can be rotated in one another)

⇒ such planesMhK = { } ≡ Gr(3, 19) =
SO(3, 19)

SO(3)× SO(19)

⇒

Mstring =
SO(4, 20)

SO(4)× SO(20)
4-planes in          ?R4,20 Why?

Heven = H0 ⊕H2 ⊕H4 has signature (4,20)

(Φ+,Φ−) span 4-plane w/ positive signature
{(Φ+,Φ−)} = M2,2

4-planes{ } = M4,4

−→

S2 × S2

Compactify type II on K3: g : (3× 19) B : 22 φ : 1 ⇒ 80

Moduli space of metrics:

Mirror symmetry: Φ+ ↔ Φ−

K3Application: [Huybrechts]
[Aspinwall-Morrison]



Vacua [Grana,Minasian,Petrini,AT]

IIA, IIB: Most general 4d vacua that preserve

N = 1 : δεψm= 0 δελ= 0
4d Poincare`

F (10) = F + vol4 ∧ ∗F F =
∑

k

Fk

g10 = e2Ag4 + g6

dH(·) ≡ e−2A+φ(d + H∧)(e2A−φ ·)
define differential

dHΦ− = dA ∧ Φ̄−−
dHΦ+ = 0

− 1
16

[c−eA+φF t − ieA−φc+∗F ]

IIA IIB

+
1
16

[c−eA+φF + ic+eA−φ∗F t]

d−HΦ− = 0

d−HΦ+ = dA ∧ Φ̄++

then ∃ (Φ+,Φ−)|

integration constantsc± compact: c− = 0M6 ⇒ orientifold ⇒

RR=0



all (Minkowski) vacua are generalized Calabi-Yau

[AdS generalization exists; “generalized half-flat”]

(d + H∧)Φ = 0

mirror symmetry? Φ+ ←→ Φ−

⇒ c− = 0 ⇒ (d−H∧)F = sourcescompact

⇒ (d−H∧)F = 0Re : c−F t = 16(d + H∧)(eA−φReΦ−)

Im : c+ e4A∗F = −16(d + H∧)(e3A−φImΦ−) ⇒ (d + H∧)e4A∗F = 0

brane action DBI 
(
≥

∫
e3A−φeBImΦ−

)
+CS

(
=

∫
e4AeBC̃

)

≥∫
pullback bulk form closed ⇒ calibrated cycles⇒ c+ e4A∗F = −16(d + H∧)(e3A−φImΦ−)

[Martucci,Smyth]
gK:[Koerber]

should also be derivable from SU(3)xSU(3) prepotentials Pα(Φ±)
[Vafa; LawrenceMcGreevy; GMPT]

[GranaLouisWaldram]



ε101 = ε4+ ⊗ η+
1 + c. c.

ε102 = ε4± ⊗ η+
2 + c. c.

6d spinors
SU(3) SU(2)

dynamic
SU(2)

SU(3)xSU(3)

(eiJ ,Ω)

F3 ∧H + sources = dF5!=
0⇒ ⇒ O3s, D3s

These cases are in correspondence with spacetime-filling branes

D3

D5 NS5

D7

Popular SU(3) subcases: (all complex)

Less popular (non CY):

is (2,1) and primitive;F3 + τH
[GranaPolchinski, DasguptaRajeshSethi, 

GiddingsKachruPolchinski, KlebanovStrassler]

conformal CY;

can combine with F-theory (no longer conf. CY)
but dual to CY fourfold

fake global issue:
seemingly           , but 
must allow “S-duality 

trans. functions”

c1 = 0

[MaldacenaNunez]

(dJ − ieφF3)1,2
prim = 0 [

[Hull; Strominger]

(dJ − iH)1,2 = 0[ not inside classification 
  (RR=0)        

(ω4 ∧ ev∧v̄, ei J4 ∧ v)
[Jeschek,Witt]



Look inside a class:
nilmanifolds

All generalized complex dΦ = 0

Action of orientifolds on
is known 

Φ±

All is left is to solve dΦ′ = ∗F

group manifolds;
exponential of 
Lie algebras 0generators=

!"#$%&' ()#$%&!*+!

,&-&./%+0&12!"#$%&'

3 45 44

5

[Cavalcanti,Gualtieri]

mod out by T-dualities:

f1
ab

T1−→ H1ab

ei(12+34+56 T1−→ (1 + i2)ei(34+56)

Ex.

So far we have found only T-duals of torus

Extending to solvmanifolds: compactness issues
[Saito; Auslander]

[√
|g|eBΩ −→

√
|g|e−BeiJ

three T-dualities[
[Kapustin,Orlov’00(!)]

[Fidanza,Minasian,AT]



Proof of concept:            string theory vacua do existN = 2
[Chuang,Kachru,AT]

obtained from effective 4d theory and non-CY transitions

So we have

CY

IIA vacua

IIB vacua

dHΦ− = 0

dHΦ+ = 0

several                   on (Φ+,Φ−) CP2

[Gerstenhaber,Schack]

gen. deformations of  ordinary complex structure:

(= HH2)H0(Λ2T )⊕H1(T )⊕H2(O)

ordinary
complex def.

δΩ = β!Ω
bivector

c1 !=0

take inspiration from generalized Kahler examples? [Gualtieri]
[Hitchin]

[Lin,Tolman;...]
compact, (2,2) models;
         but       

:

from deformations of ordinary Kahler:

from  “generalized Kahler quotient”:

; regions of strong curvature ⇒ not in 10d supergravity0 != gs " 1



Most general 
spinor pair

F (10) = F + vol4 ∧ ∗F + volS2f + ∗4volS2∗f f =
∑

k

fk

Black holes
[Hsu,Maloney,AT]

When can we solve it?

[Hitchin]:
If and only if −Tr[J (f)]2 ≡ q(f)> 0[pointwise:]

is nothing but the 
horizon area

∫ √
q(f)

f = Im(C̄Ω−)CY:

... rather than vacua, again from compactification on M6

4d black hole metricds2 = e2A(y)
[ ]

+ ginternal(r, y)

at the horizon: f = Im(C̄Φ14
− ) [attractor equation]II.

N = 2I. pure spinors describe              vacuum (with RR! “twice           ”)∀ r N = 1

Clearly it had to be .
but: indirect extra 

constraint on Φ14[ [
q>0



via [Ooguri,Vafa,Strominger] these black holes should be related to a

on a symplectic or complex manifold     

Topological model
twisting!−→ topological model

[Kapustin]

from a generalized Kahler ⇒ (2,2) model 
(J +,J−)

On CY:  A independent of complex moduli
do we really need both? For SU(3):

On CY: B independent of symplectic moduli

in fact: A defined on any symplectic manifold

A de
iJ

= 0

B dΩ = 0

gen. dΦ = 0

suggested picture:     [GMPT]

use BV to produce topological models[Alexandrov,Kontsevich,
Schwarz,Zaboronsky]

[Zucchini; Pestun]So far it works well for [j+, j−]!=0



N = 2
RR=0

RR=0
N = 1

(d + H∧)Φ± = 0 “generalized
CY metric”

generalized CY
+ “RR=gen.Nij.”

no

c− = 0

Summary
Supergravity Worldsheet

(weaker)

(2,2)
(J+,J−)
integrable

(2,1)
“    +1/2   

  integrable”
J generalized 

complex +...?RR=0
N = 1 (d + H∧)Ω = 0

∂J = iH2,1

(d + H∧)Φ = 0

+c−F + ic+∗F
(d + H∧)Φ′ =

generalized CY
+...?

no

Topological model

(d + H∧)Φ = 0

classical anomaly

integrableJ
top. string

?

RR=0
N = 2

RR=0
N = 1“=twice             ”

geometry compact?conditions (    ) ∼ cond. geometry

generalized 
Kahler:

Other dimensions:
3+8

3+7

[Tsimpis]

[Jeschek,Witt]



Conclusions

• GCG nicely classifies vacua

• What is the use of this geometry?

•  Is this deep?


