Generalized Complex Geometry in String Theory

Alessandro Tomasiello

Trieste 29.05.06

Introduction

What? String theory beyond Calabi-Yau manifolds

Why?

- Emerging language might be of fundamental significance
- Are CY vacua special?
- Mirror symmetry, topological models...

Generalized complex geometry is the emerging language reformulates metric in terms of differential forms g determined by pair (Φ_+, Φ_-) $\Phi = \sum \text{form}_k$ compatible Cl(6,6) pure spinors $\Phi_+ = e^{iJ}$ Ω defines Gl(3,C) structure $J \wedge \Omega = 0$ $\Phi_- = \Omega$ J defines Sp(6,R) structure $J^3/3! = i\Omega \wedge \overline{\Omega}$ Example: makes natural to relate metric and fluxes (as susy should require) black hole attractor vacua $\text{IIB:} \quad d\Phi_- = 0$ $\partial_r \Phi_- = \mathbf{f} + i * \mathbf{f} + |Z| \Phi_-$

 $d\Phi_{+} = \mathbf{F} + i * \mathbf{F} + dA \wedge \bar{\Phi}_{+} \quad \partial_{r}\Phi_{+} = 0$

- puts order in arrays of possibilities
 - example: (2,2) models ($\sim \mathcal{N} = 2$ supergravity vacua, RR=0)
 - know and love: Kähler
 - [GatesHullRocek'84]: J_+ for right-movers ... neith $\neq J_-$ for left-movers

... neither is Kähler

all these cases are generalized Kähler [Gualtieri'04]

 $\left[\leftarrow (d + H \wedge) \Phi_{\pm} = 0 \right]$

- similarly for supergravity:
 - SU(3), SU(2)...
 - different fluxes

Plan

- Worldsheet models; an application (K3s)
 - Supergravity vacua
 - (Black holes and topological models)

Pure spinors

 $\epsilon_1^{10} = \epsilon_+^4 \otimes \eta_1^+ + \text{c. c.}$ Internal spinors define geometries: $\epsilon_{2}^{10} = \epsilon_{+}^{4} \otimes \eta_{2}^{+} + c. c.$ $\eta_{+}^{1} \otimes \eta_{+}^{1t} = \frac{1}{6} \Omega_{mnp} \gamma^{mnp} \equiv \mathscr{D}$ Fierz via $v^{1,0} \wedge \Omega = 0$: almost complex structure $(c_1 = 0)$ $+ d\Omega = 0 \Rightarrow \text{complex} (K = 0)$ (dec.) $\Omega \mid \Omega \land \overline{\Omega}$ nowhere zero

$$\eta^{1}_{+} \otimes \eta^{1}_{+}^{\dagger} = e^{iJ} \equiv 1 + iJ - \frac{1}{2}J^{2} - \frac{i}{6}J^{3}$$

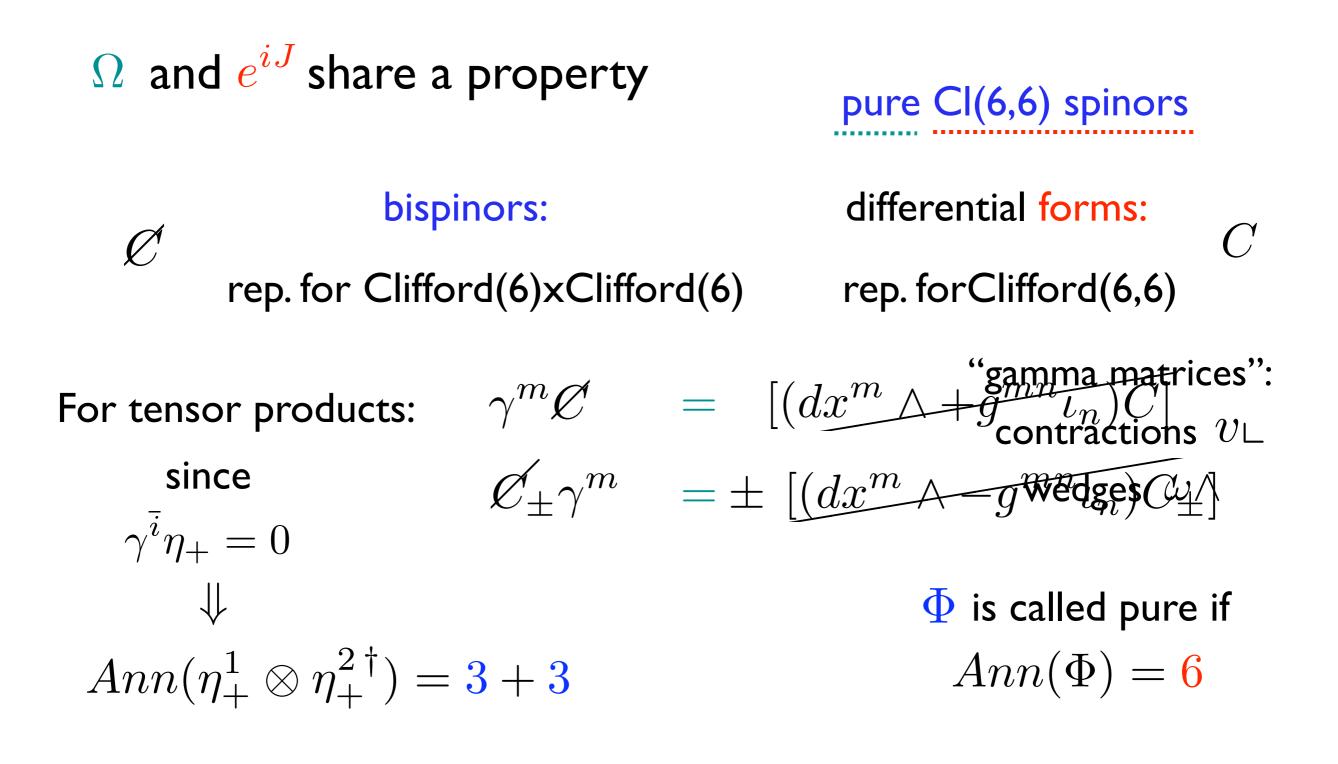
almost symplectic structure $J \mid J^3$ nowhere zero

 $+ de^{iJ} = 0 \Rightarrow$ symplectic

(CY: complex and symplectic)

Ex.:

6d spinors

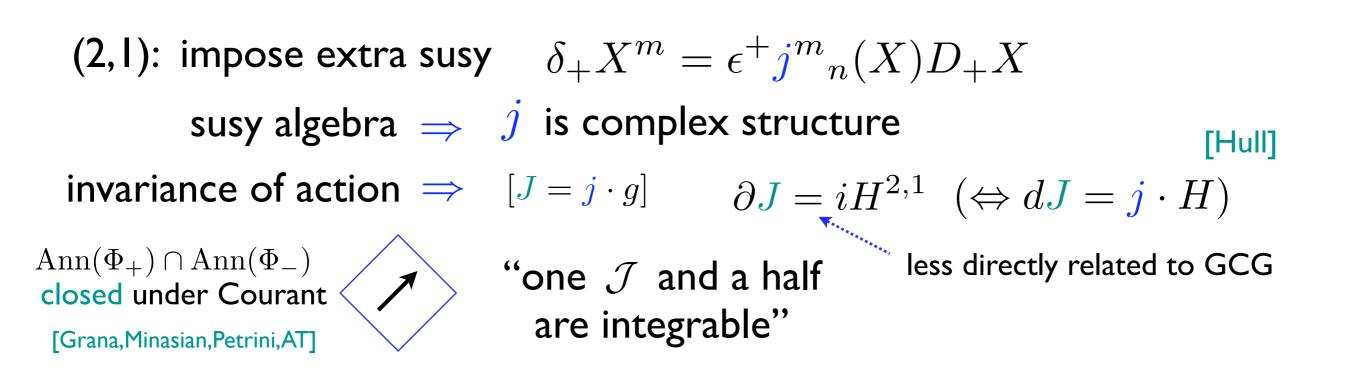


Generalized Calabi-Yau: $d\Phi = 0$ [Hitchin, Gualtieri...]

Pairs of pure spinors determine a metric
$$g$$
 symmetric:
Just as $(J, j) \mapsto g_{mn} = j_m{}^p J_{pn}$ almost symplectic (J, j) "compatible"
 $a^{almost complex} \quad (\Phi_+, \Phi_-) \mapsto g^{mn} = \mathcal{J}_+^{mp} \mathcal{J}_{-p}^{n} + \mathcal{J}_+^{m} \mathcal{J}_-^{pn}$
 $\Phi \mapsto \mathcal{J} \equiv \qquad (f = \operatorname{Re}\Phi)$
 $\left[\begin{array}{c} \mathcal{J}^{mn} = (f \wedge dx^m \wedge dx^n \wedge f)_{top} \\ \mathcal{J}^m_n = (f \wedge dx^m \wedge \partial_n \sqcup f)_{top} \end{array} \right] \mathcal{J}_m^n = (f \wedge \partial_m \sqcup dx^n \wedge f)_{top} \\ \mathcal{J}^m_n = (f \wedge dx^m \wedge \partial_n \sqcup f)_{top} \end{array} \right] \mathcal{J}_m^n = (f \wedge \partial_m \sqcup \partial_n \sqcup \partial_n \sqcup f)_{top}$
its eigenspaces
are closed
under Courant
"Lie bracket
for $T \oplus T^*$ "
 \mathcal{J} integrable:
generalized complex
 \mathcal{J} integrable:
 $generalized complex$
 \mathcal{J} integrable:
 $generalized Kahler$
 \mathcal{J} integrable:
 $generalized Kahler$
 \mathcal{J} integrable:
 \mathcal{J} integra

Worldsheet

(I,I) models: no conditions on geometry $\delta X^m = \epsilon Q X^m$



 $\exists (3,0) \text{ form } \Omega \text{ for } j \implies \mathcal{N} = 1 \text{ supergravity vacuum}$ and $d\Omega = W\Omega = 0$ ("K = 0") [Strominger]

[toy model: $\int d\theta^+ S_m D_+ X^m$ (2,0) \Leftrightarrow generalized complex] [Lindstrom, Minasian, AT, Zabzine]

(2,2):
$$\delta_{\pm} X^m = \epsilon^{\pm} j_{(\pm)n}^m D_{\pm} X$$

• usual case: $j_+ = j_- \Rightarrow \text{Kähler}$ also: $\int d^2 \theta d^2 \overline{\theta} K(X, \overline{X})$
• in general: j_{\pm} complex, $dJ_{\pm} = \pm j_{\pm} \cdot H \Rightarrow$ generalized Kähler:
[GatesHullRocek]
• $[j_+, j_-] = 0 \Rightarrow \int d^2 \theta d^2 \overline{\theta} K(X, \overline{X}, Y, \overline{Y}) = \text{``twisted chirals''}$
• $[j_+, j_-] \neq 0$ algebra only works on-shell
add
extra
fields \Rightarrow off-shell formulation
 $from z_+^i \text{ to } z_-^i$.
Again, \exists closed(3,0) forms Ω_{\pm} for $j_{\pm} \Rightarrow \mathcal{N} = 2$ supergravity vacuum
 $(d + H \wedge) \Phi_{\pm} = 0$ [Jeschek,Witt]
Ex.: Enriques surface $c_1 = 0$ but $K \neq 0 \Rightarrow$ no spacetime susy
[Sharped]

Application: K3

[Huybrechts] [Aspinwall-Morrison]

 $\{(\Phi_+, \Phi_-)\} = \mathcal{M}_{2,2}$

 $\{ 4-planes \} = \mathcal{M}_{4,4}$

 $S^2 imes S^2$

- $\begin{array}{cccc} & 1 & & \bullet & \mathsf{Moduli space of metrics:} \\ 1 & 20 & 1 & & \bullet & H^2(K3) \text{ has signature (3,19)} & (\alpha,\beta) \equiv \int \alpha \wedge \beta \\ 0 & 0 & & & & (\nabla, \alpha) \in \mathbb{C} \end{array}$
 - $(\operatorname{Re}(\Omega), \operatorname{Im}(\Omega), J)$ span 3-plane w/ positive signature (and can be rotated in one another)
- $\Rightarrow \mathcal{M}_{hK} = \{ \text{ such planes } \} \equiv Gr(3, 19) = \frac{SO(3, 19)}{SO(3) \times SO(19)}$
- Compactify type II on K3: $g: (3 \times 19) \quad B: 22 \quad \phi: 1 \implies 80$ $\mathcal{M}_{\text{string}} = \frac{SO(4, 20)}{SO(4) \times SO(20)}$ 4-planes in $\mathbb{R}^{4,20}$? Why?
 - $H^{\text{even}} = H^0 \oplus H^2 \oplus H^4$ has signature (4,20)
 - (Φ_+, Φ_-) span 4-plane w/ positive signature

Mirror symmetry: $\Phi_+ \leftrightarrow \Phi_-$

Vacua

[Grana, Minasian, Petrini, AT]

- IIA, IIB: Most general 4d vacua that preserve
 - $\mathcal{N} = 1$: $\delta_{\epsilon} \psi_m = 0$ $\delta_{\epsilon} \lambda = 0$

• RR≠0

• 4d Poincaré $g_{10} = e^{2A}g_4 + g_6$ $F^{(10)} = \mathbf{F} + \operatorname{vol}_4 \wedge *\mathbf{F} \qquad F = \sum_k F_k$

define differential

$$d_{\mathbf{H}}(\cdot) \equiv e^{-2A+\phi}(d+\mathbf{H}\wedge)(e^{2A-\phi} \cdot)$$

$$\begin{aligned} d_{H}\Phi_{+} &= 0 \\ d_{H}\Phi_{-} &= dA \wedge \bar{\Phi}_{-} - \\ -\frac{1}{16}[c_{-}e^{A+\phi}F^{t} - ie^{A-\phi}c_{+}*F] \end{aligned} \qquad \begin{aligned} d_{-H}\Phi_{-} &= 0 \\ d_{-H}\Phi_{+} &= dA \wedge \bar{\Phi}_{+} + \\ +\frac{1}{16}[c_{-}e^{A+\phi}F + ic_{+}e^{A-\phi}*F^{t}] \end{aligned}$$

 c_{\pm} integration constants

• then $\exists (\Phi, \Phi)$

 M_6 compact: \Rightarrow orientifold \Rightarrow $c_- = 0$

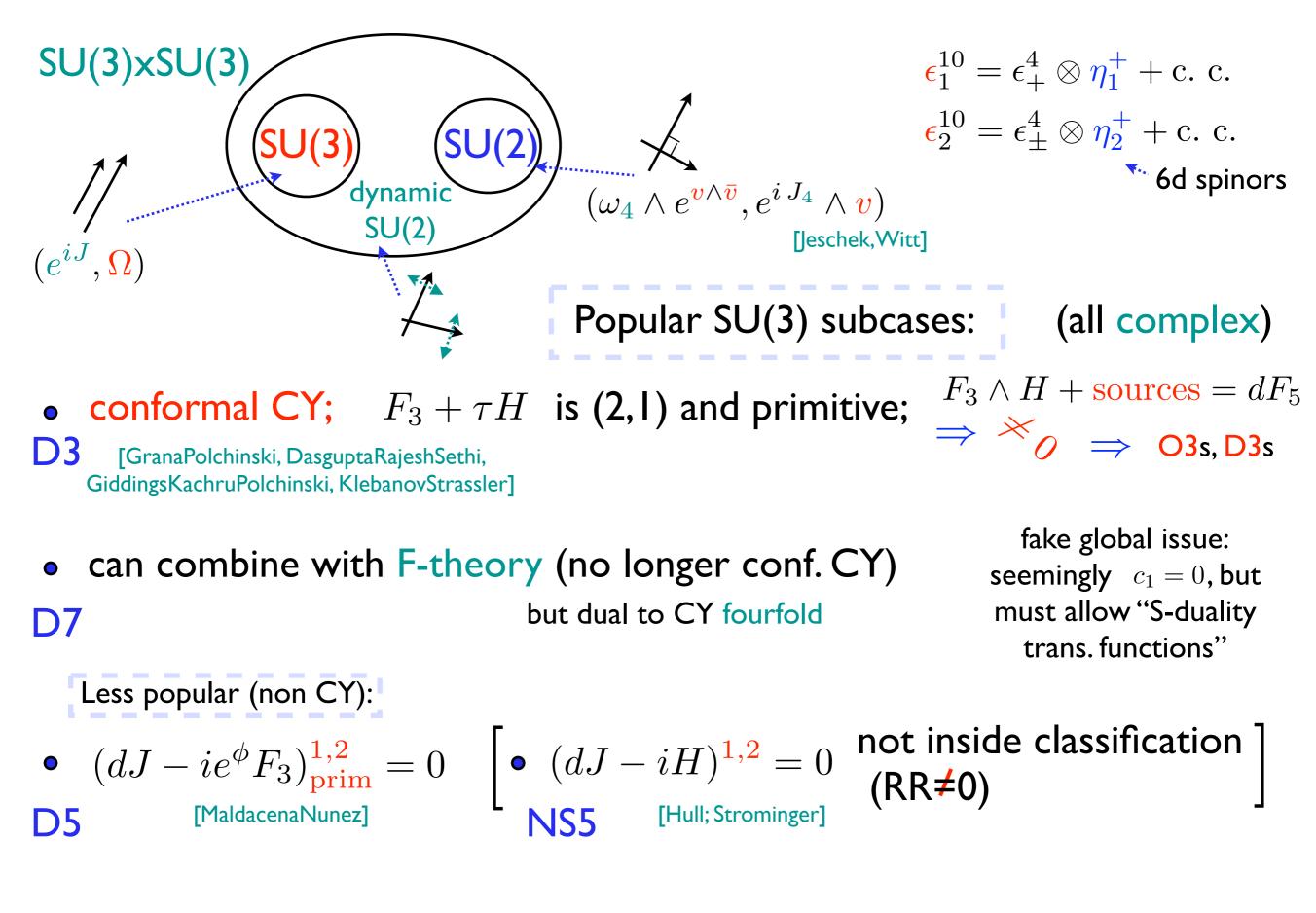
• all (Minkowski) vacua are generalized Calabi-Yau $(d + H \wedge) \Phi = 0$ [AdS generalization exists; "generalized half-flat"]

• Re: $c_- F^t = 16(d + H \wedge)(e^{A-\phi} \operatorname{Re} \Phi_-) \Rightarrow (d - H \wedge)F = 0$ Im: $c_+ e^{4A} * F = -16(d + H \wedge)(e^{3A-\phi} \operatorname{Im} \Phi_-) \Rightarrow (d + H \wedge)e^{4A} * F = 0$ compact $\Rightarrow c_- = 0 \Rightarrow (d - H \wedge)F = \text{sources}$

• brane action DBI $\left(\geq \int e^{3A-\phi}e^{B}\operatorname{Im}\Phi_{-} \right) + CS \left(= \int e^{4A}e^{B}\tilde{C} \right)$ $\int \operatorname{pullback \ bulk \ form} \rightarrow \operatorname{closed} \xrightarrow{} \operatorname{calibrated \ cycles} \qquad gK:[Koerber] \\ \xrightarrow{} c_{+}e^{4A}*F = -16(d+H\wedge)(e^{3A-\phi}\operatorname{Im}\Phi_{-})$

• should also be derivable from SU(3)xSU(3) prepotentials $\mathcal{P}_{\alpha}(\Phi_{\pm})$ [Vafa; LawrenceMcGreevy; GMPT] [GranaLouisWaldram]

• mirror symmetry? $\Phi_+ \longleftrightarrow \Phi_-$



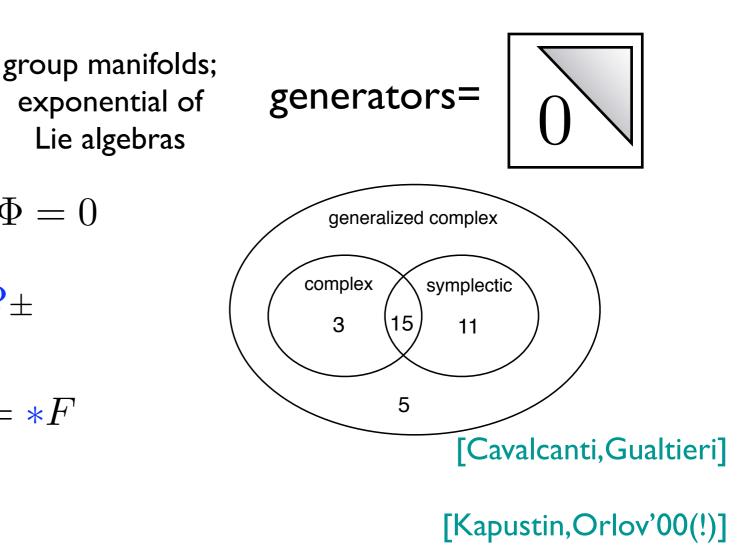
These cases are in correspondence with spacetime-filling branes

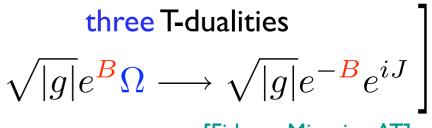
- Look inside a class: nilmanifolds
 - All generalized complex $d\Phi = 0$
 - Action of orientifolds on Φ_+ 0 is known
 - All is left is to solve $d\Phi' = *F$ 0
 - mod out by T-dualities: 0

 $f^1{}_{ab} \xrightarrow{T_1} H_{1ab}$ Ex. $e^{i(12+34+56} \xrightarrow{T_1} (1+i2)e^{i(34+56)}$

- So far we have found only T-duals of torus
- Extending to solvmanifolds: compactness issues 0

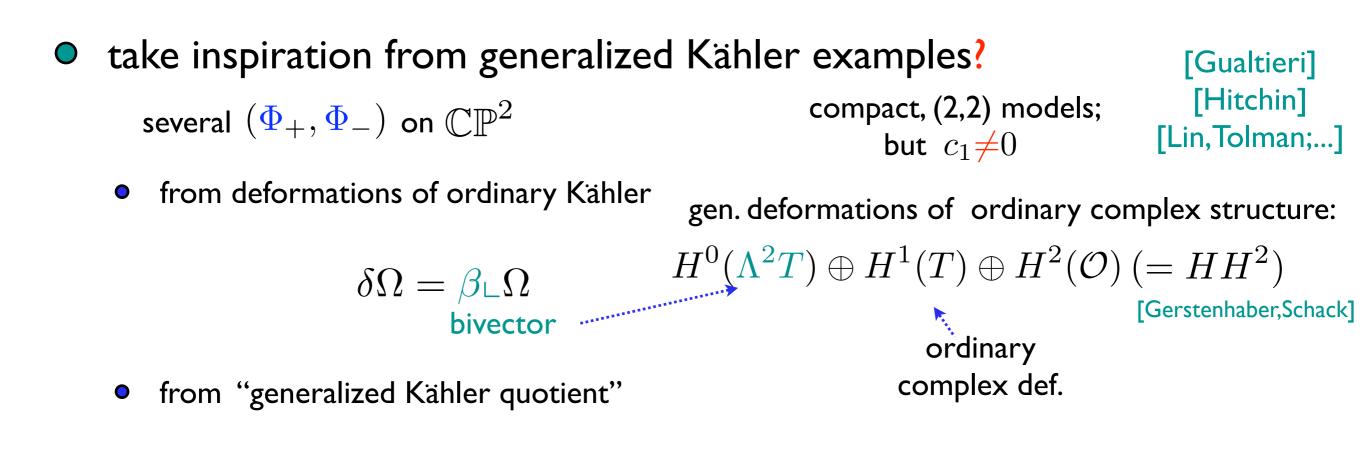
Lie algebras





[Fidanza, Minasian, AT]

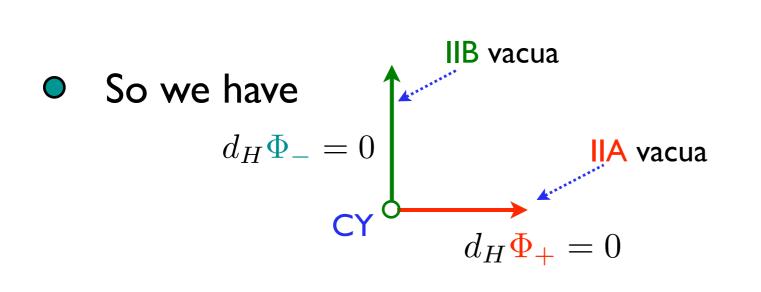
[Saito; Auslander]



• Proof of concept: $\mathcal{N}=2$ string theory vacua do exist

[Chuang,Kachru,AT]

- obtained from effective 4d theory and non-CY transitions
- $0 \neq g_s \ll 1$; regions of strong curvature \implies not in 10d supergravity



Black holes

[Hsu, Maloney, AT]

... rather than vacua, again from compactification on M_6

 $ds^2 = e^{2A(y)}$ 4d black hole metric $+ g^{\text{internal}}(r, y)$ $f = \sum_{k} f_k$ $F^{(10)} = F + \operatorname{vol}_4 \wedge *F + \operatorname{vol}_{S^2} f + *_4 \operatorname{vol}_{S^2} *f$

1. $\forall r$ pure spinors describe $\mathcal{N} = 2$ vacuum (with RR! "twice $\mathcal{N} = 1$ ")

at the horizon:

$$f = \operatorname{Im}(\bar{C}\Phi^{14}_{-})$$

[attractor equation]

CY: $f = \operatorname{Im}(\overline{C}\Omega_{-})$

When can we solve it?

[Hitchin]: If and only if $-\operatorname{Tr}[\mathcal{J}(f)]^2 \equiv q(f) > 0$ [pointwise:] $\int \sqrt{q(f)}$ is nothing but the horizon area Clearly it had to be q > 0.

but: indirect extra constraint on Φ^{14}

via [Ooguri, Vafa, Strominger] these black holes should be related to a

Topological model

on a symplectic or complex manifold

- from a generalized Kahler \Rightarrow (2,2) model $\xrightarrow{\text{twisting}}$ topological model $(\mathcal{J}_+, \mathcal{J}_-)$ [Kapustin]
- do we really need both?

For SU(3):

suggested picture: [GMPT] • On CY: A independent of complex moduli

Α	$de^{iJ} = 0$
В	$d\Omega = 0$
gen.	$d\Phi = 0$

- On CY: B independent of symplectic moduli 0
- in fact: A defined on any symplectic manifold

[Alexandrov,Kontsevich, Schwarz,Zaboronsky]

use BV to produce topological models

So far it works well for $[j_+, j_-] \neq 0$

[Zucchini; Pestun]

Supergravity

Worldsheet

(weaker)

						۱ <i>۱</i>	
	conditions (\sim)	geometry	compact?		cond.	geometry	
$\mathcal{N}=2$ RR=0	$(d+H\wedge)\Phi_{\pm}=0$	"generalized CY metric"	no	(2,2)	$(\mathcal{J}_+,\mathcal{J})$ integrable	generalized Kähler	
<i>N</i> = 1 R≢ 0	$(d + H \wedge)\Phi = 0$ $(d + H \wedge)\Phi' =$ $+c_{-}F + ic_{+}*F$	generalized CY + ''RR=gen.Nij.''	$c_{-} = 0$				
$\mathcal{N}=1$ RR=0	$(d + H \wedge)\Omega = 0$ $\partial J = iH^{2,1}$	generalized CY +?	no	(2,1)	" \mathcal{J} +1/2 integrable"	generalized complex +?	
$\mathcal{N}=2$ "=twice $\mathcal{N}=1$ " Topological model							
Other o	dimensions:		classical		anomaly top. string		
3+8	[Tsimpis]			-			
3+7	[Jeschek,Witt]	${\mathcal J}$	integrable	(d +	$H\wedge)\Phi=0$?	

Conclusions

- GCG nicely classifies vacua
 - What is the use of this geometry?
 - Is this deep?