Generalized Complex Geometry in String Theory

Alessandro Tomasiello

Trieste
29.05.06

Introduction

What?
String theory beyond Calabi-Yau manifolds

Why?

- Emerging language might be of fundamental significance
- Are CY vacua special?
- Mirror symmetry, topological models...

Generalized complex geometry is the emerging language

 reformulates metric in terms of differential forms$$
g \text { determined by pair }\left(\Phi_{+}, \Phi_{-}\right) \quad \Phi=\sum_{k} \text { form }_{k}
$$

Example: $\begin{array}{c:cc} & \Phi_{+}=e^{i J} & \Omega \text { defines } \mathrm{GI}(3, \mathrm{C}) \text { structure } \\ \Phi_{-}=\Omega & J \text { defines } \operatorname{Sp}(6, \mathrm{R}) \text { structure } & J \wedge \Omega=0 \\ & & J^{3} / 3!=i \Omega \wedge \bar{\Omega}\end{array}$

- makes natural to relate metric and fluxes (as susy should require)
vacua
॥B: $d \Phi_{-}=0$
$\partial_{r} \Phi_{-}=f+i * f+|Z| \bar{\Phi}_{-}$
$d \Phi_{+}=F+i * F+d A \wedge \bar{\Phi}_{+} \quad \partial_{r} \Phi_{+}=0$
- puts order in arrays of possibilities
- example: $(2,2)$ models $(\sim \mathcal{N}=2$ supergravity vacua, $R R=0)$
- know and love: Kähler
- [GatesHullRocek'84]: J_{+}for right-movers

$$
\neq J_{-} \text {for left-movers }
$$

... neither is Kähler
all these cases are generalized Kähler

$$
\left[\Leftarrow(d+H \wedge) \Phi_{ \pm}=0\right]
$$

- similarly for supergravity:
- $\operatorname{SU}(3), S U(2)$...
- different fluxes

Plan

- Worldsheet models; an application (K3s)
- Supergravity vacua
- (Black holes and topological models)

Pure spinors

Internal spinors define geometries:

$$
\eta_{+}^{1} \otimes \eta_{+}^{1 t}=\frac{1}{6} \Omega_{m n p} \gamma^{m n p} \equiv \varnothing
$$

$$
\begin{gathered}
\text { Ex.: } \\
\epsilon_{1}^{10}=\epsilon_{+}^{4} \otimes \eta_{1}^{+}+\text {c. с. } \\
\epsilon_{2}^{10}=\epsilon_{ \pm}^{4} \otimes \eta_{2}^{+}+\text {c. с. }
\end{gathered}
$$

[Fierz]

$$
\text { via } v^{1,0} \wedge \Omega=0:
$$

almost complex structure $\left(c_{1}=0\right)$

$$
+d \Omega=0 \Rightarrow \text { complex }(K=0)
$$ (dec.) $\Omega \mid \Omega \wedge \bar{\Omega}$ nowhere zero

$$
\eta_{+}^{1} \otimes \eta_{+}^{1 \dagger}=\not \mathscr{\ell}^{\not Z J} \equiv 1+i \not \mathscr{J}^{\prime}-\frac{1}{2} \not \mathscr{J}^{2}-\frac{i}{6} \not \mathscr{J}^{\prime 3}
$$

almost symplectic structure $J \mid J^{3}$ nowhere zero

$$
+d e^{i J}=0 \Rightarrow \text { symplectic }
$$

(CY: complex and symplectic)
Ω and $e^{i J}$ share a property
bispinors:
rep. for Clifford(6)xClifford(6)

pure $\mathrm{Cl}(6,6)$ spinors

differential forms:
rep. forClifford(6,6) since

$$
\ell_{ \pm} \gamma^{m}= \pm\left[\left(d x^{m} A-g^{m e d g e s)} C_{1}\right]\right.
$$

Φ is called pure if

$$
\operatorname{Ann}(\Phi)=6
$$

Generalized Calabi-Yau:

Pairs of pure spinors determine a metric
almost symplectic
g symmetric:
Just as $(J, j) \mapsto g_{m n}=j_{m}{ }^{p} J_{p n} \stackrel{\cdots \cdots \cdots}{ }$ structure $\quad(J, j)$ "compatible"
almost complex structure

$$
\left(\Phi_{+}, \Phi_{-}\right) \mapsto g^{m n}=\mathcal{J}_{+}^{m p} \mathcal{J}_{-p}{ }^{n}+\mathcal{J}_{+}^{m} \mathcal{J}_{-}^{p n}
$$

$$
S U(3) \times S U(3) \text { structure }
$$

$$
\Phi \mapsto \mathcal{J} \equiv
$$

$$
\left[\begin{array}{l}
\mathcal{J}^{m n}=\left(f \wedge d x^{m} \wedge d x^{n} \wedge f\right)_{\text {top }} \\
\hdashline \mathcal{J}^{m}{ }_{n}=\left(f \wedge d x^{m} \wedge \partial_{n}\llcorner f)_{\text {top }}\right.
\end{array}, \begin{array}{l}
\mathcal{J}_{m}^{n}=\left(f \wedge \partial_{m}\left\llcorner d x^{n} \wedge f\right)_{\text {top }}\right. \\
\mathcal{J}_{m}^{n}=\left(f \wedge \partial _ { m } \left\llcorner\partial_{n}\llcorner f)_{\text {top }}\right.\right.
\end{array}\right]
$$

$$
\mathcal{J}^{2}=-1_{6+6}
$$

[Hitchin;Gualtieri] [Kapustin,Orlov'00] really: generalized its eigenspaces are closed under Courant "Lie bracket for $T \oplus T^{* "}$
\mathcal{J} integrable:
generalized complex

$$
(d+H \wedge) \Phi=0:
$$

trivial can. bundle

generalized Calabi-Yau

$\left(\mathcal{J}_{+}, \mathcal{J}_{-}\right)$integrable:
generalized Kahler
\subset

$$
(d+H \wedge) \Phi_{ \pm}=0:
$$

generalized Calabi-Yau metric

Worldsheet

(I, I) models: no conditions on geometry $\quad \delta X^{m}=\epsilon Q X^{m}$
(2,I): impose extra susy

$$
\delta_{+} X^{m}=\epsilon^{+} j^{m}{ }_{n}(X) D_{+} X
$$

susy algebra $\Rightarrow j$ is complex structure
invariance of action $\Rightarrow[J=j \cdot g] \quad \partial J=i H^{2,1} \quad(\Leftrightarrow d J=j \cdot H)$
$\operatorname{Ann}\left(\Phi_{+}\right) \cap \operatorname{Ann}\left(\Phi_{-}\right)$ closed under Courant
[Grana,Minasian,Petrini,AT]
 "one \mathcal{J} and a half less directly related to GCG are integrable"
$\exists(3,0)$ form Ω for $j \Rightarrow \mathcal{N}=1$ supergravity vacuum and $d \Omega=W \Omega=0$

$$
\text { (" } K=0 \text { ") }
$$

[toy model: $\int d \theta^{+} S_{m} D_{+} X^{m}(2,0) \Leftrightarrow$ generalized complex]
(2,2): $\quad \delta_{ \pm} X^{m}=\epsilon^{ \pm} j_{(\pm) n}^{m} D_{ \pm} X$

$$
\text { chiral } \mathcal{N}=2 \text { superfields }
$$

- usual case: $j_{+}=j_{-} \Rightarrow$ Kähler
also: $\int d^{2} \theta d^{2} \bar{\theta} K(\mathbb{X}, \overline{\mathbb{X}})$
- in general: $j_{ \pm}$complex, $d J_{ \pm}= \pm j_{ \pm} \cdot H \Rightarrow$ generalized Kähler
[GatesHullRocek]
[Gualtieri]
- $\left[j_{+}, j_{-}\right]=0 \Rightarrow \int d^{2} \theta d^{2} \bar{\theta} K(\mathbb{X}, \overline{\mathbb{X}}, \mathbb{Y}, \overline{\mathbb{Y}})$) \quad...."twisted chirals"
- $\left[j_{+}, j_{-}\right] \neq 0 \quad$ algebra only works on-shell
add $\stackrel{\text { extra }}{\text { add }} \Rightarrow$ off-shell formulation
exists! $\int d^{2} \theta d^{2} \bar{\theta} K$ (chirals,, , twisted ""semichirals") from z_{+}^{i} to z_{-}^{i}.

Again, $\exists \operatorname{closed}(3,0)$ forms $\Omega_{ \pm}$for $j_{ \pm} \Rightarrow \mathcal{N}=2$ supergravity vacuum

$$
(d+H \wedge) \Phi_{ \pm}=0 \quad[\text { Jeschek, Witt }]
$$

Ex.: Enriques surface $c_{1}=0$ but $K \neq 0 \Rightarrow$ no spacetime susy ${ }_{\text {SSharpe] }}$

Application: K3

- Moduli space of metrics:
- $H^{2}(K 3)$ has signature $(3,19) \quad(\alpha, \beta) \equiv \int \alpha \wedge \beta$
- ($\operatorname{Re}(\Omega), \operatorname{Im}(\Omega), J)$ span 3-plane w/ positive signature (and can be rotated in one another)
$\Rightarrow \mathcal{M}_{\mathrm{hK}}=\{$ such planes $\} \equiv \operatorname{Gr}(3,19)=\frac{S O(3,19)}{S O(3) \times S O(19)}$
- Compactify type II on K3: $g:(3 \times 19) \quad B: 22 \quad \phi: 1 \Rightarrow 80$ 4-planes in $\mathbb{R}^{4,20}$? Why?

$$
\mathcal{M}_{\text {string }}=\frac{S O(4,20)}{S O(4) \times S O(20)}
$$

- $H^{\text {even }}=H^{0} \oplus H^{2} \oplus H^{4}$ has signature $(4,20)$
- $\left(\Phi_{+}, \Phi_{-}\right)$span 4-plane w/ positive signature

Mirror symmetry: $\quad \Phi_{+} \leftrightarrow \Phi_{-}$

$$
\begin{gathered}
\left\{\left(\Phi_{+}, \Phi_{-}\right)\right\}=\mathcal{M}_{2,2} \\
S^{2} \times S^{2} \downarrow \\
\{\text { 4-planes }\}=\mathcal{M}_{4,4}
\end{gathered}
$$

- IIA, IIB: Most general 4d vacua that preserve
- 4d Poincaré $g_{10}=e^{2 A} g_{4}+g_{6}$
- $\mathcal{N}=1: \quad \delta_{\epsilon} \psi_{m}=0 \quad \delta_{\epsilon} \lambda=0$
- $R R \neq 0$

$$
F^{(10)}=F+\operatorname{vol}_{4} \wedge * F \quad F=\sum_{k} F_{k}
$$

define differential

$$
d_{H}(\cdot) \equiv e^{-2 A+\phi}(d+H \wedge)\left(e^{2 A-\phi} \cdot\right)
$$

o then $\exists\left(\Phi_{+}, \Phi_{-}\right) \mid$

$$
d_{H} \Phi_{+}=0 \quad=\quad \| \mathrm{A}
$$

$$
d_{-H} \Phi_{-}=0
$$

$$
d_{-H} \Phi_{+}=d A \wedge \bar{\Phi}_{+}+
$$

$$
+\frac{1}{16}\left[c_{-} e^{A+\phi} F+i c_{+} e^{A-\phi_{*}} * F^{t}\right]^{\prime}
$$

$c_{ \pm}$integration constants
M_{6} compact: \Rightarrow orientifold $\Rightarrow c_{-}=0$

O all (Minkowski) vacua are generalized Calabi-Yau
[AdS generalization exists;"generalized half-flat"]

- Re: $\quad c_{-} F^{t}=16(d+H \wedge)\left(e^{A-\phi} \operatorname{Re} \Phi_{-}\right) \quad \Rightarrow(d-H \wedge) F=0$
$\operatorname{Im}: \quad c_{+} e^{4 A} * F=-16(d+H \wedge)\left(e^{3 A-\phi} \operatorname{Im} \Phi_{-}\right) \Rightarrow(d+H \wedge) e^{4 A} * F=0$
compact $\Rightarrow c_{-}=0 \quad \Rightarrow(d-H \wedge) F=$ sources
- brane action DBI $\left(\geq \int e^{3 A-\phi} e^{B} \operatorname{Im} \Phi_{-}\right)+\mathrm{CS}\left(=\int e^{4 A} e^{B} \tilde{C}\right)$
\int pullback bulk form) \rightarrow closed \Rightarrow calibrated cycles
[Martucci,Smyth]

$$
c_{+} e^{4 A} * F=-16(d+H \wedge)\left(e^{3 A-\phi} \operatorname{Im} \Phi_{-}\right)
$$

- should also be derivable from $\operatorname{SU}(3) \times S U(3)$ prepotentials $\mathcal{P}_{\alpha}\left(\Phi_{ \pm}\right)$
[GranaLouisWaldram]
- mirror symmetry? $\quad \Phi_{+} \longleftrightarrow \Phi_{-}$

$$
\begin{aligned}
& \epsilon_{1}^{10}=\epsilon_{+}^{4} \otimes \eta_{1}^{+}+\text {c. c. } \\
& \epsilon_{2}^{10}=\epsilon_{ \pm}^{4} \otimes \eta_{2}^{+}+\text {c. c. } \\
& \quad \text { 6d spinors } \\
& \text { ct] } \\
& \text { (all complex) }
\end{aligned}
$$

Popular SU(3) subcases:

$\left(\omega_{4} \wedge e^{v \wedge \bar{v}}, e^{i J_{4}} \wedge v\right)$
[Jeschek,Witt]

- conformal CY; $\quad F_{3}+\tau H$ is $(2, \mathrm{I})$ and primitive; $F_{3} \wedge H+$ sources $=d F_{5}$

D3 [GranaPolchinski, DasguptaRajeshSethi, GiddingsKachruPolchinski, KlebanovStrassler]

- can combine with F-theory (no longer conf. CY) D7 but dual to CY fourfold
- Look inside a class: nilmanifolds
group manifolds;
exponential of generators= Lie algebras
- All generalized complex $d \Phi=0$
- Action of orientifolds on $\Phi_{ \pm}$ is known
- All is left is to solve $d \Phi^{\prime}=* F$
- mod out by T-dualities:

[Kapustin,Orlov’00(!)]
Ex. $\quad f_{a b}^{1} \xrightarrow{T_{1}} H_{1 a b}$

$$
e^{i(12+34+56} \xrightarrow{T_{1}}(1+i 2) e^{i(34+56)}
$$

$$
\left[\begin{array}{c}
\text { three T-dualities } \\
\sqrt{|g|} e^{B} \Omega \longrightarrow \sqrt{|g|} e^{-B} e^{i J}
\end{array}\right]
$$

- So far we have found only T-duals of torus
- Extending to solvmanifolds: compactness issues

O take inspiration from generalized Kähler examples?
several $\left(\Phi_{+}, \Phi_{-}\right)$on $\mathbb{C P}^{2}$
compact, $(2,2)$ models; but $c_{1} \neq 0$

- from deformations of ordinary Kähler gen. deformations of ordinary complex structure:

$$
\delta \Omega=\underset{\text { bivector }}{\beta\llcorner\Omega} \quad H^{0}\left(\Lambda^{2} T\right) \oplus H^{1}(T) \oplus H^{2}(\mathcal{O}) \underset{\text { [Gerstenhaber,Schack] }}{\left(=H H^{2}\right)}
$$

- Proof of concept: $\mathcal{N}=2$ string theory vacua do exist
- obtained from effective 4d theory and non-CY transitions
[Chuang,Kachru,AT]
- $0 \neq g_{s} \ll 1$; regions of strong curvature \Rightarrow not in IOd supergravity
- So we have

Black holes

... rather than vacua, again from compactification on M_{6}

$$
\begin{aligned}
& d s^{2}=e^{2 A(y)}[4 \mathrm{~d} \text { black hole metric }]+g^{\text {internal }}(r, y) \\
& F^{(10)}=F+\operatorname{vol}_{4} \wedge * F+\operatorname{vol}_{S^{2}} f+*_{4} \operatorname{vol}_{S^{2}} * f
\end{aligned}
$$

$$
f=\sum_{k} f_{k}
$$

I. $\forall r$ pure spinors describe $\mathcal{N}=2$ vacuum (with RR! "twice $\mathcal{N}=1$ ")
II. at the horizon:

$$
f=\operatorname{Im}\left(\bar{C} \Phi_{-}^{14}\right)
$$

[attractor equation]
When can we solve it?
$\mathrm{CY}: f=\operatorname{Im}\left(\bar{C} \Omega_{-}\right)$
[Hitchin]:
[pointwise:] If and only if $\quad-\operatorname{Tr}[\mathcal{J}(f)]^{2} \equiv q(f)>0$
$\int \sqrt{q(f)}$ is nothing but the Clearly it had to be $q>0$.

$$
\left[\begin{array}{c}
\text { but: indirect extra } \\
\text { constraint on } \Phi^{14}
\end{array}\right]
$$

via [Ooguri,Vafa,Strominger] these black holes should be related to a

Topological model

on a symplectic or complex manifold

- from a generalized Kahler $\Rightarrow(2,2)$ model $\stackrel{\text { twisting }}{\longmapsto}$ topological model

$$
\left(\mathcal{J}_{+}, \mathcal{J}_{-}\right)
$$

- do we really need both?

For SU(3):
suggested picture: [GMPT] ${ }^{\bullet}$ On CY: A independent of complex moduli

\mathbf{A}	$d e^{i J}=0$
\mathbf{B}	$d \Omega=0$
gen.	$d \Phi=0$

- On CY: B independent of symplectic moduli
- in fact:A defined on any symplectic manifold
[Alexandrov,Kontsevich, Schwarz,Zaboronsky]
use $B V$ to produce topological models

So far it works well for $\left[j_{+}, j_{-}\right] \neq 0$

Summary

Supergravity				Worldsheet (weaker)		
	conditions (\sim	geometry	compact?		cond.	geometry
$\begin{gathered} \mathcal{N}=2 \\ R R=0 \end{gathered}$	$(d+H \wedge) \Phi_{ \pm}=0$	"generalized CY metric"	no	$(2,2)$	$\left(\mathcal{J}_{+}, \mathcal{J}_{-}\right)$ integrable	generalized Kähler
$\begin{gathered} \mathcal{N}_{R R \neq 0}=1 \end{gathered}$	$\begin{aligned} & (d+H \wedge) \Phi=0 \\ & (d+H \wedge) \Phi^{\prime}= \\ & +c_{-} F+i c_{+} * F \end{aligned}$	$\begin{aligned} & \text { generalized CY } \\ & + \text { "RR=gen.Nij." } \end{aligned}$	$c_{-}=0$			
$\begin{gathered} \mathcal{N}=1 \\ R R=0 \end{gathered}$	$\begin{gathered} (d+H \wedge) \Omega=0 \\ \partial J=i H^{2,1} \end{gathered}$	$\begin{gathered} \text { generalized CY } \\ +\ldots ? \end{gathered}$	no	$(2,1)$	$\begin{aligned} & " \mathcal{J}+\mathrm{l} / 2 \\ & \text { integrable" } \end{aligned}$	generalized complex +...?

$$
\begin{gathered}
\mathcal{N}=2 \\
R R \neq 0
\end{gathered} \quad=\text { twice } \begin{gathered}
\mathcal{N}=1, " \\
R R \neq 0
\end{gathered}
$$

Topological model

Other dimensions:

$$
\begin{array}{lc}
3+8 & {[\text { Tsimpis] }} \\
3+7 & \text { [Jeschek,Witt] }
\end{array}
$$

classical	anomaly	top. string
\mathcal{J} integrable	$(d+H \wedge) \Phi=0$	$?$

Conclusions

- GCG nicely classifies vacua
- What is the use of this geometry?
- Is this deep?

