Fourth Stig Lundqvist Conference on
Advancing Frontiers of Condensed Matter Physics

3 - 7 July 2006

Bose-Einstein Condensation with
Entangled Order Parameter

Yu SHI
Fudan University
Department of Physics
220 Handan Road
200433 Shanghai
PEOPLE’S REPUBLIC OF CHINA

These are preliminary lecture notes, intended only for distribution to participants
Bose-Einstein Condensation with Entangled Order Parameter

Yu SHI
Fudan University, Shanghai, China

Fourth Stig Lundqvist Conference, ICTP, Trieste, 4 July 2006
Two-component BEC

A mixture of A-atoms and B-atoms:

\[\psi \approx \phi(\mathbf{r}_{a1}) \cdots \phi(\mathbf{r}_{aN_a}) \otimes \phi(\mathbf{r}_{b1}) \cdots \phi(\mathbf{r}_{bN_b}) \]

\[|\psi\rangle = \frac{1}{\sqrt{N_a N_b}} (a^\dagger)^{N_a} (b^\dagger)^{N_b} |0\rangle = |\psi\rangle_a \otimes |\psi\rangle_b \]

A-atoms and B-atoms separately condense, with separate order parameters (classically coupled). Mean field theory.

Similar is a mixture of one species of atoms with two spin states, the numbers of which are conserved respectively.
Spin-1 condensate

\[|\psi\rangle \sim \left[(a_0^\dagger)^2 - 2a_{-1}^\dagger a_1^\dagger \right]^{N/2} |0\rangle \]

- Similar is the spin-1/2 BEC (Kuklov-Svistunov)
- Non mean-field state.
- But the particles are all identical! Each particle can flip spins.
- Practically very difficult to realize, as the energy difference with the symmetry breaking mean-field state vanishes as \(N \to \infty \).
2 species \(\times \) 2 spin states

- Each atom can flip the spin, but cannot transit between the atom species.

- \(N_{i\uparrow} \) and \(N_{i\downarrow} \) (i=a,b) are not conserved.
Only consider single particle orbital ground state; ignore depletion.
Scattering channels

Intra-species:

Similar is the b-species.
Scattering channels (continued)

Inter-species, without spin-exchange
Scattering channels (continued)

Inter-species, with spin-exchange
Requirements

- Energy conservation in each scattering
- Conservation of total z-component spin in each scattering
Experimental feasibility

For given I and J, Hyperfine-Zeeman energy levels depend only on F, m_F, not on atom species.
Merits

- Interesting spinful BEC can thus also be realized in magnetic traps.
- Call for experiments on multichannel scattering between different species of atoms.
- But what is the goodness?
 It realizes, in the ground state, entanglement between BECs.
Entanglement between BECs

Like a pure two-particle entangled state, where each particle is not in any pure spin state, there is no simple BEC of either species; there is only a global simple BEC.

BEC occurs in an entangled inter-species pair state.

Hamiltonian

\[H = \sum_{\sigma} f_{i\sigma} N_{i\sigma} + \frac{1}{2} \sum_{\sigma\sigma'} |K^{(ii)}_{\sigma\sigma'}| N_{i\sigma} N_{i\sigma'} + \sum_{\sigma\sigma'} K^{(ab)}_{\sigma\sigma'} N_{a\sigma} N_{b\sigma'} + \frac{K_e}{2} (a_{\uparrow}\downarrow b_{\uparrow\downarrow} + a_{\downarrow\uparrow} b_{\downarrow\uparrow}) \]

\[K^{(ij)}_{\sigma_1 \sigma_2 \sigma_3 \sigma_4} \equiv (2\pi \hbar^2 \xi^{(ij)}_{\sigma_1 \sigma_2 \sigma_3 \sigma_4} / \mu_{ij}) \int \phi^*_{i\sigma_1} (r) \phi^*_{j\sigma_2} (r) \phi_{j\sigma_3} (r) \phi_{i\sigma_4} (r) d^3 r \]

\[|K^{(ii)}_{\sigma\sigma} = |K^{(ii)}_{\sigma\sigma} \]

\[K^{(ii)}_{\sigma\bar{\sigma}} \equiv 2K^{(ii)}_{\sigma\bar{\sigma}\sigma\bar{\sigma}} = 2K^{(ii)}_{\sigma\sigma\bar{\sigma}\bar{\sigma}} \]

\[K^{(ab)}_{\sigma\sigma'} \equiv K^{(ab)}_{\sigma\sigma'\sigma'} \]

\[K_e \equiv 2K^{(ab)}_{\uparrow\downarrow\uparrow\downarrow} = 2K^{(ab)}_{\downarrow\uparrow\downarrow\uparrow} \]

\[f_{i\sigma} \equiv \epsilon_{i\sigma} - |K^{(ii)}_{\sigma\sigma}| / 2 \]

\[\epsilon_{a\uparrow} - \epsilon_{a\downarrow} = \epsilon_{b\downarrow} - \epsilon_{b\uparrow} \]
Spin representation

\[S_a = \sum_{\sigma, \sigma'} a_{\sigma}^\dagger s_{\sigma \sigma'} a_{\sigma'}, \quad S_b = \sum_{\sigma, \sigma'} b_{\sigma}^\dagger s_{\sigma \sigma'} b_{\sigma'} \]

The Hamiltonian becomes that of two big spins

\[S_a = \frac{N_a}{2} \quad \text{and} \quad S_b = \frac{N_b}{2} \]

\[\frac{\mathcal{H}}{J} = \frac{K}{J_z} (s_{ax} s_{bx} + s_{ay} s_{by}) + s_{az} s_{bz} + B_a s_{az} + B_b s_{bz} + C_a s_{az}^2 + C_b s_{bz}^2 + \frac{E_0}{J_z} \]

Coefficients are functions of K’s.
Conserved Quantities

\[N_i = N_i^\uparrow + N_i^\downarrow \]

Total

\[S_z = \left(N_a^\uparrow - N_a^\downarrow + N_b^\uparrow - N_b^\downarrow \right) / 2 \]
Isotropic point

\[\mathcal{H} = J_z S_a \cdot S_b \]

Ground states:

\[|G_{S_z}\rangle = |S_a - S_b, S_z\rangle = A (a_\uparrow^{\dagger} n_\uparrow (a_\downarrow^{\dagger} n_\downarrow (a_\uparrow^{\dagger} b_\downarrow^{\dagger} - a_\downarrow^{\dagger} b_\uparrow^{\dagger})^{N_b} |0\rangle \]

\[n_\uparrow = N_a/2 - N_b/2 + S_z, \quad n_\downarrow = N_a/2 - N_b/2 - S_z \]

Degenerate but unique for a given \(S_z \).

For \(N_a = N_b = N \):

\[|G_0\rangle = (\sqrt{N} + 1N!)^{-1} (a_\uparrow^{\dagger} b_\downarrow^{\dagger} - a_\downarrow^{\dagger} b_\uparrow^{\dagger})^N |0\rangle \]
Concept of quantum entanglement

\[|\Psi\rangle \neq |\psi\rangle_A \otimes |\psi\rangle_B \]

E.g. \(\frac{1}{2} (|\uparrow\rangle |\downarrow\rangle - |\downarrow\rangle |\uparrow\rangle) \)

The most important concept distinguishing quantum mechanics from classical theory.

Can be quantified as

\[S = \log \rho_A, \quad \rho_A = Tr_B |\Psi\rangle \langle \Psi|, \]
	hanks{thanks to quantum information theory.}
Using entanglement to characterize
the non-mean field nature

\[|G_0\rangle = (\sqrt{N+1})^{-1} \sum_{m=0}^{N} (-1)^{N-m} |m\rangle_{a\uparrow} |N-m\rangle_{a\downarrow} |N-m\rangle_{b\uparrow} |m\rangle_{b\downarrow} \]

- Consider its occupation entanglement
 Method: YS, Phys.Rev.A 67, 024301 (03);
- The subsystems are the single particle basis states envolved.
- Entanglement entropy: von Neumann entropy of the reduced density matrix of a subsystem, which measures the entanglement with the rest of the system.
Using entanglement to characterize the non-mean field nature (continued)

For each single particle basis state, the occupation number is \(N + 1 \)-valued, so the base of the entanglement entropy is set to be \(N + 1 \).

\[
|G_0\rangle = \frac{1}{\sqrt{(N+1)}} \sum_{m=0}^{N} (-1)^{N-m} |m\rangle_a\uparrow |N-m\rangle_a\downarrow |N-m\rangle_b\uparrow |m\rangle_b\downarrow
\]

is an equal superposition of quart-orthogonal states, consequently the entanglement entropy for each single particle basis state is 1.
Entanglement between the two species

The basis of A species is chosen to be

\[(a \uparrow, a \downarrow)\]

The occupation [always \((m, N-m)\)] is still \(N+1\)-valued.

Consequently the entanglement between the two species is 1.

\[
|G_0\rangle = (\sqrt{N+1})^{-1} \sum_{m=0}^{N} (-1)^{N-m} |m\rangle_a \uparrow |N-m\rangle_a \downarrow |N-m\rangle_b \uparrow |m\rangle_b \downarrow
\]
Entanglement as a kind of pairing

Note

\[
(a_{\uparrow}^\dagger b_{\downarrow}^\dagger - a_{\downarrow}^\dagger b_{\uparrow}^\dagger)^{N_b} = \left[\sqrt{2} \int d^3 r_a d^3 r_b \psi_a^\dagger(r_a) \psi_b^\dagger(r_b) \phi(r_a, r_b) \right]^{N_b}
\]

\[
\psi_a(r) = \sum_\sigma a_\sigma \phi_{a\sigma}(r_a) |\sigma\rangle_a, \quad \psi_b(r) = \sum_\sigma b_\sigma \phi_{b\sigma}(r_b) |\sigma\rangle_b
\]

\[
\phi(r_a, r_b) = \frac{1}{\sqrt{2}} \left[\phi_{a\uparrow}(r_a) |\uparrow\rangle_a \phi_{b\downarrow}(r_b) |\downarrow\rangle_b + \phi_{a\downarrow}(r_a) |\downarrow\rangle_a \phi_{b\uparrow}(r_b) |\uparrow\rangle_b \right]
\]

| \[G_{S_z} \] \] is thus a condensation of interspecies pairs in the same two-particle entangled state \[\phi(r_a, r_b) \]

\[\phi(r_a, r_b) \] is the entangled order parameter.
Entangled pairing lowers the energy

A simple example:

\[
 h(r_a) + h(r_b) + U_1(r_a - r_b) + U_2(r_a - r_b)(|\uparrow\downarrow\rangle\langle\uparrow\downarrow| + |\uparrow\downarrow\rangle\langle\downarrow\uparrow|)
\]

\[U_2 > 0 \]

\[
 \phi_a(r_a)\phi_b(r_b)(|\uparrow\rangle|\downarrow\rangle - |\downarrow\rangle|\uparrow\rangle)/\sqrt{2}
\]

has lower energy than

\[
 \phi_a(r_a)\phi_b(r_b)|\sigma\rangle|\sigma'\rangle
\]
Detection of the entanglement (1)

(Of course) fluctuations of $N_{i\sigma}$

\[
\sqrt{\langle N_{a\sigma}^2 \rangle - \langle N_{a\sigma} \rangle^2 / \langle N_{a\sigma} \rangle} \approx 1 / \sqrt{3}
\]

Can be obtained from density fluctuation, which is self-averaging, and can be studied in a single image

\[
\rho_{i\sigma}(r_i) = N_{i\sigma} |\phi_{i\sigma}(r_i)|^2
\]

\[
\sqrt{\langle \rho_{i\sigma}(r_i)^2 \rangle - \langle \rho_{i\sigma}(r_i) \rangle^2 / \langle \rho_{i\sigma}(r_i) \rangle} = \sqrt{\langle N_{i\sigma}^2 \rangle - \langle N_{i\sigma} \rangle^2 / \langle N_{i\sigma} \rangle}
\]

Free expansion of the condensate does not affect entanglement
Detection of the entanglement (2)

Nonvanishing of the connected correlations

\[C_{\sigma,\sigma'} \equiv \langle N_{a\sigma} N_{b\sigma'} \rangle - \langle N_{a\sigma} \rangle \langle N_{b\sigma'} \rangle \]

\[C_{\sigma,\bar{\sigma}} = -\frac{N(N+2)}{12}, \quad C_{\sigma,\bar{\sigma}} = \frac{N(N+2)}{12} \]

\[g(r_a, \sigma; r_b, \sigma') \equiv \langle \rho_{a\sigma}(r_a) \rho_{b\sigma'}(r_b) \rangle - \langle \rho_{a\sigma}(r_a) \rangle \langle \rho_{b\sigma'}(r_b) \rangle \]

\[g(r_a, \sigma; r_b, \sigma') / \langle \rho_{a\sigma}(r_a) \rangle \langle \rho_{b\sigma'}(r_b) \rangle = C_{\sigma,\sigma'} / \langle N_{a\sigma} \rangle \langle N_{b\sigma'} \rangle \]
Detection of entanglement (3)

Measuring spin of an A-atom,

\[P_{\sigma} = \frac{\langle a_{\sigma}^\dagger a_{\sigma} \rangle}{\sum_{\sigma'} \langle a_{\sigma'}^\dagger a_{\sigma'} \rangle} \]

Joint measurement of the spins of an A-atom and a B-atom which leave the trap

\[P_{\sigma,\sigma'} = \frac{\langle b_{\sigma'}^\dagger a_{\sigma}^\dagger a_{\sigma} b_{\sigma'} \rangle}{\sum_{\sigma_a,\sigma_b} \langle b_{\sigma_b}^\dagger a_{\sigma_a}^\dagger a_{\sigma_a} b_{\sigma_b} \rangle} \]
Detection of entanglement (3)
(continued)

- Mean-field (non-entangled) state:

\[
\left(\sqrt{N_1!N_2!N_3!N_4!}\right)^{-1} a_\hat{n}^{N_1} a_{\hat{n}}^{N_2} b_\hat{m}^{N_3} b_{\hat{m}}^{N_4} |0\rangle,
\]

\[
P_{\sigma_a, \sigma_b} = P_{\sigma_a} P_{\sigma_b}
\]
Detection of entanglement (3) (continued)

- Non-mean-field (entangled) BEC:

\[P_{\sigma_a, \sigma_b} \neq P_{\sigma_a} P_{\sigma_b} \]

- E.g., for \(|G_0\rangle \), \(P_{\sigma_a} = P_{\sigma_b} = 1/2 \),

\[
\begin{align*}
P_{\uparrow\downarrow} &= P_{\downarrow\uparrow} = (2N + 1)/6N, \\
P_{\uparrow\uparrow} &= P_{\downarrow\downarrow} = (N - 1)/6N
\end{align*}
\]
Feedback effect on single-particle orbits

\[\left\{ -\frac{\hbar^2}{2m}\nabla^2 + U_{a\sigma}(\mathbf{r}) + \left[N(N-1)/3 \right] g_{\sigma\sigma}^{(aa)} \left| \phi_{a\sigma}(\mathbf{r}) \right|^2 \\
+ \left[N(N-1)/6 \right] g_{\uparrow\downarrow}^{(aa)} \left| \phi_{a\bar{\sigma}}(\mathbf{r}) \right|^2 + \left[N(N-1)/6 \right] g_{\sigma\bar{\sigma}}^{(ab)} \left| \phi_{b\sigma}(\mathbf{r}) \right|^2 \\
+ \left[N(2N+1)/6 \right] g_{\sigma\bar{\sigma}}^{(ab)} \left| \phi_{b\bar{\sigma}}(\mathbf{r}) \right|^2 \right\} \phi_{a\sigma}(\mathbf{r}) \\
- \left[N(N+2)/12 \right] g_e \phi_{b\bar{\sigma}}^{*}(\mathbf{r}) \phi_{b\sigma}(\mathbf{r}) \phi_{a\bar{\sigma}}(\mathbf{r}) \\
= \mu_{a\sigma} \phi_{a\sigma}(\mathbf{r}) \]

Interference term (proportional to \(g_e \)) emerges.
How the entanglement survives the coupling anisotropy and the nonvanishing of

$$B_a, B_b, C_a, C_b$$

$$\mathcal{H} = \frac{K_e}{J_z} \left(S_{ax} S_{bx} \pm S_{ay} S_{by} \right) + S_{az} S_{bz} + B_a S_{az} + B_b S_{bz} + C_a S_{az}^2 + C_b S_{bz}^2 + \frac{E_0}{J_z}$$
Persistence of entanglement in a wide parameter regime (1)

Coupling anisotropy K_e/J_z, $B_a = B_b = C_a = C_b = 0$

$S_z = 0$
Persistence of entanglement in a wide parameter regime (2)

- Coupling anisotropy K_e/J_z
 $B_a = B_b = C_a = C_b = 0$

$S_a = 12000$, $S_b = 10000$
Persistence of entanglement in a wide parameter regime (3)

- C_a and C_b nonzero, $B_a = B_b = 0$, under typical values $S_a = 12000, S_b = 10000, S_z = 1000, K_e/J_z = 1.2$

- $J_z, C_a J_z$ and $C_b J_z$ are of the same order of magnitude
Persistence of entanglement in a wide parameter regime (4)

Typically choose $C_a = 0.2$ and $C_b = 0.4$.
Therefore, in a wide parameter regime, the ground state is of non-mean-field.
Energy difference with the mean-field state

- It is (of course) vanishing at the isotropic limit.
- But it is estimated that when \(|B_a - B_b|\) is of the order of \(N\), or \(C_a + C_b\) is of the order of \(-1\), the energy difference with the lowest mean-field (symmetry breaking) state is of the order of \(N/V\).
- Finite in thermodynamic limit!
- In this regime, as far as \(K_{\text{e}}\) is larger or not much smaller than \(J_2\), the entanglement is significantly nonvanishing.
Summary

- We proposed a non-mean-field ground state of BEC, occurring in an interspecies two-particle entangled state.
- Hence the order parameter is entangled.
- Interspecies entanglement persists in a wide parameter regime.
- In part of the regime, the energy difference with the mean-field state is nonvanishing.
- Call for study of interspecies multichannel scattering.
Thank you for your attention!