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Mechanically Assisted Single-Electronics
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Lecture 2

Quantum Nanoelectromechanics

due toTunneling of Single Electrons



Outline

• Conditions for Quantum Shuttling

• Formulation of the problem

• Quantum kinetic equation

• Shuttle instability in the quantum limit

• Semiclassical and quantum shuttle vibrations

• Interferometry of quantum nanovibrations



The Electronic Shuttle



Conditions for Quantum Shuttling



Quantum Nanoelectromechanics of 

Shuttle Systems 

If                           then quantum fluctuations of the

grain significantly affect nanoelectromechanics.
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Conditions for Quantum Shuttling

1~2 0X lengthTunneling

1. Fullerene based SET

2. Suspended CNT

THz1

1.00X Quasiclassical shuttle 

vibrations.

µmL - 1 with SWNTforHz1010 98

STM

L

0 0.2 0.4 0.6 0.8 1 1.2
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

L [µm]

2
X

0
 /

 λ

nm1d

2

14 Hz10
L

d



Quantum Shuttle Instability

d
thr

Quantum vibrations, generated by 

tunneling electrons, remain  undamped 

and accumulate in a coherent

“condensate” of phonons, which  is 

classical shuttle oscillations.

k

eE
d

2

Shift in oscillator position 

caused by charging it by a 

single electron charge
References:

(1) D. Fedorets et al. Phys. Rev. Lett. 92, 166801 (2004)

(2) D. Fedorets, Phys. Rev. B 68, 033106 (2003)

(3) T. Novotny et al. Phys. Rev. Lett. 90 256801 (2003)

Phase space trajectory of shuttling. 

From Ref. (3)
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The Hamiltonian:

Time evolution in 

Schrödinger picture:
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Generelized Master Equation

:ˆ
0 density matrix operator of the uncharged shuttle

:ˆ
1

density matrix operator of the charged shuttle
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Free oscillator dynamics DissipationElectron tunnelling
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describes vibrational space.

describes shuttling of electrons
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At large voltages the equations for               are local in time:
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Shuttle Instability
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Result: an initial deviation from the equilibrium position grows

exponentially if the dissipation is small enough:
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After linearisation in x (using the small parameter xo/ ) one finds:



Semiclassical and  Quantum Regimes of 

Shuttling

Pumping of the energy
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Quantum  correction to the  pumping results

in quantum part of the shuttling energy
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Stationary Shuttle Vibrations

Electronic pumping of the vibrational energy drives oscillator to a excited 

states with a large energy.
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Questuion: Does such pumping restore a classical shuttle vibrations?

Wigner Function Representation

| x Eigenfunction of the operator of coordinate



Kinetic Equation in Wigner Representation

Performing the Wigner transformation of the quantum kinetic equation for the density

matrix one gets the equation for the Wigner functions
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Sketch of Results in ”Classical” Regime: E>>EC
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High dissipation case
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Low dissipation case

Width is max[d/ ,1/ 3d]<<1,

allowing classical interpretation

Peak position same

as obtained in classical

description of shuttle

motion, EPL 2002
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Sketch of Results in ”Quantum” Regime: E<<EC

W+(A)

A/

High dissipation case

thr

d
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Peak position remains at

finite amplitude of order

A x0 even as 0

Low dissipation case

Peak width is of same order as peak

value; so no classical interpretation 

0



Conclusions

• Electronic and mechanical degrees of freedom of

nanometer-scale structures can be coupled.

• Such a coupling may result in an electro-

mechanical instability and “shuttling” of electric 

charge (in classical and quantum regimes)



How to Detect the Quantum 

Nanomechanical Vibrations?

New principles should be implemented for sensing the 

quantum displacements



Electronic Transport Through Vibrating CNT



Quantum Nanomechanical Interferometer 

Classical interferometer

Quantum nanomechanical

interferometer



Classical and Quantum Vibrations
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Magnetic Field Dependent Tunneling

In order to proceed it is convenient to make the unitary transformation
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Coupling to the Fundamental Bending Mode 

Only one vibration mode is taken into account
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CNT is considered as a complex scatterer for electrons tunneling from

one metallic lead to the other



Tunneling Through Virtual Electronic States 

on CNT

• Strong longitudinal quantization of 
electrons on CNT

• No resonance tunneling though the 
quantized levels

(only virtual localization of electrons on 
CNT is possible)

Effective Hamiltolian
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Calculation of the Electric Current
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Linear Conductance
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Vibrational system is in equilibrium

For a 1 µm  long  SWNT at T = 30 mK and H 20 - 40 T  a relative conductance change

is of about 1-3%, which corresponds to a magneto-current of 0.1-0.3 pA.



Quantum Nanomechanical Magnetoresistor



Transfer of Electric Charge by Swinging Electrons 



• The calculations were made for a single electronic level

on CNT. The generalization to continuum spectrum does

not affect G(T)/G(T= ).

• Deviation from ballisticity does not affect the result

provided that  R/Ro<
410



Quantum Nanoelectromechanical Coupling

• Coupling of electrons and nanomechanical vibrons form a 

new quantum states: swinging electrons, which are  

responsible for current flow. 

• These new states are sensitive to an external magnetic and 

can serve as a transducers between quantum electronic and

vibronic performances.


