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The Electronic Shuttle




Conditions for Quantum Shuttling




Quantum Nanoelectromechanics of
Shuttle Systems
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Ii RO >>1 then quantum fluctuations of the

grain significantly affect nanoelectromechanics.




Conditions for Quantum Shuttling
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Quantum Shuttle Instability
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eE Shift in oscillator position
d= caused by charging it by a
2k single electron charge

Quantum vibrations, generated by
tunneling electrons, remain undamped
and accumulate in a coherent
“condensate” of phonons, which is
classical shuttle oscillations.

Phase sp:ace traj e:ctory of éhuttling.
From Ref. (3)
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Theory of Quantum Shuttle

The Hamiltonian:

>

—

H — HLeads +HDot +HT
T
HLeads = Z(gak _ lua)aakaak
ok

Lead Lead HDot = [50 — eE),(\f]C+C + Hv’
H, =) T (X)ayc+cay)
ok

Time evolution in
Schrodinger picture: H = [fpz + 32 ]/ 2
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Generelized Master Equation

Py density matrix operator of the uncharged shuttle
o density matrix operator of the charged shuttle

At large voltages the equations for p , p, are local in time:

0,0y =—i[H, +eEx, p,] —{L,(X), po}, + /I (X)p, V1% (x) + L}/lb()
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0,p, =—i[H, —eEx, p]. —{I3(X), o}, +I} (fc)po\/ [ (x) + Lylbl

]] p.=p,—p: describes shuttling of electrons

Lypa——[x{ CARAL:

P, = Py + P, : describes vibrational space.

Approximation: x,/A<<l, eE/kA<<l, y<<l




Shuttle Instability

After linearisation in x (using the small parameter x /A) one finds:

X=p
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Result: an initial deviation from the equilibrium position grows
exponentially if the dissipation is small enough:
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Semiclassical and Quantum Regimes of

Shuttling
Pumping of the energy
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ol ;= Quantum correction to the pumping results

in quantum part of the shuttling energy oW

oW = CVVC] 5Wq:VI/cl(Ec)

1).E >> E_ — Semiclassical limit
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1).E' < E, — Quantum limit



Stationary Shuttle Vibrations

Electronic pumping of the vibrational energy drives oscillator to a excited
states with a large energy.

Questuion: Does such pumping restore a classical shuttle vibrations?

Wigner Function Representation
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| x) — Eigenfunction of the operator of coordinate




Kinetic Equation in Wigner Representation

Performing the Wigner transformation of the quantum kinetic equation for the density
matrix one gets the equation for the Wigner functions
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Sketch of Results in "Classical” Regime: E>>E

High dissipation case
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«—— Width is max[d/A,1/A3d]<<I,
allowing classical interpretation

Low dissipation case
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Peak position same

as obtained in classical
description of shuttle
motion, EPL 2002




Sketch of Results in "Quantum” Regime: E<<E

High dissination case
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Peak width is of same order as peak
value; so no classical interpretation

Low dissipation case
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Peak position remains at
finite amplitude of order

A=A>>x,evenasy — 0




Conclusions

 Electronic and mechanical degrees of freedom of
nanometer-scale structures can be coupled.

« Such a coupling may result in an electro-
mechanical instability and “shuttling” of electric
charge (in classical and quantum regimes)




How to Detect the Quantum
Nanomechanical Vibrations?

New principles should be implemented for sensing the
quantum displacements




Electronic Transport Through Vibrating CNT
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Quantum Nanomechanical Interferometer

Classical interferometer
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Classical and Quantum Vibrations
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Model

H= )Y H +H +H,+ > T, H. Zeamm
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Magnetic Field Dependent Tunneling

In order to proceed it is convenient to make the unitary transformation ¢ Fe ™™
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Coupling to the Fundamental Bending Mode
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Only one vibration mode is taken into account

() = Y ()6 + D2 5 ¥, = (hz%opElj%

CNT is considered as a complex scatterer for electrons tunneling from
one metallic lead to the other



Tunneling Through Virtual Electronic States

—

on CNT

« Strong longitudinal quantization of
electrons on CNT

] * No resonance tunneling though the

quantized levels

(only virtual localization of electrons on
CNT is possible)

Effective Hamiltolian
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Calculation of the Electric Current
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Linear Conductance

Vibrational system is in equilibrium
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Foral um long SWNT at 7=30 mK and H =20 - 40 T arelative conductance change
is of about 1-3%, which corresponds to a magneto-current of 0.1-0.3 pA.




Quantum Nanomechanical Magnetoresistor




Transfer of Electric Charge by Swinging Electrons




The calculations were made for a single electronic level
on CNT. The generalization to continuum spectrum does
not affect G(T)/G(T==).

Deviation from ballisticity does not affect the result
provided that R/Ro< 10*




Quantum Nanoelectromechanical Coupling

« Coupling of electrons and nanomechanical vibrons form a
new quantum states: swinging electrons, which are
responsible for current flow.

* These new states are sensitive to an external magnetic and
can serve as a transducers between quantum electronic and

vibronic performances.




