

The Abdus Salam International Centre for Theoretical Physics

() International Ato Energy Agency

SMR 1760 - 18

COLLEGE ON

PHYSICS OF NANO-DEVICES

10 - 21 July 2006

An introduction to magnetic resonance in quantum information processing

Presented by:

Arzhang Ardavan

University of Oxford, United Kindgdom

Strada Costiera 11, 34014 Trieste, Italy - Tel. +39 040 2240 111; Fax +39 040 224 163 - sci_info@ictp.it, www.ictp.it

An introduction to magnetic resonance in quantum information processing

> Arzhang Ardavan Department of Physics, University of Oxford

Bits

Information: 0 or 1

Classical 2-state systems:

- capacitor (charged/uncharged)
- bistable transistor network
- polarization of magnetic domain

Qubits

Information: $|\psi\rangle = \alpha |\uparrow\rangle + \beta |\downarrow\rangle$

Quantum 2-state systems (proposals):

- charge states
- photon polarizations
- flux states (superconductors)
- spin states

Bit logic

Classical NOT (1 bit gate):

Input	Output				
0	1				
1	0				

Classical CNOT (2 bit gate):

Inp	outs	Output				
0	0	0				
0	1	1				
1	0	1				
1	1	0				

Qubit logic Quantum CNOT (2 qubit gate): $|\psi\rangle = \alpha_0 |\downarrow\downarrow\rangle + \alpha_1 |\downarrow\uparrow\rangle + \alpha_2 |\uparrow\downarrow\rangle + \alpha_3 |\uparrow\uparrow\rangle$ $\equiv \left(\begin{array}{c} \alpha_0 \\ \alpha_1 \\ \alpha_2 \\ \alpha_2 \end{array}\right)$ $\mathcal{U}_{\rm CNOT} = \left(\begin{array}{rrrr} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{array}\right)$ $\mathcal{U}_{\text{CNOT}}\left(\frac{|\downarrow\downarrow\rangle+|\uparrow\downarrow\rangle}{\sqrt{2}}\right) = \left(\frac{|\downarrow\downarrow\rangle+|\uparrow\uparrow\rangle}{\sqrt{2}}\right)$

Quantum single qubit gates: \mathcal{R}

Outline of lectures

First part:

- Magnetic resonance tutorial
- General aspects of application to quantum information

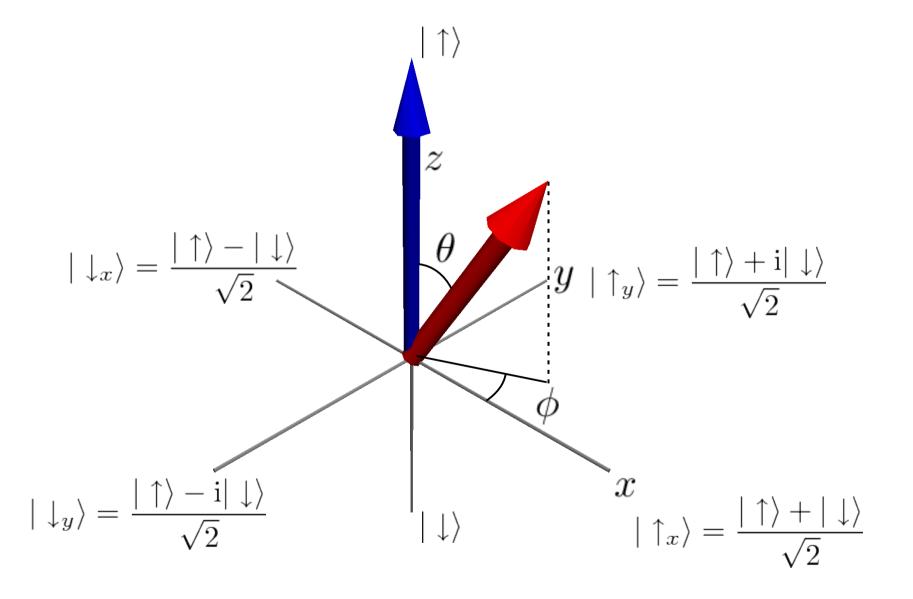
Second part:

- N@C₆₀
- Using ESR for qubit manipulation

Things not covered, but interesting anyway!

Bloch sphere

$|\psi\rangle = \cos(\theta/2)|\uparrow\rangle + \exp(\mathrm{i}\phi)\sin(\theta/2)|\downarrow\rangle$

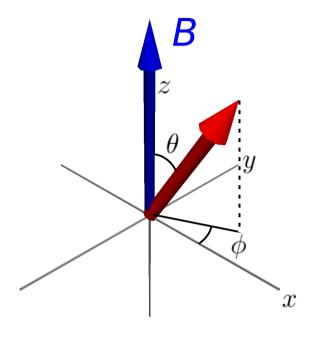


Precession

$$|\psi\rangle = \cos(\theta/2)|\uparrow\rangle + \exp(\mathrm{i}\phi)\sin(\theta/2)|\downarrow\rangle$$

With magnetic field *B* along *z*,

$$E(|\uparrow\rangle) = \frac{1}{2}g\mu B = \frac{1}{2}\hbar\omega$$
$$E(|\downarrow\rangle) = -\frac{1}{2}g\mu B = -\frac{1}{2}\hbar\omega$$



where $\omega = g\mu B/\hbar$

$$\begin{aligned} |\psi(t)\rangle &= \exp\left(-\mathrm{i}\frac{\omega t}{2}\right)\cos(\theta/2)|\uparrow\rangle + \exp\left(\mathrm{i}\left(\phi + \frac{\omega t}{2}\right)\right)\sin(\theta/2)|\downarrow\rangle \\ &= \exp\left(-\mathrm{i}\frac{\omega t}{2}\right)\left[\cos(\theta/2)|\uparrow\rangle + \exp\left(\mathrm{i}(\phi + \omega t)\right)\sin(\theta/2)|\downarrow\rangle\right] \end{aligned}$$

Precession

$$|\psi\rangle = \cos(\theta/2)|\uparrow\rangle + \exp(\mathrm{i}\phi)\sin(\theta/2)|\downarrow\rangle$$

For a general field along ϑ , φ ,

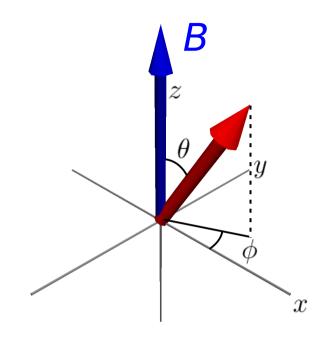
$$\mathcal{H}|\psi\rangle = \frac{1}{2}\hbar\omega\sigma|\psi\rangle = \mathrm{i}\hbar\frac{\partial}{\partial t}|\psi\rangle$$

with

 $\sigma = \sin\vartheta\cos\varphi \ \sigma_x + \sin\vartheta\sin\varphi \ \sigma_y + \cos\vartheta \ \sigma_z$

$$|\psi(t)\rangle = \exp\left(-\mathrm{i}\frac{\omega t}{2}\sigma\right)|\psi(0)\rangle$$

$$\exp\left(\hat{A}\right) = I + \hat{A} + \frac{1}{2!}\hat{A}^2 + \frac{1}{3!}\hat{A}^3 + \cdots$$



1-qubit problem solved?

Arbitrary rotations possible using finite-duration magnetic fields

Technical problems:

- application of dc fields for short durations; stray fields
- measurement of state of a single spin
- selectivity

•

Magnetic resonance offers a methodology

Magnetic resonance

Apply static field $(B_0) \rightarrow$ precession

Apply oscillatory field (B_{1})

- circularly polarized
- on resonance with moment
- transverse to static field

→ resonance

Work in rotating frame

 → consider only transverse fields (on resonance)

Do experiment simultaneously on many identical systems → macroscopically measurable response

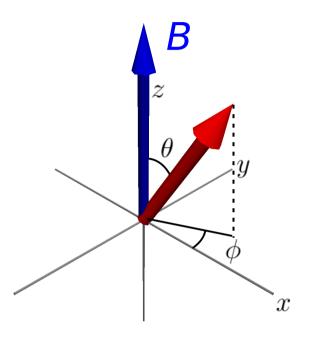
Relaxation, decoherence

$$|\psi\rangle = \cos(\theta/2)|\uparrow\rangle + \exp(\mathrm{i}\phi)\sin(\theta/2)|\downarrow\rangle$$

 T_1 : energy-changing (θ changes)

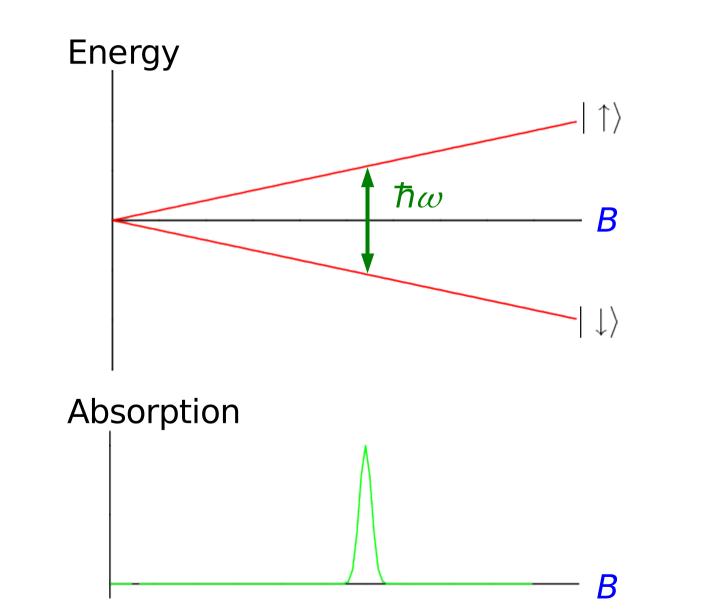
- spontaneous emission
- phonon coupling
- perturbations like σ_x , σ_y
- T_2 : phase-changing (ϕ changes)
 - fluctuations in local magnetic field
 - perturbations like σ_{z}

All T_1 processes are also T_2 processes



Continuous wave magnetic resonance

Apply radiation (B_1) and sweep field (B_0), measure absorption:



Continuous wave magnetic resonance requirements

Absorption occurs on resonance:

- $\omega = g\mu B$
- thermal polarization

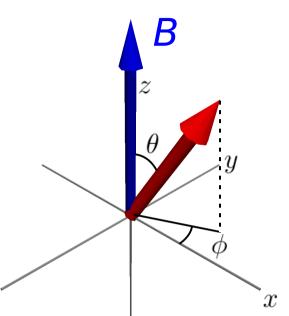
• $T_{_1}$ < Rabi period

Pulsed magnetic resonance

Apply static field (B_o)

Apply radiation (B_1) pulses

- duration determines θ change (θ-pulse)
- phase determines axis of rotation



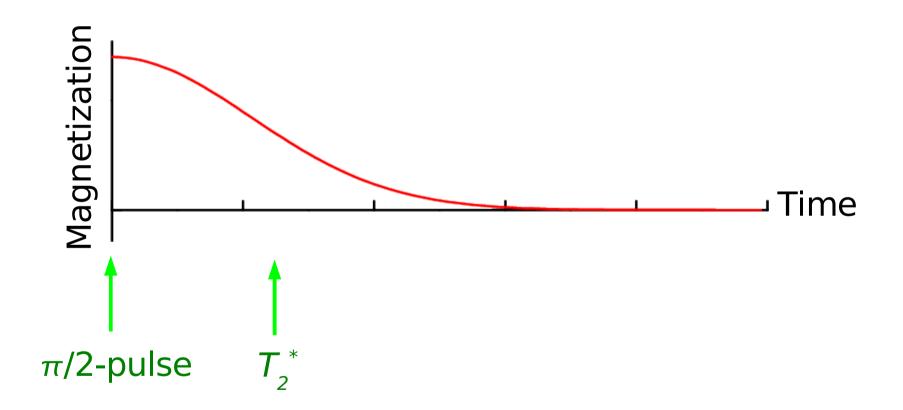
$$\mathcal{R}^{\phi}_{\theta} = \begin{pmatrix} \cos(\theta/2) & i\exp(-i\phi)\sin(\theta/2) \\ \exp(i\phi)\sin(\theta/2) & \cos(\theta/2) \end{pmatrix}$$

Detect transient ensemble magnetization in rotating frame along x- and y- axes

Technical aspects of a pulsed magnetic resonance spectrometer

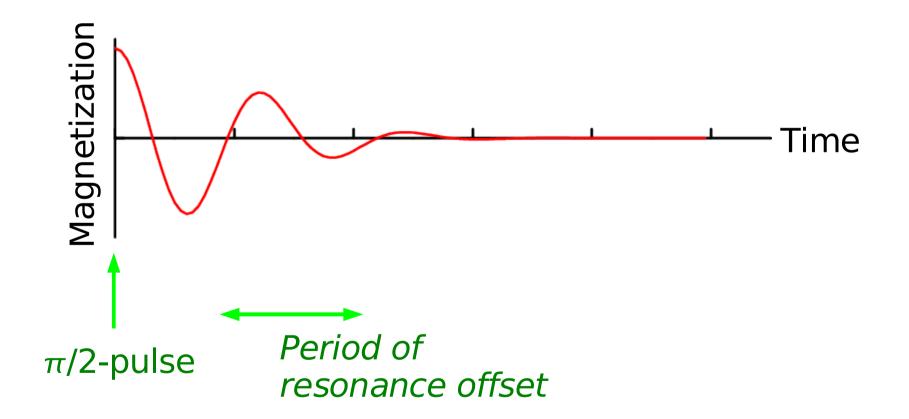
Free induction decay

Response to $\pi/2$ -pulse on resonance:



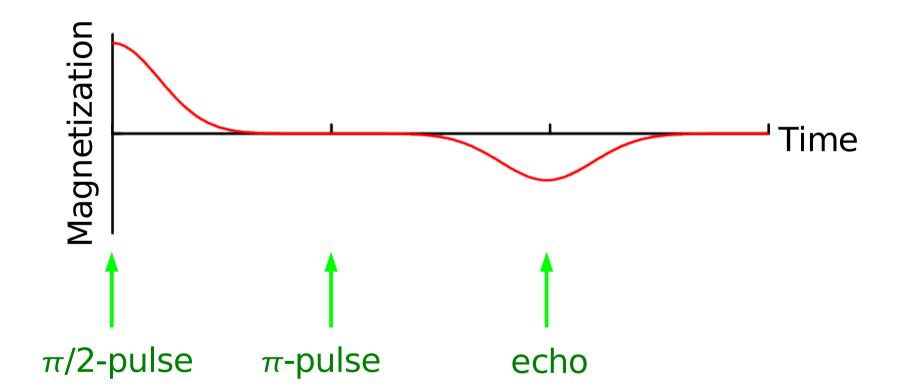
Free induction decay

Response to $\pi/2$ -pulse off resonance:



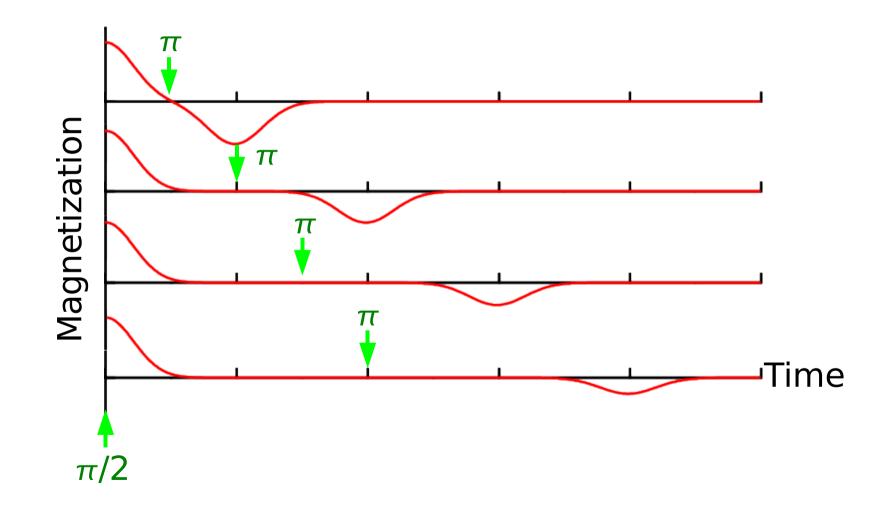
Hahn echo

Refocus dephasing with π -pulse:



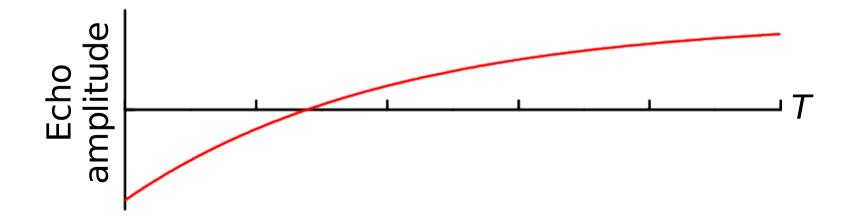
Measuring T_2

Vary τ in $\pi/2 - \tau - \pi - \tau$ – echo:



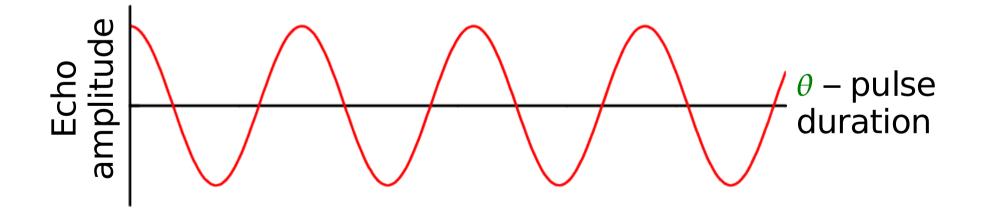
Measuring T₁

- FID or short Hahn echo sequence measures *z*-axis magnetization
- Inversion recovery sequence: $\pi - T - \pi/2 - \tau - \pi - \tau - echo$ with τ short and T varying



Rabi oscillations

- FID or short Hahn echo sequence measures *z*-axis magnetization
- Rabi oscillations: $\theta - T - \pi/2 - \tau - \pi - \tau - echo$ with *T*, τ both short

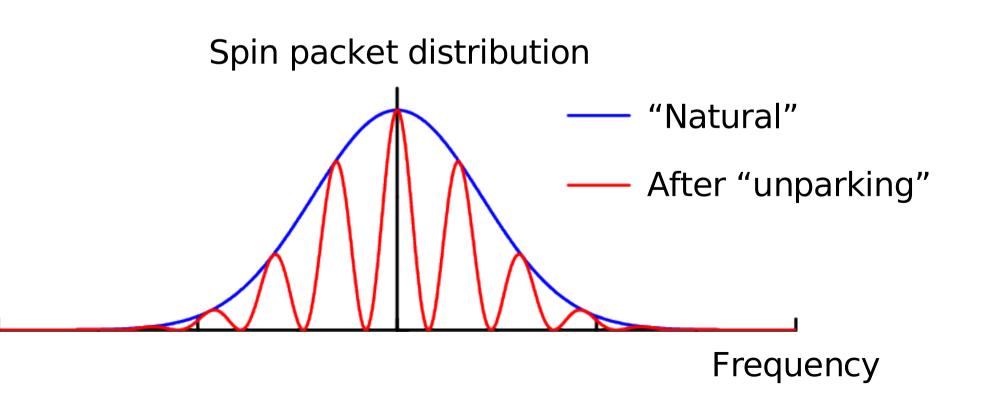


For completeness: stimulated echo

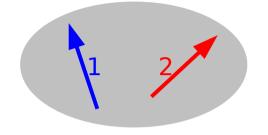
Breaking the refocussing pulse into two:

 $\pi/2 - \tau - \pi/2 - T - \pi/2 - \tau - echo$

• *T* can be long $(T_{2} < T < T_{1})$



Two qubits



$$\mathcal{H} = \epsilon_1 \sigma_z^1 + \epsilon_2 \sigma_z^2 - J \sigma^1 \cdot \sigma^2$$

= $\epsilon_1 \sigma_z^1 + \epsilon_2 \sigma_z^2 - J \sigma_z^1 \sigma_z^2 - J (\sigma_x^1 \sigma_x^2 + \sigma_y^1 \sigma_y^2)$

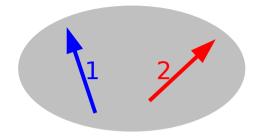
$$\sigma_{+} = \sigma_{x} + i\sigma_{y}$$
$$\sigma_{-} = \sigma_{x} - i\sigma_{y}$$

$$\sigma_x^1 \sigma_x^2 + \sigma_y^1 \sigma_y^2 = \frac{1}{2} (\sigma_+^1 \sigma_-^2 + \sigma_-^1 \sigma_+^2)$$

To first order, for small J,

$$\mathcal{H} = \epsilon_1 \sigma_z^1 + \epsilon_2 \sigma_z^2 - J \sigma_z^1 \sigma_z^2$$

Two qubits



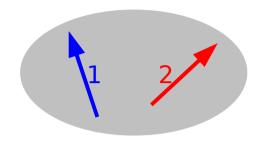
$$\mathcal{H} = \epsilon_1 \sigma_z^1 + \epsilon_2 \sigma_z^2 - J \sigma_z^1 \sigma_z^2$$

$$\uparrow \uparrow - \epsilon_1 + \epsilon_2 - J$$
$$\uparrow \downarrow - \epsilon_1 - \epsilon_2 + J$$

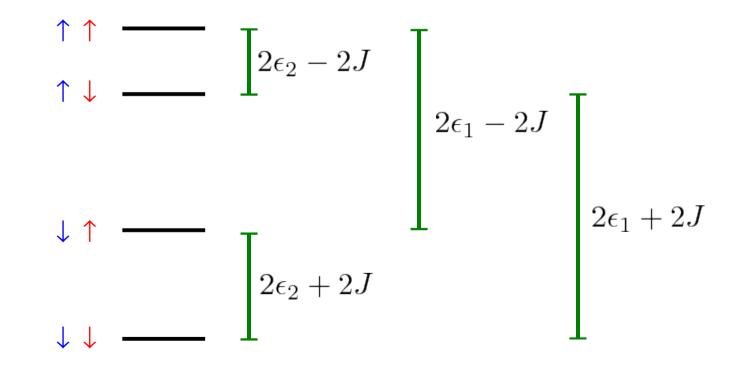
$$\downarrow \uparrow -\epsilon_1 + \epsilon_2 + J$$

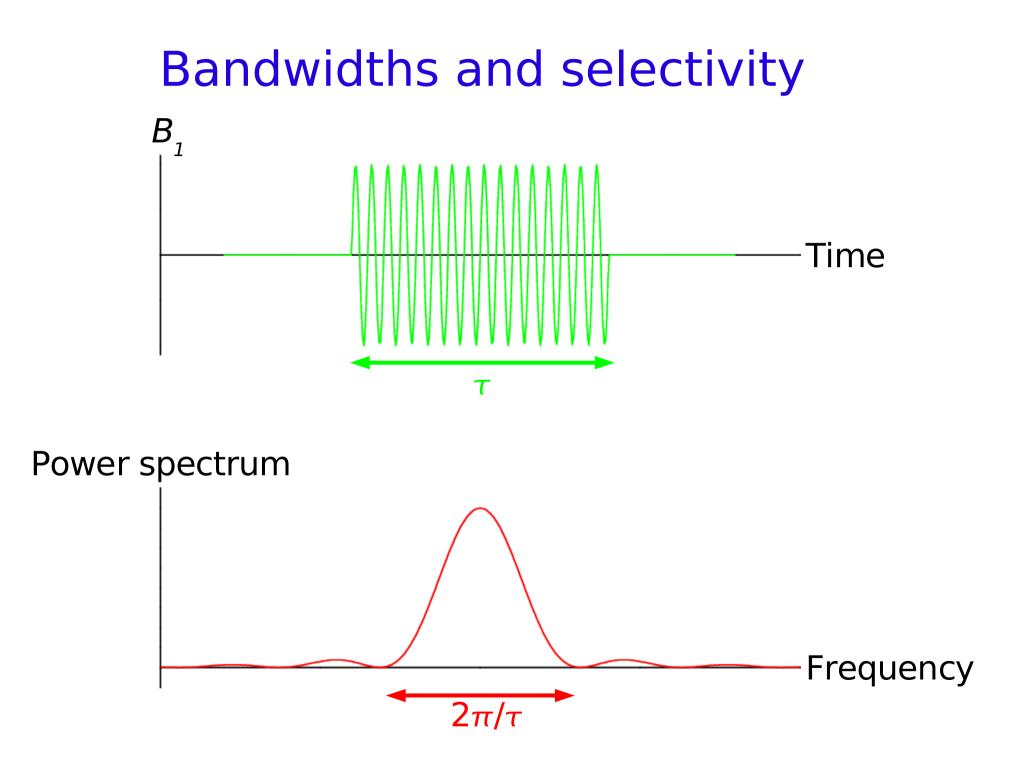
 $\downarrow \downarrow - -\epsilon_1 - \epsilon_2 - J$

Two qubits: CNOT

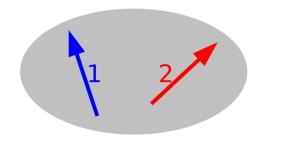


$$\mathcal{H} = \epsilon_1 \sigma_z^1 + \epsilon_2 \sigma_z^2 - J \sigma_z^1 \sigma_z^2$$

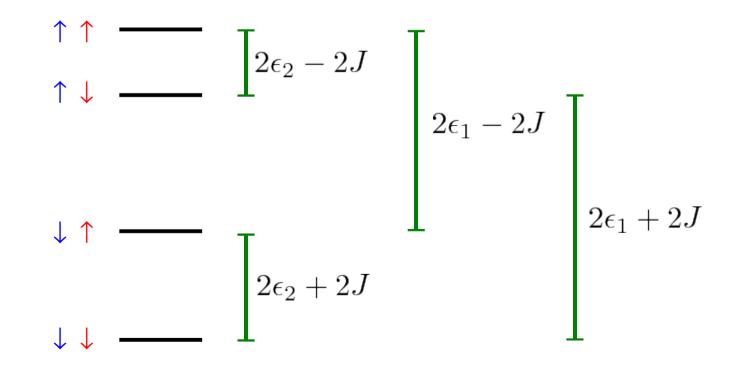




Two qubits: CNOT

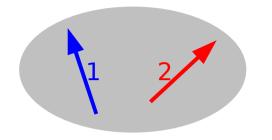


$$\mathcal{H} = \epsilon_1 \sigma_z^1 + \epsilon_2 \sigma_z^2 - J \sigma_z^1 \sigma_z^2$$



Selective pulses: $h/\tau \ll 4J$

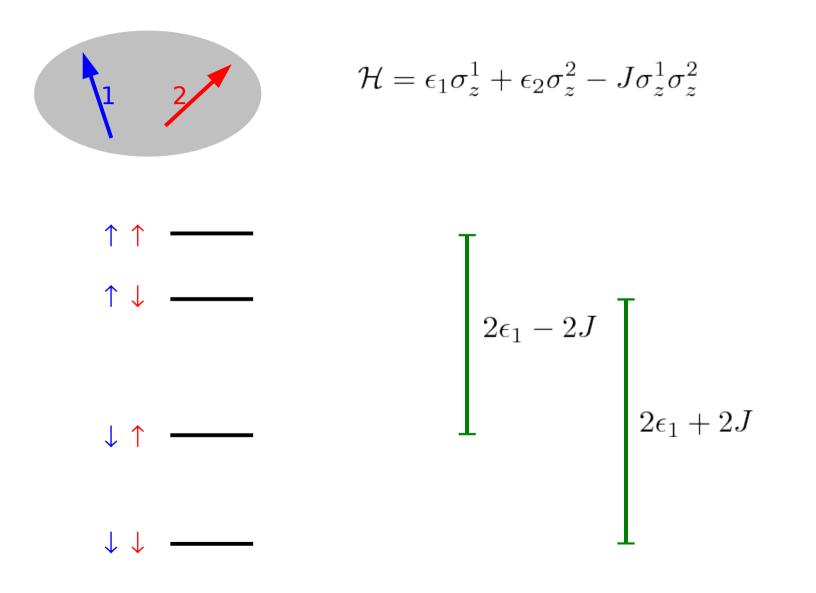
Two qubits: unconditional NOT



$$\mathcal{H} = \epsilon_1 \sigma_z^1 + \epsilon_2 \sigma_z^2 - J \sigma_z^1 \sigma_z^2$$

Non-selective pulses: $h/\tau \sim 4J$

Two qubits: unconditional NOT



Non-selective pulses: $h/\tau \sim 4J$

Nuclear magnetic resonance quantum computing

Nuclear moments → qubits

For protons, $\omega = 2\pi.42$ MHz/Tesla, Zeeman splittings ~ 1 to 10 μ eV

- NMR → single-qubit unitary transformations
- "Through-bond" coupling \rightarrow multiqubit gates

J ~ 10 to 100 Hz

• Spin-echo / free induction decay from ensemble \rightarrow readout

Nuclear magnetic resonance quantum computing

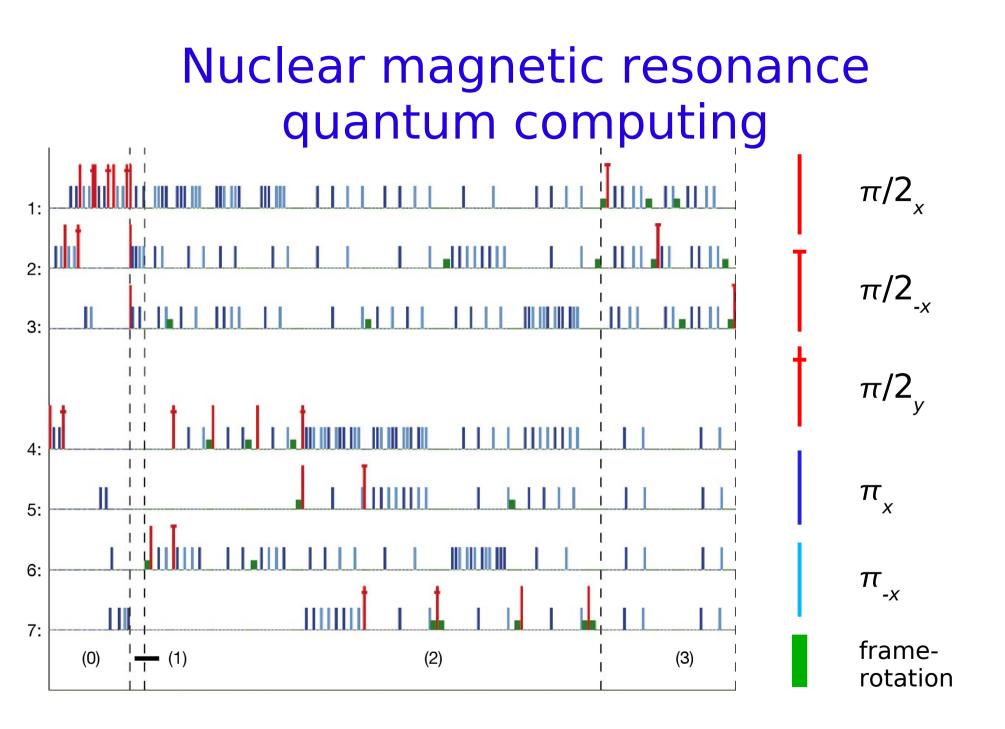
Experimental realization of Shor's quantum factoring algorithm using nuclear magnetic resonance

Lieven M. K. Vandersypen*†, Matthias Steffen*†, Gregory Breyta*, Costantino S. Yannoni*, Mark H. Sherwood* & Isaac L. Chuang*†

* IBM Almaden Research Center, San Jose, California 95120, USA † Solid State and Photonics Laboratory, Stanford University, Stanford, California 94305-4075, USA $i \qquad \omega_i/2\pi$

i	$\omega_i/2\pi$	T _{1,i}	T _{2,i}	J_{7i}	J _{6i}	J_{5i}	J_{4i}	J_{3i}	J _{2i}
1	-22052.0	5.0	1.3	-221.0	37.7	6.6	-114.3	14.5	25.16
2	489.5	13.7	1.8	18.6	-3.9	2.5	79.9	3.9	
3	25088.3	3.0	2.5	1.0	-13.5	41.6	12.9		
4	-4918.7	10.0	1.7	54. 1	-5.7	2.1			
5	15186.6	2.8	1.8	19.4	59.5		$(\mathbf{F})^1$		20
6	-4519.1	45.4	2.0	68.9	\frown	3	U.	7	(F)
7	4244.3	31.6	2.0		(F)		6 (;) _ (c	X _
						(c)=	(c) _		
					(F)		Fe	\rightarrow	4
				\bigcirc	Э	СЦ	$\sqrt{00}$,	
2001)					C_5H_5 CO				

Vandersypen et al., Nature **414** 883 (2001)



Vandersypen et al., Nature **414** 883 (2001)

The problem with NMR computers

- For protons, $\omega = 2\pi.42$ MHz/Tesla, Zeeman splittings ~ 1 to 10 μ eV ~ 10 to 100 mK
- Experiments performed at room temperature
- Members of ensemble start in different states!

Density operator

• Each member in state $|\psi_i\rangle$ with probability p_i

• Define
$$\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i|$$

- Properties:
 - Tr $\rho = 1$
 - Tr $\rho \hat{A} = \langle \hat{A} \rangle$

E.g.

$$\operatorname{Tr} \rho \sigma_z = \operatorname{Tr} \left[\left(\begin{array}{cc} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{array} \right) \left(\begin{array}{cc} 1 & 0 \\ 0 & -1 \end{array} \right) \right] = \langle \sigma_z \rangle$$

Density operator

• Each member in state $|\psi_i\rangle$ with probability p_i

• Define
$$\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i|$$

- Properties:
 - Tr $\rho = 1$
 - Tr $\rho \hat{A} = \langle \hat{A} \rangle$

E.g.

$$\operatorname{Tr} \rho \sigma_x = \operatorname{Tr} \left[\left(\begin{array}{cc} \rho_{00} & \rho_{01} \\ \rho_{10} & \rho_{11} \end{array} \right) \left(\begin{array}{cc} 0 & 1 \\ 1 & 0 \end{array} \right) \right] = \langle \sigma_x \rangle$$

Density operator

• Each member in state $|\psi_i\rangle$ with probability p_i

• Define
$$\rho = \sum_{i} p_i |\psi_i\rangle \langle \psi_i|$$

- Properties:
 - Tr $\rho = 1$
 - Tr $\rho \hat{A} = \langle \hat{A} \rangle$
 - Under the action of U, $\rho \xrightarrow{U} U \rho U^{\dagger}$

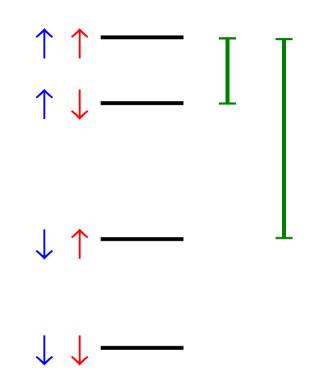
The "pseudo-pure" state

Thermal density matrix:

$$\rho_{\rm th} = \begin{pmatrix} p_0 & 0 & 0 & \cdots & \\ 0 & p_1 & 0 & \cdots & \\ 0 & 0 & p_2 & \cdots & \\ \vdots & \vdots & \vdots & \ddots & \\ & & & p_{m-1} \end{pmatrix}, \quad p_i = \frac{\exp(-E_i/k_B T)}{\sum_i \exp(-E_i/k_B T)}$$

Pure state:
$$\rho_{\text{pure}} = \begin{pmatrix}
1 & 0 & 0 & \cdots & \\
0 & 0 & 0 & \cdots & \\
\vdots & \vdots & \vdots & \ddots & \\
& & & & & 0
\end{pmatrix}$$

The "pseudo-pure" state



Incoherent illumination "saturates" transition

equalizes populations

$\begin{array}{c} \text{The "pseudo-pure" state} \\ \text{Thermal density matrix:} & \rho_{\text{th}} = \begin{pmatrix} p_0 & 0 & 0 & \cdots & \\ 0 & p_1 & 0 & \cdots & \\ 0 & 0 & p_2 & \cdots & \\ \vdots & \vdots & \vdots & \ddots & \\ & & & p_{m-1} \end{pmatrix}, \quad p_i = \frac{\exp(-E_i/k_B T)}{\sum_i \exp(-E_i/k_B T)} \end{array}$

The "pseudo-pure" state amplitude

Amplitude of pure part is $p_0 - \bar{p} = p_0 - \frac{1 - p_0}{m - 1} = \frac{mp_0 - 1}{m - 1}$

$$\frac{E_i}{k_B T} \ll 1$$
 and $p_i = \frac{\exp(-E_i/k_B T)}{\sum_i \exp(-E_i/k_B T)}$

$$p_0 \approx \frac{1+\delta}{m}$$
 where $\delta = -\frac{E_0}{k_B T}$

$$p_0 - \bar{p} \approx \frac{\delta}{m-1} = \frac{\delta}{2^N - 1}$$

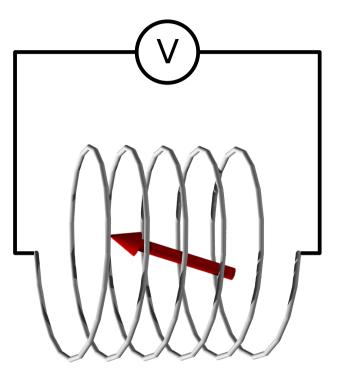
Nuclear magnetic resonance quantum computing

- Nuclear moments → qubits
- NMR → single-qubit unitary transformations
- "Through-bond" coupling → multiqubit gates
- Spin-echo / free induction decay from ensemble \rightarrow readout
- Signal decays exponentially with computer size

For electrons, $\omega = 2\pi.28$ GHz/Tesla, Zeeman splittings ~ 1 to 10 meV ~ 1 to 10 K

"Detection" vs. "Measurement"

Magnetic resonance detection apparatus:



Quantum mechanical measurement:

$$|\psi\rangle = \alpha|\uparrow\rangle + \beta|\downarrow\rangle \quad \underbrace{\text{Measure } \sigma_z}_{z} \quad \left\{ \begin{array}{c} |\uparrow\rangle \quad p = |\alpha|^2 \\ |\downarrow\rangle \quad p = |\beta|^2 \end{array} \right.$$

Summary

- Pulsed magnetic resonance provides spin-based qubit manipulation techniques
 - single qubit gates
 - multi-qubit gates
- There are fundamental problems with scaling up to useful devices
 - pseudo-pure state
 - ensemble measurement