

SMR 1760 - 19

COLLEGE ON PHYSICS OF NANO-DEVICES

10 - 21 July 2006

Endohedral fullerenes and electron spin resonance quantum information processing

Presented by:

Arzhang Ardavan

University of Oxford, United Kindgdom

Endohedral fullerenes and electron spin resonance quantum information processing

Arzhang Ardavan
Department of Physics, University of Oxford

Oxford: **John Morton**, Gavin Morley (now at NHMFL)

Simon Benjamin, Kyriakos Porfyrakis, Andrew Briggs

Princeton: Alexei Tyryshkin, Steve Lyon

"Atomic" N is located at high symmetry point in C_{60} cage:

- N retains its S=3/2 spin,
- ¹⁴N and ¹⁵N varieties can be manufactured,
- very little interaction between N and cage,
- $N@C_{60}$ is almost indistinguishable chemically from C_{60} .

Synthesis by ion implantation or plasma discharge yields $\sim 1 \text{ N} \oplus \text{C}_{60}$ molecule per 10^5 C_{60} molecules:

purification is a challenge!

N@C₆₀

$N@C_{60}$

$$\mathcal{H} = \omega_S S_z + \omega_I I_z + aS \cdot I$$

N@C lifetimes in Toluene

T₁ has bi-exponential dependence. Mechanisms: collision induced

- zero-field splitting fluctuations?
- rotation spin coupling?

T₂ depends on magnetic nuclei in solvent,

$$\frac{1}{T_2} = \frac{3}{2T_1} + \frac{1}{T(\text{diffusion})}$$

Diffusion relaxation depends on:

- diffusion rate of C₆₀ in toluene
- H/D concentration
- $d_{min \text{ N-H/D}} = 4.5 \text{ Å}$

N@C₆₀ lifetimes in CS₂

High temperature:

- $T_2 \approx 2/3 T_1$ (intrinsic?)
- Maximum $T_2 = 243 \mu s$ at 157 K.

Low temperature:

- T₂ drops when solvent freezes
- Maximum T₁ ~ 1 minute at
 4K

N@C₆₀ as a "bottom-up" qubit

Useful properties:

- Well-defined molecular building-block.
- Extremely long spin lifetimes,
 - Single qubit figure-of-merit: (coherence time)/(time for π -pulse) > 10000.

 Pulsed electron spin resonance provides the necessary single-qubit unitary transformations.

Multi-qubit structures

Asymmetric endohedral fullerene dimer:

Globally addressed linear array, S.C. Benjamin, J. Levy

Ce@C₈₂ peapods: A.N. Khlobystov et al., Angew. Chem. Int Ed. **24** 1386 (2004)

Electron moments in QIP

quantum dots with the corresponding Zeeman splitting.

Single qubit gate fidelities

How well can we perform unitary transformations in an ESR

spectrometer?

Doing a $\pi/2$ -pulse or give

should

And can we perform complicated pulse sequences?

Rabi oscillations

Microwave field inhomogeneity → Rabi oscillation envelope

Rabi oscillations

With a smaller sample:

Testing rotation angle error: Carr – Purcell (CP) and Carr – Purcell – Meiboom – Gill (CPMG)

Borrowing from NMR:

Carr – Purcell:

$$\pi/2_{x} - \tau - \pi_{x} - \tau - \text{echo} - \tau - (\pi_{x} - \tau - \text{echo} - \tau)_{n}$$

Errors accumulate

Carr – Purcell – Meiboom – Gill:
$$\pi/2_x - \tau - \pi_y - \tau$$
 – echo – τ – ($\pi_y - \tau$ – echo – τ)_n

Errors cancel out

Testing rotation angle error

Testing rotation angle error

CPMG:
$$A_{ESE}(n) = A_0 \exp\left(-\frac{2n\tau}{T_2}\right)$$

$$T_2 = 190 \, \mu s$$

Testing rotation angle error

CP:
$$A_{ESE}(n) = A_0 \left[\int_{-\infty}^{\infty} \frac{1}{\sigma \sqrt{2\pi}} \exp\left(-\frac{\delta^2}{2\sigma^2}\right) \cos(n\delta) d\delta \right] \exp\left(-\frac{2n\tau}{T_2}\right)$$

$$= A_0 \exp\left(-\frac{n^2\sigma^2}{2} - \frac{2n\tau}{T_2}\right)$$

for a gaussian distribution of rotation angle errors, δ . Rotation angle error, $\sigma = 18$ degrees, or 10%...

Testing axis error: Sequence for Phase-error AMplification

SPAM:

 $\pi/2_x - \tau - \pi_y - \tau - \text{echo} - \tau - (\pi_x - \tau - \text{echo} - \tau - \pi_y - \tau - \text{echo} - \tau)_n$

accumulates axis error

With ~10 degrees error introduced intentionally:

Testing axis error: Sequence for Phase-error AMplification

$$A_{In-phase}(n) = A_0 \cos(n\delta) \exp\left(-\frac{2n\tau}{T_2}\right)$$

$$A_{Quadrature}(n) = A_0 \sin(n\delta) \exp\left(-\frac{2n\tau}{T_2}\right)$$

gives $\delta = 10.3 \pm 0.5$ degrees

Testing axis error: Sequence for Phase-error AMplification

With optimized phase settings:

 δ < 0.3 degrees

BB1 correction pulses

The situation according to Donald Rumsfeld:

"There are known knowns. These are things we know that we know. There are known unknowns. That is to say, there are things that we know we don't know..."

- Rotation axis (phase) error is small
- Rotation angle error is big

The BB1 composite sequence:

$$(1+\epsilon)\pi_{x} - (1+\epsilon)\pi_{104.5^{\circ}} - (1+\epsilon)2\pi_{313.4^{\circ}} - (1+\epsilon)\pi_{104.5^{\circ}}$$

is a better $\pi_{_{\times}}$ rotation.

Review of composite correction pulses: S. Wimperis, J. Magn. Reson. **A 109** 221 (1994)

Brown et al., Phys. Rev. A **72**, 039905 (2005)

BB1 correction sequence

$$\mathcal{R}_{ ext{composite}} = \mathcal{R}^{lpha}_{(1+\epsilon)\pi} \mathcal{R}^{eta}_{2(1+\epsilon)\pi} \mathcal{R}^{lpha}_{(1+\epsilon)\pi} \mathcal{R}^{0}_{(1+\epsilon)\theta}$$

Defining the fidelity of two unitary operators A, B, as

$$F(A,B) = \frac{1}{2} \text{Tr}(A.B^{-1})$$

expand fidelity of composite operator in powers of the error,

$$F(\mathcal{R}_{\text{composite}}, \mathcal{R}_{\theta}^{0}) = 1 + F_{2}\epsilon^{2} + F_{4}\epsilon^{4} + \dots$$

where
$$F_i = F_i(\theta, \alpha, \beta)$$

Choose α and β to kill off leading terms in fidelity expansion.

BB1 correction sequence

BB1 correction sequence

Fidelity of naïve pulses is

$$F(R,(1+\epsilon)R) - 1 \sim \epsilon^2$$

but fidelity of corrected pulses is

$$F(R, R_{composite}) - 1 \sim \epsilon^6$$

BB1 corrected π – pulses

BB1 corrected π – pulses are indistinguishable from perfect.

BB1 corrected Rabi oscillations

Morton et al., Phys. Rev. Lett. **95**, 200501 (2005)

Application of composite sequences in other contexts

Can we use the nucleus too?

Dynamic nuclear polarization:

$$\mathcal{H} = \omega_e S_z + \omega_n I_z + aS \cdot I$$
 and $\hbar \omega_S > k_B T >> \hbar \omega_I$

Can we use the nucleus too?

Dynamic nuclear polarization:

$$\mathcal{H} = \omega_e S_z + \omega_n I_z + aS \cdot I$$
 and $\hbar \omega_S > k_B T >> \hbar \omega_I$

In steady state, with $T_1' >> T_1^s$,

$$p_0 = \frac{1}{1 + 3\alpha}$$

In w-band (95 GHz) ESR at 0.5 K,

$$\alpha = 10^{-4}, p_0 = 0.9997$$

Can we use the nucleus too?

What about an S = 3/2, I=1/2 system like ¹⁵N@C₆₀?

Polarization is more effective than for S = 1/2 case!

Dynamic nuclear polarization in ¹⁵N@C₆₀

ESR spectrum before preparation:

- Two ¹⁵N hyperfine-split lines,
- Lineshape distorted by saturation.

Dynamic nuclear polarization in ¹⁵N@C₆₀

ESR spectrum after 20 minutes preparation:

- Upper ¹⁵N hyperfine line strongly suppressed,
- nuclear polarization > 80%

Dynamic nuclear polarization in ¹⁵N@C₆₀

ESR spectrum 11.5 hours later:

- Nuclear polarization ~ 1/e
- T_1^N ~ one day!

Two qubits on ¹⁴N@C₆₀

π -pulse on S=3/2

π -pulse on S=3/2

What can we do with π -pulses...?

$$M_{S}$$
 M_{I} $+3/2$ 0 — $|10\rangle$ $+3/2$ $+1$ — $|11\rangle$ $-3/2$ 0 — $|00\rangle$

$$\alpha|00\rangle + \beta|01\rangle$$
 \longrightarrow $\alpha|00\rangle - \beta|01\rangle$

... "tunnel" across Bloch sphere fast.

Details of pulse sequences used

Morton et al., Nature Physics 2 40 (2006)

Summary

ESR can be used for qubit-manipulation

- N@C₆₀ shows promise as a building-block for QIP devices
 - long lifetimes
 - electron and nuclear degrees of freedom

- Technical aspects of a pulsed magnetic resonance spectrometer
- Application of composite sequences in other contexts
- Details of pulse sequences used in bang-bang experiment