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Non-interacting or Interacting?

Landauer-Büttiker formula for two terminal conductance

dI

dV
= −2e

h

∫
dET (E )

d

dE
nF (E )

assumes that electrons are non-interacting. In fact, in the point
contact region the characteristic energy of Coulomb interaction
can be higher than the Fermi energy.
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Systems Where Interactions are Essential

Here are some examples:

Quantum Dots at Coulomb Blockade

Superconductors

Organic conductors in Mott insulating state

Kondo impurities

Quantum Hall systems

Ferro and antiferromagnets.
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Many Particle Systems

One body problem

H =
p2

2m

exactly solvable with suitable boundary conditions.

Two body problem

H =
p2
1

2m
+

p2
2

2m
+ v(~x1 − ~x2)

exactly solvable with suitable boundary conditions.

For three and more particles the Schrödinger equation is not
exactly solvable (except for some special cases).
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How Do We Study Many Particle Systems?

The main approaches to many particle systems are

Perturbation Theory (works for weak interactions)

Mean Field Approximation (works for systems with long range
interactions or large symmetry)

Exact diagonalization and Monte Carlo simulations (work for
systems with small number of particles)

Exact solutions (work for a very limited class of systems)

Effective Field Theory (works for the description of low energy
excitations of a system)

Bosonization is a powerful tool for constructing and solving low
energy effective theories

Vadim Cheianov Introduction in Bosonization I
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Outline

Part I

This is a formal part, which introduces some facts from quantum
mechanics, which are not included in most textbooks. Here we will
discuss the fermion-boson correspondence, the Luttinger model
and the Bosonization.

Part II

In this part a contact to reality will be made. The notion of
Luttinger Liquid will be introduced and physical examples will be
given. The concept of scaling will be developed and applied to the
class of problems known as quantum impurity problems.
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The Fermion-Boson Correspondence
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The Harmonic Oscillator

Bosonic Oscillator

The Bosonic algebra:

[b, b†] = 1

[b, b] = [b†, b†] = 0

The Fock space:

b|0〉 = 0, |n〉 = (b†)n|0〉

The Hamiltonian

HB = ~ωNB , NB = b†b

Fermionic Oscillator

The Fermionic algebra:

ψψ† + ψ†ψ = 1

{ψ,ψ} = {ψ†, ψ†} = 0

The Fock space:

ψ|0〉 = 0, |1〉 = ψ†|0〉

The Hamiltonian

HF = ~ωNF , NF = ψ†ψ

Vadim Cheianov Introduction in Bosonization I
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Occupation Numbers

Bosons

The extended Bosonic algebra:

bn, b†n, n = 1, . . . ,N

[bn, b
†
m] = δnm

The Fock space is spanned by
states of given occupation num-
bers 0 ≤ nk ≤ ∞

|n1 . . . nN〉 = (b†1)
n1 . . . (b†N)nN |0〉

NB = b†1b1 + · · ·+ b†NbN

Fermions

The extended Fermionic algebra:

ψn, ψ
†
n, n = 1, . . . ,M

{ψn, ψ
†
m} = δnm

The Fock space is spanned by
states of given occupation num-
bers 0 ≤ nk ≤ 1

|n1 . . . nN〉 = (ψ†1)
n1 . . . (ψ†M)nM |0〉

NF = ψ†1ψ1 + · · ·+ ψ†MψM

Vadim Cheianov Introduction in Bosonization I
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Fermion-Boson Correspondence: NF = 1

For extended fermionic oscillator
algebra ψk , ψ

†
k , 0 ≤ k ≤ ∞ and

HF =
∞∑

k=0

kNk , Nk = ψ†kψk

The Correspondence of
States:

The eigenstates of HF for NF = 1
are in one to one correspondence
to the eigenstates of HB = b†b.

Vadim Cheianov Introduction in Bosonization I



Outline
Motivation

The Fermion-Boson Correspondence
The Luttinger Model

Fermion-Boson Correspondence: NF = 1

For extended fermionic oscillator
algebra ψk , ψ

†
k , 0 ≤ k ≤ ∞ and

HF =
∞∑

k=0

kNk , Nk = ψ†kψk

The Correspondence of
States:

The eigenstates of HF for NF = 1
are in one to one correspondence
to the eigenstates of HB = b†b.

Vadim Cheianov Introduction in Bosonization I



Outline
Motivation

The Fermion-Boson Correspondence
The Luttinger Model

Fermion-Boson Correspondence: NF = 1

For extended fermionic oscillator
algebra ψk , ψ

†
k , 0 ≤ k ≤ ∞ and

HF =
∞∑

k=0

kNk , Nk = ψ†kψk

The Correspondence of
States:

The eigenstates of HF for NF = 1
are in one to one correspondence
to the eigenstates of HB = b†b.

Vadim Cheianov Introduction in Bosonization I



Outline
Motivation

The Fermion-Boson Correspondence
The Luttinger Model

Fermion-Boson Correspondence: NF = 1
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Fermion-Boson Correspondence: NF = 2

Fermion Hamiltonian

HF = −1 +
∞∑

k=0

kψ†kψk ,

for NF = 2.

Boson Hamiltonian

HB = b†1b1 + 2b†2b2

Eigenstates of HF and HB

Fermions Bosons E

|110000 . . . 〉 |00〉 0

|101000 . . . 〉 |10〉 1

|011000 . . . 〉
|100100 . . . 〉

|01〉
|20〉 2

|010100 . . . 〉
|100010 . . . 〉

|11〉
|30〉 3

Energy levels and their degeneracies coincide for HF and HB
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Fermion-Boson Correspondence: general NF

Consider a pair of Hamiltonians

HN
F = −EN + ~ω

∞∑
k=0

kψ†kψk and HN
B = ~ω

N∑
m=1

mb†mbm.

where HN
F is HF constrained onto the subspace of fixed particle

number NF = N. Here EN = ~ωN(N − 1)/2.

Theorem

The eigenvalues of HN
B and HN

F coincide and are given by
En = ~ωn, where n is a non-negative integer. Each level En has
the same degeneracy Dn for HN

B and HN
F .
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Fermion-Boson Correspondence. Exercises.

Problem 1

Prove the theorem in the previous slide.

Problem 2

For the eigenvalue En of HN
B calculate the degeneracy D(n) of the

corresponding eigenspace. Calculate large n asymptotics of D(n)
for n � N and for n � N.

Problem 3

Calculate the quantum partition function Z (β) =
∑

n D(n)e−βEn ,
free energy and the specific heat of the system described by the
Hamiltonian HN

B (HN
F ) in the large N limit.

Vadim Cheianov Introduction in Bosonization I
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Weyl Fermion in 1+1 Dimensions I

Consider the Hamiltonian:

HF =
v

r

∞∑
m=−∞

(
m − 1

2

)
: ψ†mψm :

The Dirac vacuum:

ψ†−m+1|0〉 = ψm|0〉 = 0, m ≥ 1

Vadim Cheianov Introduction in Bosonization I
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Weyl Fermion in 1+1 Dimensions II

Introduce a local field:

ψ(x) =
1√
2πr

∞∑
m=−∞

e i mx
r ψm

{ψ(x), ψ†(x ′)} = δ(x − x ′)

Time evolution is generated by Hamiltonian

HF = v

∫ 2πr

0
dxψ†(x)(−i∂x)ψ(x)

Vadim Cheianov Introduction in Bosonization I
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Weyl Fermion: The Current Anomaly

The density operator is ρ(x) = ψ†(x)ψ(x).

Normally, the density operator satisfies [ρ(x), ρ(x ′)] = 0

For the Weyl fermion ψ†(x)ψ(x) is singular

The non-singular (normal ordered) expression is

ρ(x) = lim
ε→0

(
ψ†(x)ψ(x + ε)− 〈ψ†(x)ψ(x + ε)〉

)

The Current Anomaly:

The normal ordered density satisfies [ρ(x), ρ(x ′)] = i
2π δ

′(x − x ′)

Vadim Cheianov Introduction in Bosonization I
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Weyl Fermion. Exercises.

Problem 1

Derive the formula for the current anomaly. (Hint: work in the
Fourier components of local fields)

Problem 2

Derive the equation of motion for the Weyl fermion ψ(x , t). Use
the equation of motion to show that all local operators of the
theory satisfy

O(x , t) = O(x − vt)

Vadim Cheianov Introduction in Bosonization I
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Chiral Boson in 1+1 Dimensions I

Consider a Hamiltonian

HB =
v

r

∑
m≥1

mb†mbm +
v

2r
N2

where N is the ”angular momentum” operator of a rotator algebra

[φ0,N] = i , φ0 + 2π = φ0.

The Fermion-Boson Correspondence in 1+1 D

The energy levels and their degeneracies for the Weyl fermion and
the chiral boson on a cylinder coincide. N for the chiral boson
corresponds to the particle number of fermions.

Vadim Cheianov Introduction in Bosonization I
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Chiral Boson in 1+1 Dimensions II

Introduce a local field:

ϕ(x) = ϕ0 +
x

r
N + i

∑
m≥0

1√
|m|

(
b†me−i mx

r − bme i mx
r

)
this field satisfies ϕ(x , t) = ϕ(x , t) + 2π and can be considered as
a map from a cylinder onto a unit circle. The commutation
relations are

[ϕ(x), ϕ(x ′)] = −iπsgn(x − x ′)

The Hamiltonian becomes

HB =
v

4π

∫ 2πr

0
dx(∂xφ)2

Vadim Cheianov Introduction in Bosonization I
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Local Fermion-Boson Correspondence

By comparison of local operator algebras one can establish a local
Fermion-Boson correspondence called Bosonization

Example: Bosonization of density operator

For the Weyl fermion
[ρ(x), ρ(x ′)] = i

2π δ
′(x − x ′)

For the chiral boson
[ϕ(x), ϕ(x ′)] = −iπsgn(x − x ′)

⇓

ρ(x) =
1

2π
∂xϕ

Vadim Cheianov Introduction in Bosonization I
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Bosonization of Fermion Field

Local Fermion Algebra

ψ(x)ψ(x ′)+ψ(x ′)ψ(x) = 0, ψ(x)ψ†(x ′)+ψ†(x ′)ψ(x) = δ(x−y)

[ρ(x), ψ(x ′)] = −ψ(x)δ(x − x ′)

Bosonization of the local fermion algebra

ρ(x) =
1

2π
∂xϕ, ψ(x) = c : e iϕ(x) :

Here : e iφ :≡ e iφ+e iφ− , that is all annihilation operators in ϕ are
put to the right of creation operators. The constant c depends on
the ultraviolet regularization.

Vadim Cheianov Introduction in Bosonization I
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Bosonization Exercies

Problem 1

Prove that the operators 1
2π∂xϕ, : e iϕ(x) : satisfy the same algebra

as ρ(x), ψ(x). Hint: use the Campbell- Hausdorff formula for two
operators whose commutator is a c-number:

eAeB = eBeAe [A,B]
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Free Massless Dirac Fermions in 1+1
Dimensions

Free Massless Dirac Fermion = 2 Weyl
Fermions

ψL,R(x) =
1√
2πr

∑
k

e ikxψL,R(k)

HF = v

∫
dx

[
ψ†R(−i∂x)ψR − ψ†L(−i∂x)ψL

]

Vadim Cheianov Introduction in Bosonization I
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Bosonization of Free Massless Dirac Field

Each Weyl fermion is Bosonized by its chiral boson ϕL(R).

[ϕL(x), ϕL(x
′)] = iπsgn(x−x ′) [ϕR(x), ϕR(x ′)] = −iπsgn(x−x ′)

HB =
v

4π

∫
dx

[
(∂xϕR)2 + (∂xϕL)

2
]

Bosonization Rules

ρR(x) =
1

2π
∂xϕR , ψR(x) = e iϕR(x)

ρL(x) =
1

2π
∂xϕL, ψL(x) = e−iϕL(x)
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Free Compact Boson Field in 1+1 Dimensions

Change of Variables

φ =
1

2
(ϕR + ϕL) and θ =

1

2
(ϕR − ϕL)

HB =
v

2π

∫
dx

[
(∂xθ)

2 + (∂xφ)2
]

Fields φ and Π = ∂xθ/π are canonically
conjugate. In Lagrangian formulation:

SB =
1

2πv

∫
dxdt

[
(∂tφ)2 − v2(∂xφ)2

]
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Summary.

Weyl=Chiral Boson

v

∫
dxψ†(−i∂x)ψ =

v

4π

∫
dx(∂xϕ)2, ψ = e iϕ, ρ(x) =

1

π
∂xϕ

Massless Dirac=Free Boson

v

∫
dx

[
ψ†R(−i∂x)ψR − ψ†L(−i∂x)ψL

]
=

v

2π

∫
dx

[
(∂xθ)

2 + (∂xφ)2
]

ψL = e i(θ−φ), ψR = e i(θ+φ), [φ(x ′), ∂xθ(x)] = iπδ(x − x ′)

Vadim Cheianov Introduction in Bosonization I
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The Luttinger Model
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The Luttinger Model

The Luttinger model is probably the
simplest model describing interacting
relativistic fermions. The interaction is
characterized by a dimensionless
coupling γ.

The Luttinger Hamiltonian

HLUT = v

∫
dx

[
ψ†Li∂xψL − vψ†R i∂xψR + γρL(x)ρR(x)

]
Note, that ρL,R(x) are normal ordered!
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Perturbation Theory to Luttinger Model

The Schwinger-Dyson type perturbation theory can be developed

The perturbation theory contains divergent terms which need to be
renormalized in the spirit of Gell-Mann and Low RG. The beta
function of this theory vanishes to all orders in parameter γ.

Exact resummation of the perturbation series using the axial Word
identities I. E. Dzyaloshinsky and A. I. Larkin, Sov. Phys. JETP
38, 202 (1974)
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Bosonization of the Luttinger Model

The kinetic term of the Luttinger Hamiltonian is the massless
Dirac Hamiltonian. Its Bosonization is a Boson Hamiltonian. The
bosonization of the interaction term is

ρR(x)ρL(x) =

[
1

2π
(∂xφ+ ∂xθ)

] [
1

2π
(∂xφ− ∂xθ)

]
therefore

HLUT = v

∫
dx

[
ψ†Li∂xψL − vψ†R i∂xψR + γρL(x)ρR(x)

]
⇓

HB
LUT =

v

2π

∫
dx

{
(∂xθ)

2 + (∂xφ)2 +
γ

2π
[(∂xφ)2 − (∂xθ)

2]
}
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Bosonization of the Luttinger Model

Luttinger Hamiltonian. Standard Notations.

HLUT =
vc

2π

∫
dx

[
1

K
(∂xφ)2 + K (∂xθ)

2

]
where

[∂xθ(x), φ(x ′)] = −iπδ(x − x ′)

vc = v

√
1−

( γ

2π

)2
is the sound velocity

K =

√
1− γ/2π

1 + γ/2π
is the Luttinger parameter
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Luttinger Model. Exercises.

Problem 1

Using the Heisenberg equation i∂tA = [A,H] show that field φ
satisfies the wave equation

∂2
t φ− v2

c ∂
2
xφ = 0

Problem 2

By performing the Legendre transform of the bosonized Luttinger
Hamiltonian find the Lagrange density of the Bose field φ (in this
case π∂xθ should be treated as the momentum density).
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Luttinger Model. Lagrangian Formulation.

Imaginary time Luttinger Action

Action for the φ field:

Si =
1

2πK

∫ β

0
dτ

∫
dx

[
1

v

(
∂φ

∂τ

)2

+ v

(
∂φ

∂x

)2
]

Action for the θ field:

Si =
K

2π

∫ β

0
dτ

∫
dx

[
1

v

(
∂θ

∂τ

)2

+ v

(
∂θ

∂x

)2
]

Note the duality θ → φ, K → K−1.
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Correlation Functions: Bosons I

We start with the imaginary time correlator

G(x , τ) = 〈Tφ(x , τ)φ(x ′)〉

It is a Fourier transform of

G(x , τ) = β−1
∑
ωn

∫
dk

2π
e ikx−iωnτG(iωn, k)

where G (iωn, k) in a free Boson theory it is given by

G(iωn, k) =
πvK

ω2
n + v2

c k2
, ωn =

2πn

β
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Correlation Functions: Bosons II

Temperature Correlator of Bose fields

G(x , τ) = −K

4
ln

[
1− e−

2π
βvc

(|x |+ivcτ)
]
− K

4
ln

[
1− e−

2π
βvc

(|x |−ivcτ)
]

In the limit of zero temperature T → 0 this becomes

G(x , τ) = −K

4
ln(x2 + v2

c τ
2) + c

In real time t = −iτ there are light cone singularities at

x = ±vct

Vadim Cheianov Introduction in Bosonization I
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Gaussian Integration

Write the quadratic action of boson in a symbolic form

Si =
1

2
φG−1φ

Then for a source field η there is a

Gaussian Integration Formula

〈Te iηφ〉 =
1

Z

∫
Dφe−Si e iηφ = e−

1
2
ηGη

For example,

〈Te iφ(x ,τ)e−iφ(x ′,τ ′)〉 = c eG(x−x ′,τ−τ ′)

here c = e−〈φ(0)2〉 is an (infinite) constant.
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Correlation Function of Fermions. T = 0

The right-moving Fermion is given by

ψR(x) = e iφR(x) ≡ e iθ(x)+iφ(x)

Applying Gaussian Integration Formula to this expression we find

Gaussian Integration Formula

〈TψR(x , τ)ψ†R(x ′)〉 =
c

(x + ivcτ)∆(x − ivcτ)∆̄

where

∆ =
(1 + K )2

4K
and ∆̄ =

(1− K )2

4K
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Correlation Function of Fermions. T = 0

The structure of correlation function

〈TψR(x , τ)ψ†R(x ′)〉 =
c

(x + ivcτ)∆(x − ivcτ)∆̄

suggests that in interacting system the ”right” electron is no more
a pure right-mover. It rather splits into two counterpropagating
wave-packets. This is called charge fractionalization.
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Particle occupation numbers.

The particle occupation numbers are found as

nR(k) =

∫
dxe−ikx〈Tψ†R(x)ψR(x ′)〉 = n0 + csgn(k)|k|∆+∆̄−1

∆ + ∆̄− 1 =
(K − 1)2

2K
> 0

Instead of the sharp Fermi step
there is a continuous distribution
with a power-law singularity at
k = 0.
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Summary.

Using the Fermion-Boson correspondence we solved exactly a
non-trivial interacting system of fermions.

We found that the spectrum of the system is described by
bosons (phonons) whose velocity is renormalized by
interactions.

The interaction effects are encoded in the Luttinger parameter
K .

For K 6= 1 charge fractionalization and the disappearance of
Fermi step are observed.
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