

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR 1760 - 3

COLLEGE ON

PHYSICS OF NANO-DEVICES

10 - 21 July 2006

Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices

Presented by:

Robert Shekhter

Göteborg University, Sweden

Mechanically Assisted Single-Electronics

Robert Shekhter

Göteborg University, Sweden

Lecture 3

Nanoelectromechanics of Magnetic and Superconducting Tunneling Devices

Outline

Nanoelectromechanics with spin-polarized electrons

- Half-metals magnetic conductors- materials with spinpolarized electrons
- Spintronics of a NEM-SET device
- Shuttling of a spin-polarized electrons

Nanomechanically assisted superconductivity

- Supercurrent due to shuttling of Cooper pairs
- Nanomechanically assisted Josephson coupling

The Electronic Shuttle

Nanoelectromechanics with spin-polarized electrons

Nanoelectromechanics come from a coupling between electronic **charge** and mechanical degrees of freedom

What about electronic **spin**?

Could we have a spin-controlled nanoelectromechanics?

Spintronics of Nanomechanical Performance

Electronic spin can be coupled to mechanical degrees of freedom

This is the case when tunneling electrons are spin-polarized

What is a spin polarization of the electronic states ?

Half-Metallic Conductors

Perovskite Manganese Oxides

 $RE_{1-x}AE_{x}MnO_{3}$

RE: trivalent rare earth element (La, Y, Cd, ...) AE: divalent alkaline earth ions (Sr, Ba, Ca, Pb²⁺, ...)

 θ_{ij}

Mn³⁺

(e) Transfer integral (hopping matrix)

Mn⁴⁺

Ligand-field splitting of five-fold degenerate atomic 3d levels into lower t_{2g} (triply degenerate) and higher e_g (doubly degenerate) levels. Jahn-Teller distortion of MnO₆ further lifts each degeneracy Double-exchange Interaction (Zenner) P.W. Anderson and H. Hasegawa, PR **100**, 67 (1955).

 e_g – itinerant electrons; t_{2g} – localized electrons Strong exchange coupling: $J_H \approx 2-3 \text{ eV} \gg E_F$

Half-Metallic Electronic Structure of Manganites

Density of states (in states per Mn per eV) for feromagnetic $La_{2/3}Ca_{1/3}MnO_3$. Majority spin Is shown as positive and minority spin as negative, and $E_F=0$.

Spin-resolved photoemission spectra of a thin film of $La_{0.7}Sr_{0.3}MnO_3$ ($T_c \sim 350$ K) near E_F at (left) 40 K and (right) 380 K. The majority and minority spin directions are defined with respect to the magnetization direction. The bottom panels show the difference between the majority and minority spin spectra. The inset shows the M(H) hysteresis loop for the film.

Spin Dependent Tunneling Between Manganites

Schematic view of the LSMO-barrier-LSMO Trilayer thin film junction structure. (a) top view (b) Side view (c) junction resistance as a function of sweeping magnetic field J.Z. Sun *et al.* Appl. Phys. Lett. **69**, 3266 (1966); *ibid.* **70**, 1769 (1997).

Y. Lu et al. Phys. Rev. 54, R8357 (1996).

$$H_{eff} \approx 0.5 kOe$$
$$d \approx 1 - 10 nm$$

 $H_{\rm eff}$ – coercitivity, which depends on:

- Shape of the contact
- Stress of the contact area
- Multidomain structure of the leads

Possible Experimental Realization

<u>Small-size magnetic tunnel junctions with resonant impurity states in the</u> <u>barrier</u>

Resonant tunneling of spin-polarized electrons was detected in nanocontacts (d ~80nm) Ni-NiO-Co at T~1.6 – 4.2 K (E.Y.Tsymbal et al. PRL, **90**, 186602-1 (2003))

Spin-dependent tunneling through 2D quantum dots

Was observed in a number of experiments: (See f.e. M. Ciorga et al. PRB **61**, R16315, (2000))

New Mechanism for Low-Field Magnetoresistance

In order to get higher magnetosensitivity one may manipulate (by a magnet field) the *spin* of the tunneling electron rather than the orientation of magnetization in the leads.

A mesoscopic tunnel junction with shuttling of electrons is an example of a system where such a manipulation can naturally be arranged

Magnetic NEM-SET

Formulation of the Problem

$$H = H_{Leads} + H_T + H_{Dot} + H_{bath} + H_{bath-osc}$$

$$H_{Leads} = \sum_{\alpha,k} \varepsilon_{\alpha k} a^+_{\alpha k} a_{\alpha k}, \quad H_T = \sum_{\alpha,k} T_\alpha(x) \Big[a^+_{\alpha k} c_\alpha + c^+_\alpha a_{\alpha k} \Big]$$

$$H_{Dot} = (\varepsilon_0 - xd) \Big[c^+_{\uparrow} c_{\uparrow} + c^+_{\downarrow} c_{\downarrow} \Big] + Uc^+_{\uparrow} c_{\uparrow} c^+_{\downarrow} c_{\downarrow} - \frac{h}{2} \Big[c^+_{\uparrow} c_{\downarrow} + c^+_{\downarrow} c_{\uparrow} \Big] + \frac{1}{2} \Big[p^2 + x^2 \Big]$$

Density Matrix for the "Spin-polarized" Shuttle

Four basic vectors for the electronic space

$$|0\rangle |\uparrow\rangle \equiv c_{\uparrow}^{+}|0\rangle |\downarrow\rangle \equiv c_{\downarrow}^{+}|0\rangle |2\rangle \equiv c_{\downarrow}^{+}c_{\uparrow}^{+}|0\rangle$$

Density matrix

 $\hat{\rho}_{0} = \langle 0 | \hat{\rho} | 0 \rangle \qquad \hat{\rho}_{1} = \begin{cases} \hat{\rho}_{\uparrow} \hat{\rho}_{\uparrow\downarrow} \rangle & \hat{\rho}_{\uparrow} = \langle \uparrow | \hat{\rho} | \uparrow \rangle \\ \hat{\rho}_{\downarrow\uparrow} \hat{\rho}_{\downarrow\downarrow} \hat{\rho}_{\downarrow\downarrow} \rangle & \hat{\rho}_{\uparrow\downarrow} \end{cases} \quad \hat{\rho}_{\uparrow\downarrow} = \langle \uparrow | \hat{\rho} | \downarrow \rangle$

Spin-vibrational Dynamics

$$\begin{split} \hat{\partial}_{t}\hat{\rho}_{0} &= -i[H_{v} + eE\hat{x}, \hat{\rho}_{0}] - \frac{1}{2} \{\Gamma_{L}(\hat{x}), \hat{\rho}_{0}\} + \sqrt{\Gamma_{R}(\hat{x})} \hat{\rho}_{1} \sqrt{\Gamma_{R}(\hat{x})} + \Lambda_{\gamma} \hat{\rho}_{0} \\ \hat{\partial}_{t}\hat{\rho}_{2} &= -i[H_{v} - eE\hat{x}, \hat{\rho}_{2}] - \frac{1}{2} \{\Gamma_{L}(\hat{x}), \hat{\rho}_{2}\} + \sqrt{\Gamma_{L}(\hat{x})} \hat{\rho}_{\downarrow} \sqrt{\Gamma_{L}(\hat{x})} + \Lambda_{\gamma} \hat{\rho}_{2} \\ \hat{\partial}_{t}\hat{\rho}_{\downarrow} &= -i[H_{v}, \hat{\rho}_{\downarrow}] + ih(\hat{\rho}_{\uparrow\downarrow} - \hat{\rho}_{\downarrow\uparrow}) - \frac{1}{2} \{\Gamma_{+}(\hat{x}), \hat{\rho}_{\downarrow}\} + \Lambda_{\gamma} \hat{\rho}_{\downarrow} \\ \hat{\partial}_{t}\hat{\rho}_{\uparrow} &= -i[H_{v}, \hat{\rho}_{\uparrow}] - ih(\hat{\rho}_{\uparrow\downarrow} - \hat{\rho}_{\downarrow\uparrow}) + \sqrt{\Gamma_{L}(\hat{x})} \hat{\rho}_{0} \sqrt{\Gamma_{L}(\hat{x})} + \sqrt{\Gamma_{R}(\hat{x})} \hat{\rho}_{2} \sqrt{\Gamma_{R}(\hat{x})} + \Lambda_{\gamma} \hat{\rho}_{\downarrow} \\ \hat{\partial}_{t}\hat{\rho}_{\downarrow\uparrow} &= -i[H_{v}, \hat{\rho}_{\downarrow\uparrow}] - ih(\hat{\rho}_{\downarrow} - \hat{\rho}_{\uparrow}) - \frac{1}{2} \Gamma_{+}(\hat{x}) \hat{\rho}_{\downarrow\uparrow} + \Lambda_{\gamma} \hat{\rho}_{\downarrow\uparrow} \\ \hat{\partial}_{t}\hat{\rho}_{\uparrow\downarrow} &= -i[H_{v}, \hat{\rho}_{\uparrow\downarrow}] + ih(\hat{\rho}_{\downarrow} - \hat{\rho}_{\uparrow}) - \frac{1}{2} \Gamma_{+}(\hat{x}) \hat{\rho}_{\uparrow\downarrow} + \Lambda_{\gamma} \hat{\rho}_{\uparrow\downarrow} \end{split}$$

"Phase diagram" of Shuttle Vibrations

"Soft" Onset of Shuttle Vibrations

"Hard" Onset of Shuttle Vibrations

Conclusion

Magnetic Field Controlled Nanomechanics:

Nanomechanical instability and different stable regimes of the spintronic NEM-SET operation can be achieved depending on magnitude of external magnetic field.

What about mechanically assisted magnetotransport?

Shuttling of spin-polarized electrons

Shuttling of Spin-Polarized Electrons

Mechanism: Quantum transmission of electrons through single energy level on vibrating dot

The quantum evolution can be viewed as a sequence of two alternating events:

(*i*) *Tunneling*: Transfer of electron between left or right lead and dot (time for tunneling $\tau \approx \pi/\omega$)

(i) Free evolution: On-site electronic state is disconnected from the leads. In this stage the spin of the electron precesses in the external magnetic field H.

Natural scale for H: $\Delta H \approx \hbar \omega / \mu$; ($\Omega / \omega = 1/2$). *But this is not the only scale here!*

L.Y.Gorelik et al., Phys.Rev.,**B71**, 35327 (2005)

Mechanical Transmission of Spin-polarized Electrons

$$t_n^R = (2n+1)\pi/\omega; \quad t_n^L = 2n\pi/\omega; \quad n_{eff} \approx \omega/\Gamma$$

 $\Omega t(n_{eff}) \ll 1 \ (\delta H \le (\hbar \omega / \mu)(1/n_{eff})$

 $\Omega t(n_{eff}) \gg 1$

Spin polarization

Spin equilibrization

Two scales for magnetic field

 $\Delta H \propto \hbar \omega / \mu$

Spin Dynamics of Tunneling Electron

$$\begin{aligned} \partial_t \rho_0 &= -\Gamma_L(x)\rho_0 + \Gamma_R(x)\rho_\downarrow \\ \partial_t \rho_2 &= \Gamma_L(x)\rho_2 + \Gamma_L(x)\hat{\rho}_\downarrow \\ \partial_t \rho_\downarrow &= ih(\rho_{\uparrow\downarrow} - \rho_{\downarrow\uparrow}) - \Gamma_+(x)\rho_\downarrow \\ \partial_t \rho_\uparrow &= -ih(\rho_{\uparrow\downarrow} - \rho_{\downarrow\uparrow}) + \Gamma_L(x)\rho_0 + \Gamma_R(x)\rho_2 \\ \partial_t \rho_{\downarrow\uparrow} &= -ih(\rho_\downarrow - \rho_\uparrow) - \frac{1}{2}\Gamma_+(x)\rho_{\downarrow\uparrow} \\ \partial_t \rho_{\uparrow\downarrow} &= ih(\rho_\downarrow - \rho_\uparrow) - \frac{1}{2}\Gamma_+(x)\rho_{\downarrow\downarrow} \end{aligned}$$

Electrical Current

$$I = \frac{e\omega}{2\pi} \int_{0}^{\frac{2\pi}{\omega}} dt \Gamma_{L}(x_{t}) \{\rho_{0} + \rho_{\downarrow}\} \qquad \Gamma_{L,R} = \Gamma \delta[1 \pm Sin\omega t]$$

$$I = \frac{e\omega}{\pi} \frac{\sin^2(\theta) \tanh(\Gamma/4\hbar\omega)}{\sin^2(\theta) + \tanh^2(\Gamma/4\hbar\omega)}$$

$$\theta = \pi \frac{\mu H}{\hbar \omega}$$

Two scales for magnetic field:

$$\delta H = \frac{\Gamma}{\mu} \qquad \Delta H = \frac{\hbar\omega}{\mu}$$

Spectroscopy of Nanomechanical Vibrations

Study of magnetoresistance makes it possible DC spectroscopy of nanomechanical vibrations

Giant magnetoresistance: $\delta H \approx 10 Oe$ for Gohm tunnel resistance

Nanomechanically assisted superconductivity

How Does Mechanics Contribute to Tunneling of Cooper Pairs?

Is it possible to maintain a mechanically-assisted supercurrent?

Movable Superconducting Dot — Mediator shuttling Cooper pairs

L.Gorelik et al. Nature 2001; A. Isacsson et al. PRL 89, 277002 (2002)

To preserve phase coherence only few degrees of freedom must be involved.

This can be achieved provided:

• No quasiparticles are produced $\rightarrow \hbar\omega \ll \Delta$

• Large fluctuations of the charge are suppressed by the Coulomb blockade: $\rightarrow E_I \ll E_C$

Coulomb Blockade of Cooper Pair Tunneling

At $\alpha V_g = 2n+1$ Coulomb Blockade is lifted, and the ground state is degenerate with respect to addition of one extra Cooper Pair

 $|\Psi\rangle = \gamma_1 |n\rangle + \gamma_2 |n+1\rangle$ Single Cooper Pair Box

Single Cooper Pair Box

Coherent superposition of two succeeding charge states can be created by choosing a proper gate voltage which lifts the Coulomb Blockade.

Nakamura et al., Nature 1999

Movable Single Cooper Pair Box

Josephson hybridization is produced at the trajectory turning points since near these points the CB is lifted by the gates.

Possible Setup Configurations

Supercurrent between the leads kept at a fixed phase difference

Coherence between isolated remote leads created by a single Cooper pair shuttling

Shuttling Between Coupled Superconductors

$$H = H_{c} + H_{J}$$

$$H_{c} = \frac{e^{2}}{2C(x)} \left[2n + \frac{Q(x)}{e} \right]^{2}$$

$$H_{J} = -\sum_{s=L,R} E_{J}^{s}(x) \cos(\Phi_{s} - \hat{\Phi})$$

$$E_{J}^{L.R}(x) = E_{0} \exp\left(\pm \frac{\delta x}{\lambda}\right)$$
Dynamics: Louville-von Neumann equation

$$\frac{\partial \rho}{\partial t} = -i[H, \rho] - \nu[\rho - \rho_{0}(H)]$$

Relaxation suppresses the memory of initial conditions.

How Does It Work?

Between the leads Coulomb degeneracy is lifted producing an additional "electrostatic" phase shift $\chi_{\pm} = \int dt \left[E_0(1) - E_0(0) \right]$

Resulting expression for the current:

$$rac{ar{I}}{I_0} = rac{\cosartheta\sin^3artheta\sin\Phi\left(\cos\chi+\cos\Phi
ight)}{1-(\cos^2artheta\cos\chi-\sin^2artheta\cos\Phi)^2}$$

Main features:

- The oscillating dependence of the dc current on the phase difference $\Phi_R \Phi_L$ \rightarrow the coherent states are controlled by the phase difference Φ ;
- If there is no phase difference, Φ_L = Φ_R, but the grain's trajectory is asymmetric, χ₊ ≠ χ₋, the current still does not vanish.
- If the grain's trajectory embeds some magnetic flux created by external magnetic field with vector-potential A(r), an extra item (2π/Φ₀) ∮ A(r) · dr enters the expression for the phase difference Φ which must be gauge-invariant.

Average current in units $I_0 = 2ef$ as a function of electrostatic, χ , and superconducting, Φ , phases

Black regions – no current. The current direction is indicated by signs

Shuttling of Cooper Pairs

Mechanically Assisted Superconducting Coupling

The distribution function of the phase difference as a function of number of

grain excursions is studied. It is defined through the states

$$\ket{\Phi,\phi} = rac{1}{2\pi} \sum_{n=0,1}^{N-n} \sum_{N_L=-N}^{N-n} e^{-iN_L \Phi} e^{-in\phi} \ket{n} \ket{N_L} \ket{-N_L-n} \,.$$

as the average

$$f(\Phi)\equiv\int\limits_{0}^{2\pi}d\phi\left<\Phi,\phi
ight|
ho\left|\Phi,\phi
ight>$$
 .

where ρ is the density matrix.

Distribution of phase differences as a function of number of rotations. Suppression of quantum fluctuations of phase difference

