

SMR 1760 - 7

COLLEGE ON PHYSICS OF NANO-DEVICES

10 - 21 July 2006

Introduction to the Physics of Semiconductor Quantum Dots The physics of nano-electronics

Presented by:

Marc A. Kastner

Massachussets Institute of Technology, USA

Introduction to the Physics of Semiconductor Quantum Dots

M. A. Kastner, MIT Trieste 2006

Outline: Measuring Energy Scales

- Coulomb blockade energy U (Metal Single Electron Transistor)
- Energy level spacing $\Delta \varepsilon$ (Semiconductor SET)
- Coupling to the leads Γ

Two Barriers with Small Island

Schematic of Metal SET

Sequential Charging

At low T and with very small V_{ds} get one sharp peak for each electron added.

Current vs. Gate Voltage

Aluminum SET A. Amar et al. PRL **72**, 3234 (1994)

Note: Because of superconductivity, below T_C one gets a peak every time Cooper pair is added.

Condition for Charge Quantization

An extra electron stays on the island for time RC. This time must be long enough that the uncertainty in its energy is less than U.

U > h/RC, but $U = e^2/C$

 $R > h/e^2$ or $G < e^2/h$

Adding Charge by Source-Drain

Coulomb Staircase

Coulomb Diamonds

Slopes of diamonds give capacitance ratios

SET made with nano-particle, Bolotin et al. APL **84**, 3154 (2004)

Note: switching from nearby charges

Making Semiconductor SETs

GaAs Field Effect Transistor

Schematic GaAs SET

Electron Beam Lithography

Actual Process

GaAs SET

100 nm = 1000 Å

Schematic Potential in SET

Coulomb Charging Peaks

Note: Variation of peak height and spacing reflects individual levels.

Quantized Energy Levels

There is a peak in dI/dV_{sd} for every energy level. Although these have been detected in metal SET's it is hard because density of states is so large.

Excited State Spectroscopy

 dI/dV_{sd} has peak when level crosses E_F

Very small dot \Rightarrow peaks no longer periodic along $V_{sd} = 0$

Electron interactions are more complicated than just U and involve exchange.

Kouwenhoven et al Science **278**, 1788, 1997

Lifetime Broadening

Probability of electron remaining in a level on the dot decays as $\exp(-t/\tau)$, so the level broadens into a Lorentzian with energy width

$$\Gamma = h/\tau$$

Lorentzian Line Shape of Peaks vs Gate Voltage

The chemical potential μ is proportional to the gate voltage. The full width at half maximum is Γ . τ = $h\Gamma^{-1}$ is the time for the electron to tunnel off.

Temperature

$$I \sim \int T(E)[f(E)-f(E-eV_{sd})]dE \qquad f(E) = \frac{1}{exp[(E-E_F)/kT] + 1}$$

For resonant tunneling near zero bias, i.e. $eV_{sd} < kT$, if Γ is very small, $T(E) = \delta(E)$, $I = eV_{sd} df/dE$

Thermal Broadening

Fermi-Dirac Distribution

f(E)

Thermal broadening gives width = 3.5kT Height ~ 1/T

df/dE

Thermal and Intrinsic Broadening

Foxman et al. Phys. Rev B 47, 10020 (1992)

Dashed line from Fermi alone, solid includes Lorentzian

Absolute Thermometer

When kT > $\Delta\epsilon$ the peak conductance becomes constant and the width changes slope slightly.

For thermometer application see Pekola et al. PRL 73, 2903 (1994)

Determining Γ from peak width

Condition for Charge Quantization is Condition for Level Separation

Above Coulomb gap, the current is $I=Ne/\tau$, $\tau=h\Gamma^{-1}$ and $N=eV/\Delta\epsilon$ $G=I/V=(e^2/h)(\Gamma/\Delta\epsilon)$ $G< e^2/h \Rightarrow \Gamma>\Delta\epsilon$

Constant Interaction Model

Ignore interactions among electrons on artificial atom. States fill two at a time.

Actually more complicated, but it is a useful starting point.

Energy Scales in SET

between dot and leads

Charge Quantization

Measuring Charge

Field et al PRL **70** 1311 (1993)

Measuring Very Small Γ

Γ/h can be measured from 10-1000 Hz, compared to 10-50 GHz from peak shapes

Measuring Electron Statistics

Fujisawa et al Science 312, 1634 (2006)

International Semiconductor Roadmap 2003

Measuring Spin Orbit Relaxation of Single Spin

- 1. Load one electron
- 2. Adjust chemical potential so only the higher energy spin state can be ionized

Pulse Sequence

Fujisawa, et al., Physical B **298**, 573 (2001) Hanson, et al., PRL **91**, 196802 (2003) Elzerman, et al., Nature **430**, 431 (2004)

$$P_e(t_w)$$
 gives $W \equiv 1/T_1$

Real-Time Readout

B= 2.5 T, t_w = 4 ms, N_{pulses} = 14300

Measuring P_e(t_w)

Electron tunnels

from excited state

tunneling from

ground state

$P_i(t_w)$ and $P_e(t_w)$

B = 2.5 T

Theory vs Experiment

Theory: Golovach, *et al.* PRL, **93** 016601 (2004)