# COLLEGE ON PHYSICS OF NANO-DEVICES 

10-21 July 2006

Introduction to the Physics of Semiconductor Quantum Dots The physics of nano-electronics

## Presented by:

## Marc A. Kastner

Massachussets Institute of Technology, USA

# Introduction to the Physics of Semiconductor Quantum Dots 

M. A. Kastner, MIT

Trieste 2006

## Outline: Measuring Energy Scales

- Coulomb blockade energy U (Metal Single Electron Transistor)
- Energy level spacing $\Delta \varepsilon$ (Semiconductor SET)
- Coupling to the leads $\Gamma$


## Two Barriers with Small Island



No current at zero temperature

## Schematic of Metal SET



## Sequential Charging



At low T and with very small $\mathrm{V}_{\mathrm{ds}}$ get one sharp peak for each electron added.

## Current vs. Gate Voltage

## Aluminum SET

A. Amar et al. PRL 72, 3234 (1994)


## Condition for Charge Quantization



An extra electron stays on the island for time RC. This time must be long enough that the uncertainty
in its energy is less than $U$.

$$
\begin{gathered}
U>h / R C, \text { but } U=e^{2} / C \\
R>h / e^{2} \text { or } G<e^{2} / h
\end{gathered}
$$

## Adding Charge by Source-Drain



## Coulomb Staircase



## Coulomb Diamonds

| First step <br> in <br> Coulomb <br> staircase |
| :--- | | Slopes of |
| :--- |
| diamonds |
| give |
| capacitance |
| ratios |

SET made with nano-particle, Bolotin et al. APL 84, 3154 (2004)

Note: switching from nearby charges

## Making Semiconductor SETs

## GaAs Field Effect Transistor



## Schematic GaAs SET



## Electron Beam Lithography



Develop


Evaporate
Metal


Lift Off


## Actual Process



## GaAs SET



## Schematic Potential in SET



## Coulomb Charging Peaks



Note: Variation of peak height and spacing reflects individual levels.

## Quantized Energy Levels



There is a peak in $\mathrm{dI} / \mathrm{d} \mathrm{V}_{\text {sd }}$ for every energy level. Although these have been detected in metal SET's it is hard because density of states is so large.

## Excited State Spectroscopy


$\mathrm{dI} / \mathrm{dV}_{\text {sd }}$ has peak when level crosses $\mathrm{E}_{\mathrm{F}}$

Very small dot $\Rightarrow$ peaks no longer periodic along $\mathrm{V}_{\text {sd }}=$ 0

Electron interactions are more complicated than just U and involve exchange.

Kouwenhoven et al Science 278, 1788, 1997

## Lifetime Broadening



Probability of electron remaining in a level on the dot decays as $\exp (-t / \tau)$, so the level broadens into a Lorentzian with energy width

$$
\Gamma=\mathrm{h} / \tau
$$

## Lorentzian Line Shape of Peaks vs Gate Voltage



The chemical potential $\mu$ is proportional to the gate voltage. The full width at half maximum is $\Gamma . \tau=\mathrm{h} \Gamma^{-1}$ is the time for the electron to tunnel off.

## Temperature



For resonant tunneling near zero bias, i.e. $\mathrm{eV}_{\text {sd }}<\mathrm{kT}$, if $\Gamma$ is very small, $\mathrm{T}(\mathrm{E})=$ $\delta(E), \mathrm{I}=\mathrm{eV}_{\text {sd }} \mathrm{df} / \mathrm{dE}$

## Thermal Broadening

Fermi-Dirac Distribution


## Thermal and Intrinsic Broadening



Dashed line from
Fermi alone, solid
includes Lorentzian

## Absolute Thermometer



When $\mathrm{kT}>\Delta \varepsilon$ the peak conductance becomes constant and the width changes slope slightly.

For thermometer application see Pekola et al. PRL 73, 2903 (1994)

## Determining $\Gamma$ from peak width



## Condition for Charge Quantization is Condition for Level Separation



Above Coulomb gap, the current is $\mathrm{I}=\mathrm{Ne} / \tau, \tau=\mathrm{h} \Gamma^{-1}$ and $\mathrm{N}=\mathrm{eV} / \Delta \varepsilon$

$$
\begin{gathered}
\mathrm{G}=\mathrm{I} / \mathrm{V}=\left(\mathrm{e}^{2} / \mathrm{h}\right)(\Gamma / \Delta \varepsilon) \\
\mathrm{G}<\mathrm{e}^{2} / \mathrm{h} \Rightarrow \Gamma>\Delta \varepsilon
\end{gathered}
$$

## Constant Interaction Model



Ignore interactions among electrons on artificial atom.
States fill two at a time.
Actually more complicated, but it is a useful starting point.

## Energy Scales in SET



## Charge Quantization



## Measuring Charge



Field et al PRL 701311 (1993)

## Measuring Very Small $\Gamma$



## Measuring Electron Statistics



Fujisawa et al Science 312, 1634 (2006)


## International Semiconductor Roadmap 2003



## Measuring Spin Orbit Relaxation of Single Spin



1. Load one electron
2. Adjust chemical potential so only the higher energy spin state can be ionized

## Pulse Sequence

Fujisawa, et al., Physical B 298, 573 (2001)
Hanson, et al., PRL 91, 196802 (2003)
Elzerman, et al., Nature 430, 431 (2004)


## Real-Time Readout



Electron tunnels from excited state

Electron tunnels into empty dot

## Measuring $\mathrm{P}_{\mathrm{e}}\left(\mathrm{t}_{\mathrm{w}}\right)$



## $\mathrm{P}_{\mathrm{i}}\left(\mathrm{t}_{\mathrm{w}}\right)$ and $\mathrm{P}_{\mathrm{e}}\left(\mathrm{t}_{\mathrm{w}}\right)$

$B=2.5 \mathrm{~T}$



## Theory vs Experiment



Theory:
Golovach, et al. PRL, 93016601
(2004)

