

The Abdus Salam International Centre for Theoretical Physics

() International/ Energy Agency

SMR 1760 - 8

COLLEGE ON

PHYSICS OF NANO-DEVICES

10 - 21 July 2006

Electron Correlations in Single Electron Transistors The Kondo Effect

Presented by:

Marc A. Kastner

Massachussets Institute of Technology, USA

Electron Correlations in Single Electron Transistors

The Kondo Effect

M. A. Kastner, MIT Trieste 2006

Outline

- Traditional Kondo effect
- Analogy between SET and an impurity in a metal
- Theoretical predictions for the Kondo effect
- Comparison with experiment
- Molecular Electronics

Review

M. A. Kastner and D. Goldhaber-Gordon Solid State Commun.**119**, 245 (2001)

Traditional Kondo Effect

Increasing magnetic impurities

Kondo problem: how to connect two regions of different behavior

Anderson Model

(Kondo described the problem in terms of the exchange interaction between spins, which depends on t, U and ε_0)

A GREAT Physics Problem

- Solution to the Kondo problem was one of the first applications of scaling theory to quantum many-body physics.
- Solution was one of the first applications of renormalization-group theory

Weaknesses of Conventional Kondo Systems

- With natural atoms the dependence on parameters (ε_0 , t, U) could not be tested.
- Nonequilibrium Kondo phenomena could not be studied.
- These can be done with SET's.

GaAs Single Electron Transistor at 100nm

SET with Odd N

Simplest Correlated (Entangled) System: H₂

Binding energy of one electron to a H atom is 13.6 eV, but binding energy of second electron is only ~ 0.6 eV. Thus, the energy U to put both electrons on the same atom is very large.

Ground state: $\Psi(1,2) = [\psi(1) \psi(2) + \psi(1) \psi(2)] [|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle]$

The energy is lowered by exchange. The two spins are entangled in a singlet. The spatial wave function requires that the two electrons are not on the same atom.

Kondo "Chemical Bond"

$\Psi = \{\phi(1)\psi(2) + \psi(1)\phi(2)\} [|\uparrow\downarrow> - |\downarrow\uparrow>]$

Entangled state: spin inside determines spin outside because the state is a singlet

Symmetric state \Rightarrow perfect transmission \Rightarrow G = 2e²/h

Singlet forms below T_K

An entangled state of the spatial and spin degrees of freedom

Peaks in Density of States Enhance Tunneling

(Focus on one spatial orbital.)

Forward scattering only \Rightarrow conductance instead of resistance increases at low T.

Paired Peaks

Temperature Dependence

Determining Γ from peak width

Temperature Dependence

T Dependence at Fixed V_G

Note logarithmic decrease of conductance with T

Comparison with Renormalization Group Theory

Comparison with Scaling Theory

Anderson Hamiltonian:

$$H = \sum_{k\sigma} \varepsilon_k a_{k\sigma}^+ a_{k\sigma} + \varepsilon_0 a_{0\sigma}^+ a_{0\sigma} + \sum_{k\sigma} (t a_{k\sigma}^+ a_{0\sigma} + cc) + Un_{d\sigma} n_{d-\sigma}$$

Bias Reduces Differential Conductance

Peak in density of states in left lead is shifted relative to that in right lead, so differential conductance decreases away from $V_{ds}=0$.

Kondo Effect in dI/dV

Sharp peak at zero bias because of overlapping resonances. Kondo resonance for odd but not even number of electrons.

Kondo in Magnetic Field

Bias destroys Kondo coupling, but applying a magnetic field with $g\mu_B B = eV_{ds}$ restores it!

Spectral Function in Magnetic Field

Magnetic Splitting of Kondo Resonance B = 0 B = 7.5 T

Note: Axes are rotated by 90°

Fancy Kondo Effects

- Triplet (two-stage) Kondo
 NTT and Delft
- AC (Photon-Coupled) Kondo
- Kondo with additional degeneracies
 - Delft Nanotubes

Carbon Nanotube SET

Cobden and Nygard, PRL 89, 46803 (2002)

Kondo in Carbon Nanotube SET

Nygard et al. Nature 408, 342 (2000)

Single Molecule SET

Liang *et al.*, Nature **417**, 725 (2002)

Kondo in Single Molecule SET

Conclusions

- SET is an analogue computer for the Anderson model—an artificial atom connected by tunable tunneling to metallic leads.
- We can study non-equilibrium as well as equilibrium Kondo phenomena.
- Kondo is important in physics of electronic devices at the nanometer length scale.