

The Abdus Salam International Centre for Theoretical Physics

() International A Energy Agency

SMR 1760 - 10

COLLEGE ON

PHYSICS OF NANO-DEVICES

10 - 21 July 2006

Quantum optics using quantum dots

Presented by:

Atac Imamoglu

ETH-Zürich, Switzerland

Quantum optics using quantum dots

A. Imamoglu Quantum Photonics Group, Department of Physics ETH-Zürich

Outline

1) Brief overview of quantum dots – a.k.a. artificial atoms

2) Photon correlation measurements

3) Single photon sources

Atoms

- The allowed internal energy states (describing the relative motion of electrons with respect to a nucleus) form a discrete anharmonic set.
- Each discrete atomic orbital has a fine and hyperfine structure arising from the coupling of electronic spin to orbital angular momentum and electronic spin to nuclear spin, respectively.
- The eigenstates describing the center-of-mass motion of a free atom form a continuum; internal & external degrees of freedom could be coupled via light forces ⇒ optical trapping.

Ex. sodium3dEach atomic orbital consists of
a number of discrete states:3p $Ex.: 3s \Rightarrow 8$ distinct eigenstates
due to coupled electron (2) and
nuclear (4) spin states.3s $ext{-}$

Atoms

- The allowed internal energy states (describing the relative motion of electrons with respect to a nucleus) form a discrete anharmonic set.
- Each discrete atomic orbital has a fine and hyperfine structure arising from the coupling of electronic spin to orbital angular momentum and electronic spin to nuclear spin, respectively.
- The eigenstates describing the center-of-mass motion of a free atom form a continuum; internal & external degrees of freedom could be coupled via light forces ⇒ optical trapping.

Ex. sodium 3d

laser excitation

Atoms

- The allowed internal energy states (describing the relative motion of electrons with respect to a nucleus) form a discrete anharmonic set.
- Each discrete atomic orbital has a fine and hyperfine structure arising from the coupling of electronic spin to orbital angular momentum and electronic spin to nuclear spin, respectively.
- The eigenstates describing the center-of-mass motion of a free atom form a continuum; internal & external degrees of freedom could be coupled via light forces ⇒ optical trapping.

All excited states are broadened in energy due to spontaneous emission: the absorption/emission lineshape is a Lorentzian.

- \Rightarrow QDs typically exhibit several sharp emission lines
- \Rightarrow At low pump power, a single (exciton) line dominates the spectrum; the width of this line is resolution limited at ~ 30 μ eV << kT ~ 300 μ eV.

How narrow are quantum dot exciton lines?

• The least perturbing measurement that can be done is a resonant absorption measurement

 \Rightarrow Observed absorption linewidth is 1.5 µev ~ 1.5 Γ_{spon}

Photon correlation measurements

• Intensity (photon) correlation function:

 \rightarrow gives the likelihood of a second photon detection event at time t+ τ , given an initial one at time t (τ =0).

$$g^{(2)}(\tau) = \frac{\left\langle : I(t)I(t+\tau) : \right\rangle}{\left\langle I(t) \right\rangle^2}$$

Photon correlation measurements

• Intensity (photon) correlation function:

 \rightarrow gives the likelihood of a second photon detection event at time t+ τ , given an initial one at time t (τ =0).

$$g^{(2)}(\tau) = \frac{\left\langle : I(t)I(t+\tau) : \right\rangle}{\left\langle I(t) \right\rangle^2}$$

• Experimental set-up for photon correlation $[g^{(2)}(\tau)]$ measurement:

Photon antibunching

• Intensity correlation $(g^{(2)}(\tau))$ of light generated by a single two-level (anharmonic) emitter.

- Assume that at $\tau=0$ a photon is detected:
 - \rightarrow We know that the system is necessarily in the ground state |g>
 - → Emission of another photon at τ =0+ ϵ is impossible.
 - \Rightarrow Photon antibunching: $g^{(2)}(0) = 0$.

• $g^{(2)}(\tau)$ recovers its steady-state value in a timescale given by the spontaneous emission time.

nonclassical light

• If there are two or more 2-level emitters, detection of a photon at $\tau=0$ can not ensure that the system is in the ground state (g⁽²⁾(0) >0.5).

Signature of photon antibunching

• Intensity (photon) correlation function:

$$g^{(2)}(\tau) = \frac{\left\langle : I(t)I(t+\tau) : \right\rangle}{\left\langle I(t) \right\rangle^2}$$

• Single quantum emitter (i.e. an atom) driven by a cw laser field exhibits photon antibunching.

Photon antibunching from a Single Quantum Dot

Higher-order optical excitations in a quantum dot

Exciton/biexciton (X1/XX) cross-correlation

 \Rightarrow At low excitation regime (average number of excitons < 1):

When a biexciton is observed, the QD projected is onto X1 state; as a result observation of an X1 photon becomes more likely than it is on average \Rightarrow **bunching**

- Quantum dots do not have random thermal motion and they can easily be integrated in nano-scale cavities.
- Just like atoms, quantum dots have (nearly) spontaneous emission broadened emission lines.
- Exciton transition oscillator (dipole) strength ranges from 10 to 100 (depending on the QD type) due to a collective enhancement effect.
- A single confined electron interacts weakly with ~ 10⁵ nuclei; the nature of hyperfine interactions is completely different.
 - novel non-Markovian decoherence mechanism for electron spin
 - single electron controls an isolated mesoscopic (nuclear) spin ensemble.
- Interactions between electrons and lattice vibrations:
 may enable optical manipulation of nano-mechanical systems.
- Kondo-type many-body effects between QD electron spin and the spins of a nearby electron reservoir (n-type region).

Single Photon Sources

A regulated sequence of optical pulses that contain one-and-only-one photon

- \Rightarrow Why are we interested in single-photon sources?
- i) Quantum communication:
 - key distibution in quantum cryptography
 - quantum teleportation: transmission of quantum information without transmitting the physical qubit (which remains in an unknown state)
- i) Quantum computation: single photons + linear optical elements + photo-detection can eliminate the need for photon-photon interactions.

Typical light fields as a stream of photons

 thermal light (light bulb)
 ⇒ Photons are bunched together giving rise to large (super Poissonian) fluctuations in detected energy per unit time.

• coherent light (laser)

 \Rightarrow Photons are completely uncorrelated, giving rise to Poissonian photon detection events (shot noise in photo-current) – i.e. $\Delta n^2 = \langle n \rangle$.

⇒Both thermal and coherent light correlations can be explained using classical Maxwell's equations.

Single Photon Sources

Single Photon Sources

A regulated sequence of optical pulses that contain one-and-only-one photon

- \Rightarrow How can we generate single photon pulses?
- An attenuated laser with average photon number per pulse $\langle n \rangle = 1$ is <u>not</u> a singlephoton source, since standard deviation $\Delta n = 1$.
- Photons generated by a <u>single quantum dot</u> driven by a periodic pump (i.e. laser or electrical current) realise a single photon source:
 <u>Proposal</u>: A. Imamoglu and Y. Yamamoto, Phys. Rev. Lett. **72**, 210 (1994)
 <u>Experiments</u>: P. Michler *et al.*, Science **290**, 2282 (2000)
 Z. Yuan *et al.*, Science **295**, 102 (2002)
 - C. Santori et al., Nature 419, 584 (2002)

Signature of a single-photon source

• Intensity (photon) correlation function:

 \rightarrow gives the likelihood of a second photon detection event at time t+ τ , given an initial one at time t (τ =0).

$$g^{(2)}(\tau) = \frac{\left\langle : I(t)I(t+\tau) : \right\rangle}{\left\langle I(t) \right\rangle^2}$$

• <u>Triggered single photon source</u>: absence of a peak at τ =0 indicates that none of the pulses contain more than 1 photon.

Single QD driven by a pulsed laser

→ all peaks in G⁽²⁾(τ) have the same intensity, including the one at τ=0
 → pulsed coherent light

Photon correlation of a single-photon source

→ pulsed coherent light

- single photon turnstile device with at most one photon per pulse
- [P. Michler et al., Science 290, 2282 (2000)]

80

Single-photon sources: state-of-the-art (I. Robert-Phillip and co-workers, LPN Paris)

Indistinguishable photons from a QD (I. Robert-Phillip and co-workers, LPN Paris)

- Enhancing the efficiency of the single photon sources using cavities
- Generating indistinguishable photons from different quantum dots
- A quantum memory for the single photons