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A dielectric is a material with a dielectric constant
ε

that depends on frequency

ε(ω)
A photonic material has a dielectric constant 
that depends on position

ε(ω,r)
and varies in space on a length scale of the order 
of the wavelength of light

Photonic matter
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single: double:

multiple:

Multiple scattering
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We expect new phenomena when the 
polarization (polarizability density) 
becomes of order one

dielectric catastrophy
light localization
photonic bandgaps

Diverging scattering series
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diverging phase velocity
vanishing phase velocity
diverging group velocity
vanishing group velocity
vanishing density of states (photonic bandgap)
diverging density of states  (van-Hove-singularity)
vanishing diffusion constant 
vanishing mean-free path
vanishing energy velocity

Is it any interesting?
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Goal: reduce mean free path to zero
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Symmetry 
non-reciprocal 
gyrotropic 
anisotropic 
bi-anisotropic

Material aggregation state

Gain
dye + colloids
ground  laser crystrals

State of matter
powders
nanomaterials
supermolecular structures
colloids
spunges
liquid crystals
ultra-cold gassesPhoton scattering
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high density of scatterers
large contrast
resonant scattering      (size scatterers ~λ )

index in the  visible:
water         1.3       glass     1.5     
diamond    2.4       TiO2    2.7
GaPGaP 3.33.3

index in the infrared:
GaAs 3.5 (near ir)
Ge 4.1 Si 3.5

Materials
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(a)

0.42 μm

(b)

1.56 μm1.66 μm

Si Ge

Example material: powders

Gómez Rivas, Sprik, Soukoulis, Busch, AL, Europhys. Lett. 1999
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Example materials: spunge

20 μ

GaP elecrochemically etched

Schuurmans, Vanmaekelbergh, Van de Lagemaat, AL, Science 1999 
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In many languages diffuse 
also means vague

We often use the word diffusive
with a negative connotation

I think the diffusion laws are 
next to Newton laws the most 
important laws in science

Is diffusion important?
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surface waves  
sound
light 
electron(s)
plasmons
magnons
elastic waves
seismic waves
... many more

particle diffusion
momentum diffusion
energy diffusion
...

coins
languages

wave diffusion:

Generality of diffusion
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Coherent beam

multiple scattering
object

scattered wave

forward scattered
incoming beam coherent beam

diffuse intensity
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no perturbation
particle
wave  

classical + quantum

} ⇒ free motion

strong 
perturbations

multiple scattering
particle
wave

classical + quantum

heat, sound, light,
electrons, neutrons

} ⇒ diffuse motion

From scattering to transport
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mean free path                     

diffusion coefficents             

system size                            

conservation law violater

l

D

L

labs

1
ρσ
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Key diffusion parameters
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( ) 0d A d
dt

=∫ r r
global conservation law

number of partices
total momentum
intensity
...

complicated interactions

imbalance must be transported over space
mild violation of conservation allowed

Diffusion condition
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wave impinges on complex object
Boltzmann theory neglects interference
resulting equation is a balance equation

4

1 ˆ ˆ ˆ ˆ( , ) (
ˆ( , )

ˆ
,, ) )( pIdI

d
d

s
I

π
′ ′− ′= + ∫ s s rr s sr s s

l l

change  = loss +     gain        

ˆ ˆ( , )  intensity at  in direction I r s r s

Transport theory

Photon scattering

Amolf

Amsterdam



long-lenght limit of transport theory
gives diffusion equation

2 2 2

2 2 2

I I I ID
t x y z

⎛ ⎞∂ ∂ ∂ ∂
= + +⎜ ⎟∂ ∂ ∂ ∂⎝ ⎠

dynamic form

stationary form
2 2 2

2 2 20 I I ID
x y z

⎛ ⎞∂ ∂ ∂
= + +⎜ ⎟∂ ∂ ∂⎝ ⎠

mean-free path shows in boundary condition
radiative transport theory slightly
better than diffusion theory

Diffusion theory
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Experimentalist's toolbox

total (angularly integrated) 
transmission and reflection

angularly resolved 
transmission and reflection

intensity correlations and 
fluctuations (speckle)

interferometry (phase and amplitude)

as a function of sample thickness,
wavelength, polarization, time,
pulse duration, ...
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L

T
L

=
l

incoherent stationary

{L

coherent stationary

{

not transport

exp( )LT = −
l

transport

Stationary transmission
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Weak localization
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Coherent backscattering
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Narrow cone: BaSO4 : kmed l = 22.6
Broad cone: TiO2 : kmed l =  5.8

CBS examples

Scattering angle (mrad,  0 = exactly backscattering)
Photon scattering
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Störzer, Gross, Aegerter, Maret,  PRL 2006

CBS examples (continued)
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Lenke, Eisenmann, Reinke, Maret,  Phys. Rev. E 2002

Magnetic field destroys it
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Disorder in photonic bandgap crystal

Koenderink, Megens, Van Soest, Vos, AL, Phys. Lett. A. 2000

air-sphere crystal (wavelength 460 nm).

Photon scattering

Amolf

Amsterdam



introduction
coherent back scattering 
light localization
new directions

Light localization ...

Photon scattering

Amolf

Amsterdam



enhanced backscattering
⇒ reduces forward propagation
⇒ reduction of mean free path
⇒ reduction of diffusion    constant

Weak to strong localization
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break-down of transport theory
vanishing of diffusion coefficient
absence of extended modes

not every breakdown is
Anderson localization
we have a limited under-
standing of transport theory
in high density systems 

Complications:

One-liners about localization
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surface waves  
sound
light (visible, microwaves etc.)
electron(s)
plasmons
magnons
elastic waves
seismic waves
...

classical
quantum

purple bullets:
green bullets:

Generality of concept of localization
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the electron people are very good in 
making their own case

we now understand multiple scattering
and transport much better
fluctuations (speckle),  I, amplitude, phase

random lasers (scattering + gain)

Scientific merits classical localization
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Is it genuine?

Is absorption mistaken for localization?

Is impurity luminescense mistaken 
for localization?

Is a single localized mode mistaken 
for localization?Photon scattering
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D

two length scales: lscat and λ
lscat    <  λ/2π
k lscat < 1

extreme condition

Strong localization
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1D 2D

3D

Dimensionality and transport
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/ 2

1/ 2

3/ 2

1( )

1( )     ( )

1( )     ( ) finite

dP t
t

P t P t dt
t

P t P t dt
t

→∞ ∝

→∞ ∝ = ∞

→∞ ∝ =

∫

∫

long-time behavior

lower dimensions are slower

1D

3D

Lower dimensionality slows down
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in 1D always localization
in 2D always localization

in 3D critical amount of disorder

if system is of infinite size:

in practice  L > lloc

Localization and dimensionality
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max

min

2

1 1 1q

B q

DOS d
D D Dq
= + ∫ q

1 1

(1 )
B

B

LDOS
D D D
D D DOS L

= +

= − ×

Mean-field-type theory

general dimensions

one dimension

Volhardt and Wölfle
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Extension of  localization theory

realistic geometry for finding 
size dependence
sphere  D(r)
slab       D(z)

1 1 ( , )
( , ) ( )B E

C
D D vπ ρ ω

Ω= +
Ω

r r
r

B. L. Altshuler, A.G. Aronov, and B. Z. Spivak, JETP Lett. 33, 94 (1981)
D.Yu. Sharvin and Yu.V. Sharvin, JETP Lett. 34, 272 (1981).
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z

D

Van Tiggelen, Wiersma, AL, PRL (2000)
Skipetrov and Van Tiggelen PRL (2004) dynamic 1D/3D

Spatial dependence of
mean free path

classical behavior

localized

interference

Inhomogeneous localization
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scaling theory g(L) of gang of four

numerical simulations
systems are always too small
what to look for?

field theories

Other theories
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separation of interference from
non-interference  is questionable

realistic finite-size theory  
critical exponents
role of absorption
dynamics
beyond total transmission
averaging over disorder
mathematical definition lacking
...

Outstanding problems in theory

Photon scattering

Amolf

Amsterdam



l
D

l (L)
D(L)

⇒
⇒

Experiments include:
total transmission (L)
angular transmission 
pulsed transmission
speckle correlation (θ,ω,t,phase)
statistics

How to observe localization?
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material 
form, size of scatterers

wavelength

dimensionality

symmetry underlying structure:
random, lattice, ...

k lscat ≈ 3-4status:

Parameter space
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coherent backscattering  (industry)
resonance delay
long-range speckle (UCF)
phase statistics

Localization effects
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Wiersma, Bartolini, A.L. , Righini, Nature 1997

In GaAs (infrared)
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Long-time tails
Störzer, Gross, Aegerter, Georg Maret  PRL 2006
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Critical backscattering

Schuurmans, Megens, Vanmaekelbergh,  AL PRL 1999 
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absorption is a real killer
it kills long light paths
causes exponential decay (L)
localization is characterized
by exponential decay (L)

experimentalists do everything they can to
minimize absorption  (typical 1 out of a million)
but often not enough

Absorption
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New directions ...
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Localization in lower dimensionality

is easier to obtain

Anisotropy might be a way

Anisotropy
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Both parallel (top, scale bar=1 µm) and 
perpendicular (bottom, scale bar=300 
nm) cross sections with respect to the 
etch direction

Silicon nitride layer prevents 
etching at the polished surface of 
the wafer, pores grow from the 
bottom edge up. 

G
aP

Anisotropic diffusion
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P. M. Johnson, B. P. J. Bret, J. Gómez Rivas, J.J. Kelly, and A. L. PRL 89 (2002)

Asymmetric spot
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More anisotropic CBS

Bret and AL, PRE 2004
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Transverse localization

Transverse Localization of Light 

Hans De Raedt, Ad Lagendijk, and Pedro de Vries 

Phys. Rev. Lett. 62, 47–50 (1989)

We study the propagation of light through a medium with 
transverse disorder (that is, disorder in two directions only). We 
show that such a system exhibits strong two-dimensional 
localization by demonstrating that on propagation a beam 
expands until the transverse localization length is reached. 
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localizednon-localized

De Raedt, AL, De Vries, PRL (1989)

Theory

Beam confinement
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microporous silicon glass

near-field probe

lens

detector

Emiliani, Intonti, Cazayous, Wiersma, Colocci, Aliev, A.L,  PRL (2003)

Near-field set-up
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2d image

780 nm 632 nm

Near-field speckle
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better understanding role of disorder 
in nano-optical material (like PBG)

diffusing wave spectroscopy (DWS)
medical imaging
interdisciplinary interests
applications

Spin-off
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