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Photonic systems

A dielectric is a material with a dielectric constant
ε

that depends on frequency

ε(ω)
A photonic material has a dielectric constant 
that depends on position

ε(ω,r)
and varies in space on a length scale of the order 
of the wavelength of light
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Issues

Sources inside 
spontaneous emission
lasing
nanoboxes and strong coupling

Light from outside
wave guiding
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LDOS as key parameter

Sources inside:
LDOS is a key parameter for

photonic crystals
random systems (probably) 
cavities

local impedance of source
complication:
it is not really the LDOS, but weighed
with matrix elements
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ImG rather than LDOS

if we have absorption 
(which is quite natural for optical systems)

local impedance becomes ImG
no complete set of states any more
not positive definite any longer
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With gain?

We have no idea, but we can 
do the experiments

causality
divergence infinite systems
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Why not calculate it?

we only know a complete set of states
(required for  LDOS) rigorously 
for a very limited number of 
nontrivial systems:

Mie sphere
dielectric slab (Fabry-Perot)
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Numerical methods

DOS is practical for PBG's
LDOS not

FDTD
all modes (guided etc)
not just one incoming modePhoton Scattering
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Cavities are built to increase storage capacity
for light

What is the relation between
cavity Q and LDOS?

Engineers know their cavity
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tautology

where in the cavity?
what polarization?

ratio rate in cavity and free space
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Smallest laser

What is a laser?

Is there a laser transition?

Siegman:
Almost anything is a laser

gain narrowing
mode redistribution
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Cavity laser

Homogeneous 
gain medium

pump
output coupler

cavity is macroscopic
gain medium is macroscopic
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Microscopic cavity

dielectric slab      (Rikken and Urbach,  Wubs)

infinite system

dielectric sphere  (Mie solution)

Gain in above cavities is
1. inhomogeneous

2. near lasing threshold complicated
phenomenological gain dynamics 

Photon Scattering

Amolf

Amsterdam



Cavity exit

Why not do away with the 

cavity all together and use

only atoms?Photon Scattering

Amolf

Amsterdam



Bound electron (Lorentz model)

linear: no saturation
damped oscillator

in whichPhoton Scattering
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W is pump  rate
γ is spontaneous

emission rate

effective two-
level system

old situation

fully inverted
population

Two limits:

Pump an atom/dipole

W γ

pumped three-level 
system

W
W

<< γ
>> γ

fast

Photon Scattering

Amolf

Amsterdam



Correct linear response

extinction

gain: unphysical
but very popular

gain correct
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dielectric constant

Dielectric constant from dipoles

density polarizability
derivation needs scattering theory
books: long-wavelength limit

origin of gain
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Building microscopic laser

Combine active atom(s) with
passive atom(s)

1. solve full scattering problem with point 
t-matrices (diagonalization of 3N x 3N matrix)

2. look for laser threshold as a function of
pump power and configurarion

3. include saturation to neutralize
laser singularity  
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Not just atoms

real atoms 
quantum dots
oscillators
ions
dye molecules
...
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pump

active dipole

One dipole: no laser
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can be solved exactly
we have a t-matrix
up to a few thousands can be
solved exactly (vector)

Two (and more) dipoles

1 1 1 2 1

1 2 1 12 2 21 1

( , ) ( ) ( ) ( )
...

t
t t t G t G t

α ω δ δ= − −
+ + +

2r r r R r R

B.A. van Tiggelen and A. L., PRB 50, 16729 (1994).
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pump

active dipole 2

passive
dipole 1

One of the dipoles has gain
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Configurations
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Lasing oscillators

Tom Savels
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However: saturation spoils it all

T-matrix describes elastic scattering

Due to saturation inelastic light will be 
generated:

passive atoms (= cavity) are spoiled  

active atom is pumped less efficiently

Exit T-matrix
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One atom density matrix

Γ
a

c cc ca

ac aa

σ σ
σ σ
⎛ ⎞
⎜ ⎟
⎝ ⎠

Populations

Coherences
+

1=+ aacc σσ

*
acca σσ =
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One pumped and one passive atom

ΓΓ
W

a

cc

a

bPhoton Scattering
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Two-atom density matrix

GG
W

a

c c

a

b

vector Green's functions for light

cc cc ca ca cb cb
cc ca cc ca cc ca

cc cc ca ca cb cb
ac aa ac aa ac aa

ac ac aa aa ab ab
cc ca cc ca cc ca

ac ac aa aa ab ab
ac aa ac aa ac aa

bc bc ba ba bb bb
cc ca cc ca cc ca

bc bc ba ba bb bb
ac aa ac aa ac aa

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

σ σ σ σ σ σ

⎛ ⎞
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜ ⎟
⎜
⎜
⎜
⎜
⎜
⎜
⎜⎜
⎝ ⎠

⎟
⎟
⎟
⎟
⎟
⎟
⎟⎟

pump
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Master equation

number of variables = (#combined levels)2

dimension of evolution matrix A = (#levels)4

master equation:

, , ,...,cc bc bb ac
aa ac cc aa

σ σ σ σ

d A
dt
σ σ=Photon Scattering
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Scaling with number of atoms

Number of atoms Matrix elements

2 362

3 1442

10 23592962

2473901162496220

4 5762Photon Scattering
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Technical details

all matrix elements are symbolically

generated (Mathematica)

numerical inversion

Tom Savels

Photon Scattering

Amolf

Amsterdam



Laser behavior

Δω/Γ (FWHM)

1.5    2    2.5    3    3.5    4    4.5

1/
n

( )I d n
ω

ω ω
Δ

≡ Γ∫

increasing pump intensi

n = number of excitations
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number of atoms
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Our results 

Our on-resonance atoms gradually
behave laser-like if you put more 
and more atoms together

There does not seem to be a critical
number of atoms
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Tweezer experiment

Dye pumped gives gain
Sphere with dye
We trap one such sphere with tweezers
We pump the trapped sphere
Observe luminescense 

Peter Zijlstra, Karen vd Molen, and Allard Mosk
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Is quantum optical scattering dull?

Yes,  because
trivially the same as classical case
scattering into many modes

will dilute any quantum effects
scattering will lose coherence

No, because
experiments can detect many modes
elastic scattering fully coherent

study of propagation of non-classical states
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incoming
reflection

transmission

vacuum

abtωreflection coefficient

a'
a

b'

b
sample

''

'
quantum operator

classical field                           

  ˆ ˆ ˆ ˆ     

b a
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b
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b

b b

E E E

t ra a a a

tω ω ω

ω ω

ω

ω ω ω ω

=

= +∑ ∑

'aarω transmission coefficient

Quantization
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Tech Noise

Shot Noise

T
L

T
L

⎛ ⎞∝ ⎜ ⎟
⎝ ⎠

∝

l

l

Scaling of transmission

T = Total (angularly integrated) transmission

Additional other correlations predicted
Lodahl and A.L. PRL 2005
Lodahl, Mosk, and A. L.  PRL 2005

 is mean free path
 is sample thicL kness

l
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Experimental setup noise
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Raw noise data
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noise transmission in TiO2 slab

Noise measurement
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Observation of scaling

quantum noise classical noise
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Noise correlation

shot
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Photon correlation (theory)

Spatial correlation function
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Photon number fluctuations

reflection

transmissionPhoton Scattering
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we have predicted a number
of quantum correlations      (Beenakker et al.)

Future quantum optics

we intend to experiment with
squeezed and entangled states
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