

The Abdus Salam International Centre for Theoretical Physics

(A) International A Energy Agency

SMR.1761-1

SUMMER SCHOOL IN COSMOLOGY AND ASTROPARTICLE PHYSICS

10 - 21 July 2006

Strategies for dark matter detection

B. SADOULET University of California Department of Physics 366 Le Conte Hall Berkeley, CA 94720-7300 U.S.A.

Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute for Nuclear and Particle Astrophysics and Cosmology (INPAC)

Strategies for Dark Matter Searches

Plan for the 4 lectures

Inputs from Cosmology Inputs from Gravity

Strategies

Plan of lectures

Lecture 1: Conceptual Framework
Inputs from Cosmology
Inputs from Gravity
Lecture 2: Thermal relics
Inputs from Particle Physics
Thermal relics Neutrinos
WIMPs
Experimental challenges and broad classes of technologies
Current situation 5 kg: phonon mediated technologies
1.6 10 ⁻⁴³ cm ² /nucleon (Scalar a.k.a "spin independent")
-> 2 10 ⁻⁴⁴
Lecture 3: Direct Detection of WIMPs
The next stage 25-100kg: 1 10 ⁻⁴⁵ cm ² /nucleon
Complementarity with the LHC
New technologies 1 ton-5ton-> 1 10 ⁻⁴⁷ cm ² /nucleon +directionality
Lecture 4: Indirect detection of WIMPs
+ non thermal candidates

1. Input from cosmology 2. Input from gravity An old puzzle: Dark Matter 3. Input from Particle Physics

Solid evidence for Dark Matter

Rotation curves in spiral galaxies Globular clusters/ gas around elliptical galaxies Velocity dispersion in clusters X-ray gas in clusters Gravitational lensing by clusters Large scale flows

+ CMBR (if non baryonic)

Growth of structure

gives the best estimate of the matter density Large scale structure $\Omega_m = 0.30 \pm 0.1$

Cosmic Microwave Back.

Primordial plasma oscillations WMAP : $\Omega_m = 0.27 \pm 0.04$ Not obscuration

No infrared emission

nor ad hoc geometry (number of systems)

Trieste Lecture 1 7/10/06

Same depth of potential wells

B.Sadoulet

2. Input from gravity 3. Input from Particle Physics Mass, Charge, Interactions

Mass: little information from astrophysics < few 10⁶ M_{sun} <= disruption of disks

Stable ≥ T_{Hubble}

no recent input of entropy <= CMBR

Electrically neutral

decoupling from photons unless very heavy (e.g. CHAMPs 10^{12} Gev/c²)

Limit on interactions

Much weaker than electromagnetic Recently: interacting dark matter => soften Limits by merging of galaxies observation of triaxial halos

Dynamic friction

increasing evidence for the need for dynamic

wake effect slowing down large masses e.g forming bulges by mergers

2. Input from gravity 3. Input from Particle Physics "Physicality" of Dark Matter

Merging of galaxies and formation of bulges

R^{1/4} law: characteristic of elliptical galaxies. The nuclei have already completely merged. Need to effectively surrender their energy and angular momentum to their dark halos.

e.g. NGC 7252

² Inperiode incension for Non Baryonic Nature 4

4. We do no see enough dark baryons to give $\Omega_m \approx 0.3$

Independently from nucleosynthesis

Non ionized gas

Gunn Peterson Astr. Phys. J. 142(1965) 1633 No trough

Totally ionized gas

≠ y parameter CMBR X ray extragalactic background

Dust

Infrared radiation

H snowballs

Would evaporate

Very Massive Objects

Very fast supernovae, large black holes gobbling up metals to prevent contamination

≠ IR DIRBE observations

MACHOs

No!...

2. Input from gravity 3. Input from Particle Physics **MACHOs**

Trieste Lecture 1 7/10/06

2. Input from gravity

3. Input from Particle Physics

Dark Matter is cold

"Cold"

Non relativistic when comes out of the horizon \equiv time of galaxy

formation

to soften spectrum Severely limited by Lyman alpha systems

2. Input from gravity 3. Input from Particle Physics Page Scale Structure

Non baryonic dark matter is an essential ingredient of our understanding of structure formation

Galaxy scale: disk + halo Intermediate scale: hierarchical merging Power spectrum

Amazing first approximation

Great increase in numerical accuracy 10¹⁰ particles

e.g.Halo substructure and merging history

Hydrodynamics (although course feedback mechanisms)

Input from gravity
Input from Particle Physics

Too peaked a distribution in center of galaxies "Cusp problem" :Navaro-Frenk-White profile density ≈r⁻¹ Dwarf spheroidals : mostly underestimate of beam smearing Low surface brightness galaxies (Blitz); when no radial motion $\approx r^{-1}$ Non-circular motions could be caused by nonspherical halos (Navarro & Hayashi). Large galaxies? Halo substructure <=Merging histories "missing satellites" Loss of gas (Sommerville) Halo hosting statistics (Gnedin, Klypin, Kravtsov, Zentner) => agreement with data. May be actually an advantage to explain anomalous flux ratios in radio gravitational lenses (Metcalf)? Angular momentum problem Catastrophic loss of angular momentum in current hydrodynamics simulations => difficulty to form spiral galaxies Formation and role of AGN?

A long history of overcoming challenges

2. Input from gravity

3. Input from Particle Physics

Input from Cosmology

What we know:

Dark matter at a variety of scales Mass, charge, interaction rate, dynamic friction Non baryonic Cold

Overall very successful model

Hierarchical merging However: cusp? number of satellites? angular momentum

What we do not know:

Nature of a fundamental component of structure formation Nature of dark energy

=> Possibility that we are dealing with epicycles?

2. Input from gravity 3. Input from Particle Physic Input from Gravity

General success of General Relativity

Tests in solar system Tests in binary pulsars 1/r² -equivalence tests in the laboratory

Cosmology provides an excellent demonstration

Formation of structure from perturbations which were temporarily outside the horizon

Challenge from the dark energy

Perfectly OK to have negative pressure and repulsive gravity But why so small

2. Input from gravity 3. Input from Particle Physics

MOND

Not a simple failure of our theory of gravity

e.g. Modified Newtonian Dynamics (Milgrom) clever way to deal with multiplicity of scale by working with acceleration: gravity will become stronger below a certain threshold Milgrom M., 1995, Astrophys. J. 455, 439. & 1997, Astrophys. J. 478, 7. Sanders, R.H., 1996, Astrophys. J. 479, 659,1997, Astrophys. J., 480, 492

Till recently no relativistic implementation (Bekenstein)

≠large number of systems where light do not follow mass

Difficulty with dwarfs/low surface brightness galaxies Polar rings

Increasing evidence for the need for dynamic friction in merging

IE 0657-558 Clowe, Gonzales, Markevitch APJ 604(2004) 596

