

SMR.1761-2

SUMMER SCHOOL IN COSMOLOGY AND ASTROPARTICLE PHYSICS

10 - 21 July 2006

Strategies for dark matter detection

<u>Part 2</u>

B. SADOULET University of California Department of Physics 366 Le Conte Hall Berkeley, CA 94720-7300 U.S.A.

Bernard Sadoulet Dept. of Physics /LBNL UC Berkeley UC Institute for Nuclear and Particle Astrophysics and Cosmology (INPAC)

Lecture 2: Thermal Relics

Inputs from Particle Physics Thermal Relics Neutrinos Weakly Interactive Massive Particles

1. Input from Particle Physics

2. Neutrinos 3. WIMPs

Challenges

Electroweak scale: Introduce new physics at 1 TeV

without destroying Standard Model without induce too high proton decay

Gravity scale

String inspired schemes?

Challenges from cosmology

Dark Matter: Physics beyond the standard model?

Dark Energy: Fundamental zero point energy fluctuations

$$H = \frac{1}{2} \sum \hbar \omega_k \left(a^+ a + a a^+ \right) = \sum \hbar \omega_k a^+ a + \sum_k \frac{1}{2} \hbar \omega_k$$

$$\rho_{vac} = \frac{1}{V} \sum_k \frac{1}{2} \hbar \omega_k \approx \int_0^{M_P} \frac{k^3}{h^3} dk \propto M_P^{-4} \approx \left(10^{28} \, \mathrm{eV} \right)^4 >> \rho_\Lambda \approx \left(2 \times 10^{-3} \, eV \right)^4$$
Even with SUSY (1TeV) $\rho_{vac} \approx \int_0^{1TeV} \frac{k^3}{h^3} dk \approx \left(10^{12} \, \mathrm{eV} \right)^4 >> \rho_\Lambda \approx \left(2 \times 10^{-3} \, eV \right)^4$

Trieste 11 July 2006

Additional Dimensions

Along idea of Arkani Hamed et al. Phys.Lett. B429 (1998) 263

Gravity is weak because of large additional dimensions gravitons lives in whole space, other fields on 4D brane Size ≈ 100µm

Kaluza Klein tower of excitations

Stability of proton => requires lowest one to be stable (new parity) Usually lightest has spin 1 (≠ neutralino in SUSY spin 1/2) in TeV range

2 Versions

Flat, compact (often chosen to have same R) H.C. Cheng, J.L. Feng and K.T.Matchev, Phys. Rev. Lett., **89**, 211301 (2002).

Warped (à la Randall-Sundrum) K. Agashe and G.Servant, hep-ph/0403143; G.Servant and T.M.P.Tait, Nucl. Phys., **B650**, 391 (2003);

Thermal Relics

Trieste 11 July 2006

Trieste 11 July 2006

B.Sadoulet

1. Input from Particle Elisisstic Scattering Rates

3. WIMPs

WIMPs

Direct Detection

Elastic scattering

Expected event rates are low (<< radioactive background) Small energy deposition (≈ few keV) << typical in particle physics Signal = nuclear recoil (electrons too low in energy)

Background = electron recoil (if no neutrons)

Signatures

- Nuclear recoil
- Single scatter ≠ neutrons/gammas
- Uniform in detector

Linked to galaxy

- Annual modulation (but need several thousand events)
- Directionality (diurnal rotation in laboratory but 100 Å in solids)

Input from Particle Physics Neutrinos WIMPs Detection Techniques

Method	Detection	Electron recoil	Nuclear recoil	Discrimination	Groups
Scintillation e.g. NaI	Light	≈200eV/ photoelectron	I: ≈1600eV/ photoelectron	Pulse shape	DAMA, UK NaI, Elegant
Germanium @liquid nitrogen	Electrons + holes	3eV/carrier	9eV/carrier	No	Heidelberg- Moscow
Gas Ionization	electrons	20eV/electron	60eV/electron	Track Length	DRIFT
High pressure gas	electrons+light	20eV/electron	60eV/electron	Ionization +Scintillation	UCLA/Texas
Liquid Xe Scintillation	Light	≈200eV/photo electron	≈1600eV/photo electron	Pulse shape 4ns/22ns	Rome, ZEPLIN I, XMASS
Liquid Xe Ionization + Scintillation	electrons	15eV/electron ≈200eV/p.e.	45eV/electron ≈1600eV/p.e.	Ionization Yield Pulse shape	ZEPLIN II-II-IV XENON
Liquid Ar Scintillation	Light	500eV/p.e.	600-2000 eV/p.e ?	Pulse shape $6ns/1.6\mu s$	MiniClean
Liquid Ar Ionization + Scintillation	electrons	20eV/electron 500eV/p.e.	60eV/electron 600-2000 eV/p.e ?	Ionization Yield Pulse shape	WArp ARP
Phonon mediated	phonons	100µeV/phonon	100µeV/phonon	No	Cuerocino (2β) CRESST I
Ionization/phonons @ low temperature	Electrons + holes Phonons	3eV/carrier 100µeV/phonon	9eV/carrier 100µeV/phonon	Ionization yield Phonon timing/ shape	CDMS,SCDMS Edelweiss
Scintillation/phonons @ low temperature	Light Phonons	100eV/ photoelectron	on O 900eV/ photoelectron	Scintillation yield at least on O	CRESST II
Superheated Droplets	Sound	not sensitive	10keV-100keV tunable	energy density sensitive to alphas	Simple Picasso
Bubble chamber	CCD camera	not sensitive	10keV-100keV tunable	energy density sensitive to alphas	COUPP

Trieste 11 July 2006