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Review of basic properties of RNA

 RNAis a biopolymer
— RNA (length ~ 70 — 2000)
— DNA (length ~ 106 — 109)
— Proteins (length ~ 102)
— Polysaccharides (length ~ 103)
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Composition of Cell (in weight)

Water 70%
Proteins 15%
DNA 1%
RNA 6%
Polysaccharides 3%
Lipids 2%
Mineral ions 3%
Etc...
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Central dogma of Biology

DNA (information storage)

transcription

)
RNA (information transmission)

translation

Protei"ns (biological function)
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Several forms of RNA

* Messenger : mRNA (L ~ 1000)
* Transfer: tRNA (L ~ 70)

* Ribosomal: rRNA (L ~ 3000)

* Micro: yRNA (L ~ 25)

 Huge amounts of non-coding RNA In
“lunk” DNA
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Why does the 3d structure of
RNA matter?

Important discovery in the 80s: RNA can
have enzymatic activity

Important discovery since 2000: yRNA play
crucial role in cell regulation

Function strongly related to shape

—= Must know 3d structure of RNA
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Chemistry of RNA

- RNAIs a
heteropolymer

« Four bases: : "

— Adenine (A) 0 . i
— Guanine (G) . ,;,5
— Cytosine (C) )
— Uracil (U) " g

The sugar phosphate suenine

backbone polymerizes y :
Into a single stranded
charged (-) polymer 0

Llracil
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FOUR BASES OF RNA

guanine cytosine uracil adenine
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sugar-phosphate backbone

SUGAR-PHOSPHATE BACKBONE OF RNA

ribose

5' linkage ,

| 3' linkage

T
phosphodiester bond
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Energy scales

« Crick-Watson: conjugate pairs
C-G
A-U
Pairing due to Hydrogen bonds between
bases => RNA folding
Stacking of aromatic groups

Electrostatics (Mg™ ions) controls 3d
structure
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Energy scales

C — G : 3kCa
A — U : 2kCa
G — U :1kCa

/mo
/mo
/mo

e =5kT
e =3.3KT
e =1.6 kT

300 K = 0.6 kCal/mole = 1/40 eV
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Base pairing

 Induces helical strands (like in DNA)
* Induces secondary structure of RNA
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Pictures of RNA

Transfer RNA
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Hammerhead

Ribozyme Ribosomal RNA

Substrate Side

e A
el " 4
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Catalytic Loop Side

Photolabeling derived Model X-Rays derived Model
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Secondary structures

* In RNA, there are helical stems with loops
and bu Ige S l Spal view | 313/Structure [ Secondary structure |

=i

A

* B
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Pseudo-knots in RNA

 In addition to secondary structure, there
are "pseudo-knots” which constrain the 3d
Stru Ctu re the Kissing Hairpin

The H pseudo- - Loop-bulge
knot |- N ) i o
= e Bil ll

 3d folding controlled by concentration of
Mg~ ions.
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In fact base pairing is not good enough:
need also stacking energies.

However:

* saturation of Crick-Watson pairing

* pseudo-knot free energy << free energy
of secondary structure

——> RNA folding much easier than
protein folding
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Partition function

%

v;;(73;) : interaction of base i and j
“ * short range
e saturating

—
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Partition function

L L—1
_ 3 71T QUT
Z—/ 11 @7 1] FFigpr, 7)QUT:)
i=1 1=1 | /Interactions
Chain
connectivity
6(|Tj4-1 — 75 — a)
< 3 — —
= | )

Q= e_gZi#j v;;(73;)+solvent+electrostatics
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Further simplifications:
— Saturation of interactions
— Watson-Crick pairing

Define Vi = e_ﬁ‘eﬂijﬁ(\i — j| — 4)
Base pair energy Q
* Approximation Chain rigidity
Z =) Qo
sterically
allowed

configurations
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where
Qo=1+> Vij+ >  (VijViu+VieVii+ViVjr)

i<j i<j<k<l

y L & 4
i [
T & | - A o

1<g<k<l<..<p<q

* Sum is mainly combinatorial
* any index appears once and only once
(saturation)
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* In using this partition function, we have
not taken into account the entropy of
loops.

* For aloop of size /, the entropy is
S =1llogu— clogl

» |n fact the log i goes into the free
energies of pairing, so that

S = —clogl
 with ¢ = 3/2 (Gaussian chain)
. ¢ = 1.75 (Self Avoiding Walk)
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Secondary structures

« We work on (Jg

« Secondary structures = Arches
::’:‘_'_'_‘_::1::\ O

IIIII

\}
lllllllllll

» Define Z(i,7)as the
 partition function of segment (73, j)

—t : —

| ‘ L
L A .
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Recursion relation

. Graphically, when one adds a base

‘-%--hﬂ &*[:T:H -+ o J_( A ‘)H R lk+|

- k
Z(i,k+1)=Z(i,k)+ > Vip1Z(i,j— 1)Z(j +1,k)

7=1

e with
V(i,j) = e PelDg(|i — 5| — 4)
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by iterating this recursion, one can
generate all possible secondary
structures, with correct Boltzmann
weights.

This is the best tool for predicting
secondary structures in RNA : more than
85% of base pairings correctly predicted

Algorithm scales as N*

One can include Entropies and Stacking
Energies

http://www.tbi.univie.ac.at/~ivo/RNA
Vienna Package
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* Recursion equation looks like Hartree
equations (tree diagrams)

* No Pseudo-Knots

* |Is it possible to find a field theory such that
secondary structures are the Hartree
graphs?

* Then, Pseudo-Knots would appear as the
corrections to Hartree approximation.
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Matrix Field Theory

Qo=1+)> Vii+ > (VijViu+VieVii+ViVir)

i<j i<j<k<l

1<Jg<k<l<...<p<q
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Wick Theorem

« Simple representation: consider an RNA
sequence of length L

L L
1 1 =1
Qo = N/qubie 2 20,5 Vs 9 H(l + ¢;)
=1 1=1
 due to Wick theorem
L
1 1 -1
Vij = N/Hd@e 3 20,5 PiVij ?bﬂgbmj
i=1
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Wick Theorem

L
1 1 vl
VigVir + Vie Vi + Va Vi = / [[dpie™2 =0 %Via %3 ;1
1=1

- -
w - -
—~- - - ’X . ’ -
[N -

4 ¢ 4 . ’ - ¢ ™o
N [N SO SRS S T S I i ek S

 However, this form gives same weight to
all pairings. No penalty for Pseudo-Knots.

« Experimentally, few pseudo-knots.
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* We look for a parameter N such that

N — 400 = Secondary structures
1
. Corrections in ~ = Pseudo-Knots

« Pseudo-knots are tunable by [I\/Ig++]

concentration

1
~ plays the role of [Mg™ ]

« TOPOLOGY=MATRIX FIELD THEORY
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Matrix Field Theory: a Short
Tutorial

» \ector field theories: O(n) models count
number of connected component of a
graph. n is the fugacity of a loop.

« Matrix field theories: “count” topology.

» Consider the generalization of the scalar ¢4
field theory (t'Hooft, 1973)

+ Consider the fields ¢ap(z) :a N x N
matrix at each point « in space.

H. Orland, SPhT, Saclay RNA folding, Trieste 2006 33



Matrix Field Theory

. A matrix ¢*field theory is defined by

_ /D¢ab( fda;Trcb(x)( V2+m )cb(az) fda:Trcb (x)

- represent @q,() by a double line «/#s

» Vertex: NTr¢,, (z) ==> 4;1’44::; factor N
1

» Propagator: NG( Y)=> //%\j
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Feynmann Graphs

» V: vertices
» [:internal propagators ==

* [:loops

NV—I—I—L

. V=2
. |24

. =4

. Euler characteristic: X =V —/{+ L
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Euler characteristic and the
Genus

« Consider a graph with Euler
characteristics Y

* Theorem: this graph can be drawn without
crossings on a surface of genus ¢ given

by 922”2(_6 where c¢ is the

number of boundaries of the graph

 The genus ¢ is the number of handles of
the embedding surface
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Double line graphs
 In our problem, if we use matrix fields

X SN, SN, m

%b(w): NxN matrix |

e |f we use same rule:

Propagator: 17/N
Loop: N

1
 Above graph:——>= N X N 1
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« Other graph

m 2 internal lines:1 /N~
2 Loops: N*°

| —— Order 1

 Arches are of order 1

2 internal lines: 1 /N~
> @ 0 Loops:1

 Pseudo-knots are of higher order in 17/N
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Matrix field representation of
RNA folding

* We thus generalize the Wick theorem
ﬁ/gd%e_uz (Vl)..tr(w-wj)]btrl_[l(l_Fw)
ﬁjz__) £; a8 JY LAY }Jt

* By looking at a few diagrams, it seems to
do what we want: Hartree diagrams are of
order 1, pseudo-knots are of higher order.
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Topological classification of
RNA folds

* An RNA fold can be characterized by its
topology:

 Number of handles of embedding surface
P—L
T
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Topological expansion of closed
oriented surfaces
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Genus 0O: the Sphere
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Genus 1: the Torus
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Genus 2: the Bi-torus
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Genus 3

RNA folding, Trieste 2006
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Large N expansion

» After some algebraic manipulations, one
has the exact expression:

1 N, 22
Z(l,L) _ 5 /dAG_?trA —I—NtrlogM(A)]\4—1(14)[14_1’1

 where A;;ris a L x L matrix and
M;; = 0ij — 0i j+1 + i(%—l,j)%Ai—l,j

* The /N dependence is explicit
~ one can perform a loop expansion

(saddle-point)
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The loop expansion

« Saddle-point equation
08
dAy

=0 < Hartree recursion equations

« Expansionin 1/N
i1
Ay = Az(zq) | \/HN
* Propagators of xj;» satisfy a Bethe-
Salpeter equation
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Bethe-Salpeter equation

* No order 1/N correction

k m k m k i m
A g 1~
: ; : :
1 1 1 J
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Parallel pairings don’'t change the genus

H. Orland,

SPhT, Saclay RNA folding, Trieste 2006
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Recursion relations

* |t is possible to obtain exact recursion
relations for genus 1

 There is an exact relation

L k—1 L
1 1
Z(1,L+1)=Z(1,L) + ; 1: Vigrk < 17 1‘[1(1 + i) x T | 111(1 + ;) >
p— 1= j:

« which can be expanded in powers of%

. Algorithm scales as L® === too long
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Irreducibility and Nesting

Irreducible PK

Genus is additive

Non nested PK
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Primitive Pseudo-Knots

Irreducible and
non-nested

Only 4
primitive PK
of genus 1
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Statistical study

» Look in database and calculate genii of
pseudo-knots

 PseudoBase: around 245 pseudo-knots;
all are of genus 1, except 1 of genus 2

« 237 H PK of the type ABAB

6 KHP of the type ABACBC

* 1 PK of the type ABCABC

* 1 PK of type ABCDCADB with genus 2
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* Protein Data Bank (PDB): 850 RNA
Structures

650 RNA have genus 0 (short fragments)

* Number of bases ranges from 22 ( H PK
with genus 1) to 2999 (with genus 15)

 Maximum total genus is 18. Maximum
genus of primitive PK is 8.

* Transfer RNA (L=78) are KHP of genus 1
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g ‘j‘ﬁ/ Kissing
7
3

i

Figure 10: A typical tRNA (PDB ID levv [34]. It has the genus 1 of a kissing
hairpin pseudoknot.
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Figure 11: The B chain of 1vou.pdb is an RNA of genus 7 and of length 2825
bases.

* This PK of genus 7 is made of 3 HPK, 3
KHP nested in a large KHP

. Are these genii big?
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Exact enumeration of RNA
structures.

* Model: RNA in which any base can pair
with any other base. All pairing energies

are identical
Vij =wv

* Partition function of the model can be

written as

1 N2 1
ZN(L) — Z/d¢ 6_%Tr¢ NTI' (1 —|_¢)L

« with only one NxN matrix ¢
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* This integral can be calculated exactly

using random maitrix theory (orthogonal
polynomials).

N =

g=0
* and the asymptotic behaviors are given by

aL(g) T Kg(l 4 QU)LLBQ_S/Q

1

Kq = 319-3/2029+1 g, /7
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* The total number of diagrams with any
genus is given by

6—L/2+\/f—1/4
N ~NL—00 LL/2

V2
* the average genus is given by
< g >~ 0.25L
 for real RNA, the largest genus we found

Is 18 for ribosomes (size around 3000 bp).
The genus should be around 750.

 \What about Steric Constraints?
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Enumeration of self-avoiding

RNA structures.

» Self-avoiding polymer on a cubic lattice

« Saturating attraction between nearest-
neighbor monomers.

* Monte Carlo growth method allows to
calculate accurately free energies.

» Length of chains up to 1200

< g >~ 0.13L
 Still much bigger than for real RNA: 390
for RNA of length 3000 instead of 18.
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Monte Carlo method

 |dea: forget matrix fields, keep genus
« Work in pairing space (contact map)
7 — Z 6—5E(pairing)

possible pairings

* |ntroduce a chemiclzal potential for the
topology: ¢+ = 2
Y Z G—BE(Pairing)—ug(pairing)

possible pairings
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Possible moves
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* Accept or reject move with probability
D = e PAE—pAg

* |t is possible to

— take into account the entropy
— make it very fast
— take into account steric constraint

* \We are able to find the correct pseudo-
knots in RNA up to size 200
— transfer RNAs
— Hepatitis delta virus ribozyme
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The structure of the HDV ribozyme

o ﬂ ﬂ A_ﬂ ﬂ ﬂ nﬂ GENOMIC HDV RIBOZYME CORE U1A BINDING SITE

SR = N | A o [ 2 &

AL o ~ n R T 1
O000D—+—<I<GC0O

LI I B |
RWOD00OITOODY
©

/CC A

11 LI I |

N8 Y= qOOo000U \CU S 20<OO 2
g ¥ ? °% <% e__@

PR o i e e Y 592

= o 33 0 T e R
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Conclusion

« Matrix field theory introduces a natural
classification of RNA folds according to
their topological genus.

* One can write exact recursion equations
for genus O, 1, ...

* Most promising is the Monte Carlo
calculation with chemical potential for the
genus.
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