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Review of basic properties of RNA

• RNA is a biopolymer
– RNA (length ~ 70 – 2000)
– DNA (length ~ 106 – 109)
– Proteins (length ~ 102)
– Polysaccharides (length ~ 103)
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Composition of Cell (in weight)
• Water        70%
• Proteins               15%
• DNA          1%
• RNA          6%
• Polysaccharides    3%
• Lipids   2%
• Mineral ions  3%
• Etc…
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Central dogma of Biology

                 DNA (information storage)

                             
                             RNA (information transmission)

                             
                             Proteins (biological function)

transcription

translation
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Several forms of RNA

• Messenger : mRNA (L ~ 1000)
• Transfer: tRNA (L ~ 70)
• Ribosomal: rRNA (L ~ 3000)
• Micro: µRNA (L ~ 25)
• Huge amounts of non-coding RNA in 

“junk” DNA
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Why does the 3d structure of 
RNA matter?

Important discovery in the 80s: RNA can 
have enzymatic activity

Important discovery since 2000: µRNA play 
crucial role in cell regulation

Must know 3d structure of RNA

Function strongly related to shape
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Chemistry of RNA

• RNA is a 
heteropolymer

• Four bases:
– Adenine (A)   
– Guanine (G)
– Cytosine (C)
– Uracil (U)
The sugar phosphate 

backbone polymerizes 
into a single stranded 
charged (-) polymer
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Energy scales

• Crick-Watson: conjugate pairs
               C – G
               A – U
Pairing due to Hydrogen bonds between 

bases        RNA folding
Stacking of aromatic groups
Electrostatics (Mg    ions) controls 3d 

structure

++
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Energy scales

  C — G : 3kCal/mole = 5 kT
   A — U : 2kCal/mole = 3.3 kT
  G — U : 1kCal/mole =1.6 kT

      300 K = 0.6 kCal/mole = 1/40 eV
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Base pairing

• Induces helical strands (like in DNA)
• Induces secondary structure of RNA
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Pictures of RNA

Transfer RNA
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Hammerhead 
Ribozyme Ribosomal RNA
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Secondary structures

• In RNA, there are helical stems with loops
• and bulges

16
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Pseudo-knots in RNA

• In addition to secondary structure, there 
are “pseudo-knots” which constrain the 3d 
structure

• 3d folding controlled by concentration of 
Mg    ions.

The H pseudo-
knot

the Kissing Hairpin

Loop-bulge

++
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In fact base pairing is not good enough: 
need also stacking energies.

However:
• saturation of Crick-Watson pairing
• pseudo-knot free energy << free energy 
of secondary structure

           RNA folding much easier than 
protein folding
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Partition function

: interaction of base i and j 
• short range
• saturating
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Partition function

Chain
connectivity

Interactions
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Further simplifications:
– Saturation of interactions
– Watson-Crick pairing

   Define 

Base pair energy

Chain rigidity• Approximation

sterically 
allowed 
configurations
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where

• sum is mainly combinatorial
• any index appears once and only once 
(saturation)
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• In using this partition function, we have 
not taken into account the entropy of 
loops.

• For a loop of size l, the entropy is

• In fact the           goes into the free 
energies of pairing, so that 

• with                (Gaussian chain)                       
•                        (Self Avoiding Walk)

23

S = l log µ− c log l

log µ

S = −c log l
c = 3/2
c = 1.75
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Secondary structures

• We work on 
• Secondary structures = Arches

• Define             as the
• partition function of segment 

24

Q0

Z(i, j)
(i, j)

Fig. 2b: Representation of the same RNA stretched.

which gluon lines cross are of higher order. We merely have to go to the large N expansion, and the diagrams are
classified by powers of 1/N2. Note that a somewhat similar formulation in terms of matrix theory has been used for
the meander problem [12].

Consider the quantity

Z(1, L) =
1

A(L)

∫ L∏

k=1

dϕke
−N

2

∑
ij

(V −1)ij tr(ϕiϕj) 1
N

tr
L∏

l=1

(1 + ϕl) (4)

Here ϕi (i = 1, · · · , L) denote L independent N by N Hermitian matrices and Πl(1 + ϕl) represents the ordered
matrix product (1 + ϕ1)(1 + ϕ2) · · · (1 + ϕL). All matrix products will be understood as ordered in this paper. The
normalization factor A(L) is defined by

A(L) =
∫ L∏

k=1

dϕke
−N

2

∑
ij

(V −1)ijtr(ϕiϕj) (5)

Let us refer to the row and column indices a and b of the matrices (ϕi)b
a as color indices, with a, b = 1, 2, · · · , N .

The matrix integral (4) defines a matrix theory with L matrices. We can either think of it as a Gaussian theory with a
complicated observable 1

N trΠl(1+ϕl), or alternatively, by raising 1
N trΠl(1+ϕl) = elog[ 1

N trΠl(1+ϕl)] into the exponent,
as a complicated matrix theory with the action (N

2

∑
ij(V

−1)ijtr(ϕiϕj)− log[ 1
N trΠl(1 +ϕl)]). Another trivial remark

is that we can effectively remove 1
N tr from (4).

The important remark is that the matrix theory [13] defined by (4) has the same topological structure as ’t Hooft’s
large N quantum chromodynamics. There are L types of gluons, and the gluon propagators are given by 1

N Vij . As
in large N quantum chromodynamics, each gluon propagator is associated with a factor of 1

N and each color loop is
associated with a factor of N. The reader familiar with matrix theory or large N quantum chromodynamics can see
immediately that the Gaussian matrix integral (4) evaluates precisely to the infinite series

Z(1, L) = 1 +
∑

<ij>

Vij +
∑

<ijkl>

VijVkl + · · · + 1
N2

∑

<ijkl>

VikVjl + · · · (6)

Some “typical” terms in this series correspond to the diagrams in fig. 3.

+ + + +  ...+   ...

Fig. 3: Graphical representation of a few terms of the partition function.

This differs from (2) only in that the terms with different topological character are now classified by inverse powers
of 1

N2 . Thus, the use of the large N expansion allows us to separate out the tertiary structure, represented in (6) for
example by the term 1

N2

∑
<ijkl>VikVjl, from the secondary structure.

Note that the ordered product Πl(1 + ϕl) ensures that the diagonal elements Vii of the matrix V do not appear in
Z(1, L). We have nevertheless already set Vii to 0.

The program proposed in this paper is thus to evaluate Z(1, L) with V an arbitrary matrix. Once Z(1, L) is known
we can then insert it into (3) to evaluate Z. The parameter 1

N serves as a convenient marker to distinguish the
tertiary structure from the secondary structure. What we offer here is a systematic way of generating refinements to
the calculation of Z, and hence the free energy F, to any desired accuracy in a well controlled approximation.

Since in Z(1, L) the quantities 1 and L represent arbitrary labels we can just as well define

Z(m, n) =
1

A(m, n)

∫ L∏

k=1

dϕke−
N
2 Σn

i,j=m(V −1)ijtr(ϕiϕj) 1
N

tr
n∏

l=m

(1 + ϕl) (7)
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Z = 1 +
∑

<ij>

Vij +
∑

<ijkl>

VijVkl + · · · +
∑

<ijkl>

VikVjl + · · · (2)

where < ij > denotes all pairs with j > i, < ijkl > all quadruplets with l > k > j > i, and so on. Then the partition
function is given by

Z =
∫ L∏

k=1

d3!rk

L−1∏

i=1

f(|!ri+1 − !ri|) Z (3)

The function f(r) can be taken to be, for example, δ(r − l) for a model in which the nucleotides are connected along
the RNA heteropolymer by rigid rods of length l, or e−(r−l)2/6σ2

for a model with elastic rods. Note that the saturation
of the hydrogen bond has been incorporated by the requirement l > k > j > i, and so on. Once the nucleotide at i
has interacted with the nucleotide at j it cannot interact with the nucleotide at k . Note that in (2), only the enthalpy
and combinatorics of pairings are included. The integration over the atomic coordinates in (3) accounts for the actual
topological feasibility of a given pairing and also for the entropic factor associated with loop formation.

Biologists are interested in the folded configuration essentially at room temperature. Since room temperature is
substantially less than the melting temperature (of order 800C, in other words, the characteristic energy scale of the
problem), we want to determine the ground state configuration of the RNA heteropolymer. In other words, once we
have obtained Z we would like to extract the term in Z that dominates as βε tends to infinity in (1).

We have given a simplified quantitative framework for the RNA folding problem. From a chemical point of view,
it would be appropriate to include also the stacking energies of couples of complementary base pairs, instead of
energies of single pairs of bases. However, in the following, we will stick with the latter. We will also concentrate on
the evaluation of the “pairing” partition function (2). We expect that the various effects we have ignored, such as
stacking , etc..., can be added later as “bells and whistles” to our approach. The stacking energies for instance can
be taken into account by utilizing a 16 × 16 interaction matrix between pairs of bases instead of the 4 × 4 matrix
ε(si, sj) we use here.

III. MATRIX THEORY

What is the connection with matrix theory?
Consider pulling apart the folded RNA structure given in fig. 2a.

Fig. 2a: Representation of the secondary structure of an RNA.

We obtain the structure of fig. 2b which to physicists are reminiscent of Feynman diagrams in a variety of subjects:
matrix theory, quantum chromodynamics, and so on.

For the sake of definiteness, let us borrow the terminology of quantum chromodynamics. The dotted lines are known
as gluon propagators, and the solid line as a quark propagator. The secondary structure corresponds to diagrams in
which the gluon lines do not cross over each other, while the tertiary structure corresponds to diagrams in which the
gluon lines do cross.

The crucial observation, originally made by ’t Hooft [11], is that there is a systematic relation between the topology
of a graph and its corresponding power of 1/N2. For instance, planar diagrams are of order 1/N0, and diagrams in

3
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Recursion relation

• Graphically, when one adds a base

• with

25

Z(i, k + 1) = Z(i, k) +
k∑

j=1

Vj,k+1Z(i, j − 1)Z(j + 1, k)

V (i, j) = e−βε(i,j)θ(|i− j|− 4)
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• by iterating this recursion, one can 
generate all possible secondary 
structures, with correct Boltzmann 
weights.

• This is the best tool for predicting 
secondary structures in RNA : more than 
85% of base pairings correctly predicted

• Algorithm scales as 
• One can include Entropies and Stacking 

Energies
• http://www.tbi.univie.ac.at/~ivo/RNA  

Vienna Package
26

N3
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• Recursion equation looks like Hartree 
equations (tree diagrams)

• No Pseudo-Knots
• Is it possible to find a field theory such that 

secondary structures are the Hartree 
graphs? 

• Then, Pseudo-Knots would appear as the 
corrections to Hartree approximation.

28
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Matrix Field Theory

29



H. Orland, SPhT, Saclay RNA folding, Trieste 2006

Wick Theorem

• Simple representation: consider an RNA 
sequence of length L

• due to Wick theorem

30

Q0 =
1
N

∫ L∏

i=1

dφie
− 1

2
P

i,j φiV
−1

ij φj

L∏

i=1

(1 + φi)

Vij =
1
N

∫ L∏

i=1

dφie
− 1

2
P

i,j φiV
−1

ij φj φiφj
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Wick Theorem

• However, this form gives same weight to 
all pairings. No penalty for Pseudo-Knots.

• Experimentally, few pseudo-knots.

31

VijVkl + VikVjl + VilVjk =
1
N

∫ L∏

i=1

dφie
− 1

2
P

i,j φiV
−1

ij φj φiφjφkφl
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• We look for a parameter N such that 

•       Corrections in            Pseudo-Knots

• Pseudo-knots are tunable by [Mg     ] 
concentration

•   TOPOLOGY=MATRIX FIELD THEORY

32

N → +∞ ≡ Secondary structures

1
N
≡

++1
N

plays the role of [Mg     ]

++
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Matrix Field Theory: a Short 
Tutorial

• Vector field theories:            models count 
number of connected component of a 
graph.      is the fugacity of a loop.

• Matrix field theories: “count” topology.
• Consider the generalization of the scalar                                      

field theory (t’Hooft, 1973)
• Consider the fields              : a               

matrix at each point     in space.

33

O(n)

n

φ4

φab(x) N ×N
x
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Matrix Field Theory

• A matrix      field theory is defined by

• represent               by a double line 
• Vertex:                                          factor 

• Propagator:  
34

φ4

Z =
∫
Dφab(x)e−

N
2

R
dxTrφ(x)(−∇2+m2)φ(x)− gN

4!

R
dxTrφ4(x)

φab(x)
NTrφ4

ab(x) N

1
N

G(x− y) 1
N
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Feynmann Graphs

• V: vertices
• I: internal propagators
• L: loops

• V=2
• I=4
• L=4
• Euler characteristic:   

35

NV−I+L

χ = V − I + L

Fig. 2b: Representation of the same RNA stretched.

which gluon lines cross are of higher order. We merely have to go to the large N expansion, and the diagrams are
classified by powers of 1/N2. Note that a somewhat similar formulation in terms of matrix theory has been used for
the meander problem [12].

Consider the quantity

Z(1, L) =
1

A(L)

∫ L∏

k=1

dϕke
−N

2

∑
ij

(V −1)ij tr(ϕiϕj) 1
N

tr
L∏

l=1

(1 + ϕl) (4)

Here ϕi (i = 1, · · · , L) denote L independent N by N Hermitian matrices and Πl(1 + ϕl) represents the ordered
matrix product (1 + ϕ1)(1 + ϕ2) · · · (1 + ϕL). All matrix products will be understood as ordered in this paper. The
normalization factor A(L) is defined by

A(L) =
∫ L∏

k=1

dϕke
−N

2

∑
ij

(V −1)ijtr(ϕiϕj) (5)

Let us refer to the row and column indices a and b of the matrices (ϕi)b
a as color indices, with a, b = 1, 2, · · · , N .

The matrix integral (4) defines a matrix theory with L matrices. We can either think of it as a Gaussian theory with a
complicated observable 1

N trΠl(1+ϕl), or alternatively, by raising 1
N trΠl(1+ϕl) = elog[ 1

N trΠl(1+ϕl)] into the exponent,
as a complicated matrix theory with the action (N

2

∑
ij(V

−1)ijtr(ϕiϕj)− log[ 1
N trΠl(1 +ϕl)]). Another trivial remark

is that we can effectively remove 1
N tr from (4).

The important remark is that the matrix theory [13] defined by (4) has the same topological structure as ’t Hooft’s
large N quantum chromodynamics. There are L types of gluons, and the gluon propagators are given by 1

N Vij . As
in large N quantum chromodynamics, each gluon propagator is associated with a factor of 1

N and each color loop is
associated with a factor of N. The reader familiar with matrix theory or large N quantum chromodynamics can see
immediately that the Gaussian matrix integral (4) evaluates precisely to the infinite series

Z(1, L) = 1 +
∑

<ij>

Vij +
∑

<ijkl>

VijVkl + · · · + 1
N2

∑

<ijkl>

VikVjl + · · · (6)

Some “typical” terms in this series correspond to the diagrams in fig. 3.
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Fig. 3: Graphical representation of a few terms of the partition function.

This differs from (2) only in that the terms with different topological character are now classified by inverse powers
of 1

N2 . Thus, the use of the large N expansion allows us to separate out the tertiary structure, represented in (6) for
example by the term 1

N2

∑
<ijkl>VikVjl, from the secondary structure.

Note that the ordered product Πl(1 + ϕl) ensures that the diagonal elements Vii of the matrix V do not appear in
Z(1, L). We have nevertheless already set Vii to 0.

The program proposed in this paper is thus to evaluate Z(1, L) with V an arbitrary matrix. Once Z(1, L) is known
we can then insert it into (3) to evaluate Z. The parameter 1

N serves as a convenient marker to distinguish the
tertiary structure from the secondary structure. What we offer here is a systematic way of generating refinements to
the calculation of Z, and hence the free energy F, to any desired accuracy in a well controlled approximation.

Since in Z(1, L) the quantities 1 and L represent arbitrary labels we can just as well define

Z(m, n) =
1

A(m, n)

∫ L∏

k=1

dϕke−
N
2 Σn

i,j=m(V −1)ijtr(ϕiϕj) 1
N
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(1 + ϕl) (7)
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which gluon lines cross are of higher order. We merely have to go to the large N expansion, and the diagrams are
classified by powers of 1/N2. Note that a somewhat similar formulation in terms of matrix theory has been used for
the meander problem [12].
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Note that the ordered product Πl(1 + ϕl) ensures that the diagonal elements Vii of the matrix V do not appear in
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The program proposed in this paper is thus to evaluate Z(1, L) with V an arbitrary matrix. Once Z(1, L) is known
we can then insert it into (3) to evaluate Z. The parameter 1

N serves as a convenient marker to distinguish the
tertiary structure from the secondary structure. What we offer here is a systematic way of generating refinements to
the calculation of Z, and hence the free energy F, to any desired accuracy in a well controlled approximation.
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Euler characteristic and the 
Genus

• Consider a graph with Euler  
characteristics 

• Theorem: this graph can be drawn without 
crossings on a surface of genus     given 
by                             where     is the 

• number of boundaries of the graph 
• The genus     is the number of handles of 

the embedding surface

36
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Double line graphs

• In our problem, if we use matrix fields 

• If we use same rule: 

• Above graph: 

37

φab(x): NxN matrix
Propagator: 1/N
Loop: N

N × 1
N

= 1
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• Other graph

• Arches are of order 1

• Pseudo-knots are of higher order in 1/N
38

2 internal lines:  1/N2

2 Loops: N2

Order 1

2 internal lines:1/N2

0 Loops: 1
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Matrix field representation of 
RNA folding

• We thus generalize the Wick theorem

• By looking at a few diagrams, it seems to 
do what we want: Hartree diagrams are of 
order 1, pseudo-knots are of higher order.

39

Fig. 2b: Representation of the same RNA stretched.
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Topological classification of 
RNA folds

• An RNA fold can be characterized by its 
topology:

• Number of handles of embedding surface

40

g =
P − L

2
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Topological expansion of closed 
oriented surfaces

•    

41g = 0 g = 1 g = 2

g = 0
g != 0

g
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Genus 0: the Sphere

•  

42

d)

a) b)

c)
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Genus 1: the Torus

•   

43
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Genus 2: the Bi-torus

•  

44
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Genus 3

•     

45



H. Orland, SPhT, Saclay RNA folding, Trieste 2006

Large N expansion

• After some algebraic manipulations, one 
has the exact expression:

• where        is a             matrix and

• The     dependence is explicit

46

Now use the Gaussian representation

e−
1

2N trK2
=

1
C

∫
dAe−

N
2 trA2+itrAK (17)

with the normalization factor C =
∫

dAe−
N
2 trA2

. Note that even though K is complex we can take A to be hermitean.
(Equivalently, the anti-hermitean part of A drops out.) Putting it together we obtain

Z(1, L) =
1
N

∂

∂h

1
C

∫
dAe−

N
2 trA2

∫
dψ∗dψe

−
∑

ij

∑
a

ψ∗
a,iMijψa

j (18)

where

Mij = δij − δi,j+1 + hδi,1δj,L+1 + i(Vi−1,j)
1
2 Ai−1,j (19)

or in matrix form

ML =





1 0 0 · · 0 h
−1 1 + a12 a13 · · a1L 0
a∗
12 −1 1 + a23 · · a2L 0

· · · · · · ·
· · · · · · ·
· · · · −1 1 + aL−1L 0
a∗
1L a∗

2L · a∗
L−2L a∗

L−1L −1 1





(20)

where we have used the convenient notation

i
√

Vij Aij = aij for i < j

i
√

Vij Aij = a∗
ji for j < i (21)

The point of these manipulations is that in (18) we have now isolated the color index a so that the integral over
ψ∗ and ψ factors into N copies of the same integral, thus giving

Z(1, L) =
1
N

∂

∂h

1
C

∫
dAe−

N
2 trA2

(detM(A))N =
1
N

∂

∂h

1
C

∫
dAe−

N
2 trA2+Ntr log M(A) (22)

At this point, we can differentiate with respect to h and set h to 0, obtaining the alternative form

Z(1, L) =
1
C

∫
dAe−

N
2 trA2+Ntr log M(A)M−1(A)L+1,1 (23)

In this expression,

Mij = δij − δi,j+1 + i(Vi−1,j)
1
2 Ai−1,j (24)

Let us introduce the action

S(A) =
1
2
trA2 − tr log M(A) (25)

and define the average of an “observable” O by

< O >=
1
C

∫
dAe−NS(A)O (26)

(Note the non-standard normalization used here.) Then, our result can be summarized elegantly as

Z(1, L) =< M−1(A)L+1,1 > (27)

At this point, as remarked earlier, we note that the quantity Z(1, L) can obviously be generalized to Z(i, j): after
all, the site labels 1 and L are arbitrary. Then we have the appealing result that

Z(i, j) =< M−1(A)j+1,i > for j > i (28)
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6

N
one can perform a loop expansion 
(saddle-point)
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The loop expansion

• Saddle-point equation

• Expansion in 1/N

• Propagators of        satisfy a Bethe-
Salpeter equation

47

∂S

∂All′
= 0 Hartree recursion equations

All′ = A(0)
ll′ +

xll′√
N

xll′
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Bethe-Salpeter equation

•  No order 1/N correction

48

= +
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Fig. 5: Graphical representation of the Bethe-Salpeter recursion relation. The dotted lines represent factors
√

Vij

while the dashed lines represent factors Vij . The solid thick lines represent Hartree propagators G. The Hartree
propagators being directed, the arrows denote the direction of increasing spatial index.

Dmn =
∑

m′

M−1
mm′

√
Vm′−1,n xm′−1,n

(Bp)kl = (Dp)kl

Tp = TrBp (39)

In (38), the bracket means that the Wick theorem should be applied to contract the fields xll′ which appear in this
expression, their contraction being given by the kernel ∆.

The calculation of the correction to the free energy is possible numerically for not too long RNA sequences. Work
in this direction is in progress.

Because of the complexity of the (exact) order 1/N2 obtained in this approach, we found it simpler to generalize
the Hartree recursion equation to incorporate some residual interactions between the loops and bulges.

VI. RECURSION APPROACH

Two approaches can be used to derive recursion relations for the partition functions. One is detailed in the following,
whereas the other one is described in appendix B.

A possible approach is to take the expression in (31)

Z(1, L) =
1
N

∂

∂h
< (det M(A))N >0 (40)

and try to relate Z(1, L + 1) to Z(1, L). In other words, we would like to relate < (detML+1(A))N > to
< (det ML(A))N > where the subscript on M keeps track of the different matrices in the discussion. Note that
ML is an L + 1 by L + 1 matrix. Explicitly, as noted before, the L + 2 by L + 2 matrix ML+1 has the form

ML+1 =





1 0 0 · · 0 h
−1 1 + a12 a23 · · b1 0
a∗
12 −1 · · · b2 0

· · · · · · ·
· · · · · · ·
· · · · −1 1 + bL 0
b∗1 b∗2 · b∗L−1 b∗L −1 1





(41)

where for convenience we have denoted

i
√

Vij Aij = aij for i < j ≤ L

i
√

Vi,L+1 Ai,L+1 = bi for i ≤ L

i
√

Vij Aij = a∗
ji for j < i ≤ L

i
√

VL+1,j AL+1,j = b∗j for j ≤ L (42)

9
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Parallel pairings don’t change the genus
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Recursion relations

• It is possible to obtain exact recursion 
relations for genus 1

• There is an exact relation

• which can be expanded in powers of 

• Algorithm scales as                   too long!

50

Z(1, L + 1) = Z(1, L) +
L∑

k=1

VL+1,k <
1
N

Tr
k−1∏

i=1

(1 + φi)×
1
N

Tr
L∏

j=k+1

(1 + φj) >

1
N

L6
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Irreducibility and Nesting

51

!" #$

g

#$

Irreducible PK

!" #$

g

#$ Non nested PK

Genus is additive
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Primitive Pseudo-Knots

52

Irreducible and 
non-nested

g = 1

Only 4 
primitive PK 
of genus 1
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Statistical study

• Look in database and calculate genii of 
pseudo-knots

• PseudoBase: around 245 pseudo-knots; 
all are of genus 1, except 1 of genus 2

• 237 H PK of the type ABAB
• 6 KHP of the type ABACBC
• 1 PK of the type ABCABC
• 1 PK of type ABCDCADB with genus 2

53
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• Protein Data Bank (PDB): 850 RNA 
Structures

• 650 RNA have genus 0 (short fragments)
• Number of bases ranges from 22 ( H PK 

with genus 1) to 2999 (with genus 15)
• Maximum total genus is 18. Maximum 

genus of primitive PK is 8.
• Transfer RNA (L=78) are KHP of genus 1

54
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L
L/4

2000 × 0.14 " 280

•
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•     

• This PK of genus 7 is made of 3 HPK, 3 
KHP nested in a large KHP

• Are these genii big?

56
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Exact enumeration of RNA 
structures.

• Model: RNA in which any base can pair 
with any other base. All pairing energies 
are identical

• Partition function of the model can be 
written as 

• with only one NxN matrix 
57

Vij = v

ZN (L) =
1
A

∫
dφ e−

N
2v Trφ2 1

N
Tr (1 + φ)L

φ
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• This integral can be calculated exactly 
using random matrix theory (orthogonal 
polynomials).

• and the asymptotic behaviors are given by

58

ZN (L) =
∞∑

g=0

aL(g)
N2g

aL(g) ≈L→∞ Kg(1 + 2v)LL3g−3/2

Kg =
1

34g−3/222g+1g!
√

π



H. Orland, SPhT, Saclay RNA folding, Trieste 2006

• The total number of diagrams with any 
genus is given by 

• the average genus is given by

• for real RNA, the largest genus we found 
is 18 for ribosomes (size around 3000 bp). 
The genus should be around 750.

• What about Steric Constraints?

59

N ≈L→∞ LL/2 e−L/2+
√

L−1/4

√
2

< g >L≈ 0.25L
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Enumeration of self-avoiding 
RNA structures.

• Self-avoiding polymer on a cubic lattice
• Saturating attraction between nearest-

neighbor monomers. 
• Monte Carlo growth method allows to 

calculate accurately free energies.
• Length of chains up to 1200

• Still much bigger than for real RNA: 390 
for RNA of length 3000 instead of 18.

60

< g >≈ 0.13L
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Monte Carlo method

• Idea: forget matrix fields, keep genus
• Work in pairing space (contact map)

• Introduce a chemical potential for the 
topology: 

61

Z =
∑

possible pairings

e−βE(pairing)

e−µ =
1

N2

Z =
∑

possible pairings

e−βE(pairing)−µg(pairing)
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Possible moves

• If the configuration C is such that both the base in i and in j are free (i.e. σC(i) = i and
σC(j) = j) then add the link i− j (i.e. put σC′(i) = j and σC′(j) = i). We call this Monte Carlo
move “add a base pair” (see case 1 of figure 12).

• If the configuration C is such that there is arc between i and j (i.e. σC(i) = j) then remove the
link i − j (i.e. put σC′(i) = i and σC′(j) = j). We call this Monte Carlo move “remove a base
pair” (see case 2 of figure 12).

• If the configuration C is such that either the base in i or the base in j is linked to some other
base, (i.e. σC(i) = i and σC(j) "= j, or σC(j) = j and σC(i) "= i) then move the link back to
i − j, by overriding any former link (i.e. put σC′(i) = j and σC′(j) = i). We call this Monte
Carlo move “shift a base pair” (see case 3 and 4 of figure 12).

• If the configuration C is such that the base i is linked to an other base k1 and j is linked to
an other base k2 and the base-pair k1 − k2 is possible, then swap the links (i.e. put σC′(i) = j,
σC′(j) = i, σC′(k1) = k2, σC′(k2) = k1). We call this Monte Carlo move “swap a base pair” (see
case 5 and 6 of figure 12).

• If none of the above cases applies then do not update the configuration, i.e. put C ′ = C.

See Figure 12 for a summary of these Monte Carlo moves, and Figure 13 for a simple example.

3)

2)

4)

5)

6)

C C’

1)

= i

= j

= others

Figure 12: Monte Carlo moves for an allowed base pair i − j of a RNA secondary structures with
pseudoknots. The move 1) adds a base pair. The move 2) removes a base pair. The moves 3) and 4)
shift a base pair. The move 5) and 6) swap two base-pairs, when possible.

These Monte Carlo moves obviously satisfy the detailed balance condition. In fact the probability
of creating a link between i and j when i or j are link-free (or at least one of them), or of removing the
link when they are already linked is always Pij = 2/T , and thus it is symmetric. In the case where i

14
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• Accept or reject move with probability

• It is possible to
– take into account the entropy
– make it very fast
– take into account steric constraint

• We are able to find the correct pseudo-
knots in RNA up to size 200
– transfer RNAs
– Hepatitis delta virus ribozyme

63

p = e−β∆E−µ∆g
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Conclusion

• Matrix field theory introduces a natural 
classification of RNA folds according to 
their topological genus.

• One can write exact recursion equations 
for genus 0, 1, ...

• Most promising is the Monte Carlo 
calculation with chemical potential for the 
genus. 
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