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• Review of the Denaturation Transition of 
DNA

• Simple polymer model: the Schrodinger 
equation approach

• The Peyrard-Bishop model

• The Poland-Scheraga model

• Recursion equations

• the Fixman-Freire method
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• Theory for DNA Hybridization

• effects of mutations and mismatches

• Effect of a torque: Supercoiling
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Review of basic properties of DNA

• DNA is a biopolymer
– RNA (length ~ 70 – 2000)
– DNA (length ~ 106 – 109)
– Proteins (length ~ 102)
– Polysaccharides (length ~ 103)



H. Orland, SPhT, Saclay Trieste, July 24-29, 2006

Composition of Cell (in weight)
• Water        70%
• Proteins               15%
• DNA          1%
• RNA          6%
• Polysaccharides    3%
• Lipids   2%
• Mineral ions  3%
• Etc…
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Central dogma of Biology

                 DNA (information storage)

                             
                             RNA (information transmission)

                             
                             Proteins (biological function)

transcription

translation



DNA structure

• DNA is a double stranded polymer

• Made of 4 bases:

• adenine

• guanine

• cytosine

• thymine
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• Watson-Crick pairing

• G -- C : 3 Hydrogen bonds , about 3 kCal/
mole (5 kT)

• A -- U : 2 Hydrogen bonds , about 2 kCal/
mole (3 kT)

• The 2 strands are complementary

• The length of a DNA ranges from few 
thousands to few billions.



• In addition, there are Stacking Energies.

• Nucleic acids are charged           DNA is 
soluble

• The organic rings of the bases are 
Hydrophobic            bases have a tendency 
to cluster: Stacking energies



•     

DNA is strongly negatively charged
due to Phosphate groups

Usually, there are Mg++, Na+ and 
Cl- ions          Screening

Debye-Huckel interaction between 
the charged monomers of DNA

κ2
DH = 4πlBcI

lB
cI

is the Bjerrum length 7Å
is the total ion concentration

Screening length is 4    in 1MÅ
20    in 0.075 MÅ

vDH(r) =
lB
r

e−κDHr

Electrostatics



Bending and persistence

• Bending energy is characterized by the 
persistence length (correlation length of 
tangents)

•                  bp for double-stranded DNA

•                bp for single-stranded DNA   

lp ≈ 150
≈ 750Å

≈ 75Å
lp ≈ 15



DNA denaturation

Heat

65 C ≤ T ≤ 110 C
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A is the number of 
bound pairs.

Measured by looking 
at UV adsorption at 

260 nm
65 C ≤ T ≤ 110 C

Sharp peaks: very cooperative phenomenon
Transition looks discontinuous (1st order)



Why is it interesting?

• It is a nice statistical physics problem

• Allows to understand molecular recognition

• Allows to discriminate between coding and 
non coding regions of DNA

• Nice and clean experiments

• Relevant to DNA chips



A simple polymer 
model

• Assume 2 chains of elastic beads

• Model the H-bonds by a short range 
attraction between complementary bases



• Forget about Excluded Volume effects.

• where               is the persistence length of 
single stranded DNA

• For this model, all binding energies are 
identical.

Z =
∫

dr(1)
i dr(2)

i e−
3

2a2
PN−1

i=1 (r(1)
i+1−r(1)

i )2− 3
2a2

PN−1
i=1 (r(2)

i+1−r(2)
i )2

×e−β
PN

i=1 v(r(1)
i −r(2)

i )

a = lp



• Take the continuous limit              Feynman 
path integral

• Make the change of variables 

•  

In our model, the partition function of the two chains of length N reads :

Z =
∫
D!r1(s)D!r2(s) exp



− d

2a2

∫ N

0
ds




(

d!r1

ds

)2

+

(
d!r2

ds

)2


− β
∫ N

0
ds v(!r1(s)− !r2(s))





× exp

(

−g
∫ N

0
ds

∫ N

0
ds′ δ(!r1(s)− !r2(s

′))

)

(1)

where d is the space dimension, a is the Kuhn length of the monomers, β is the inverse

temperature, g is the excluded volume parameter and v(!r1 − !r2) is the short range binding

potential for monomers s of chain 1 and 2. In the following, we will model this interaction

by an attractive (d dimensional) spherical well potential, of radius r0 and depth −V0.

An approximate treatment of the excluded volume interaction will be given in the next

section. Section III deals with a study of the phase transition in the framework of a quantum

analogy [7]. We finally compare our results with references [5,6].

II. APPROXIMATE TREATMENT OF THE EXCLUDED VOLUME

It is clear from equation (1), that one should focus on the relative coordinate (!r1(s) −

!r2(s)) of the two chain system to study a possible adsorption transition. We introduce the

new coordinates

!R(s) =
!r1(s) + !r2(s)

2
(2)

!r(s) = !r1(s)− !r2(s) (3)

Performing the change of variable in (1), we have

Z =
∫
D!r(s) exp



− d

4a2

∫ N

0
ds

(
d!r

ds

)2

− β
∫ N

0
ds v(!r(s))−W ({!r(s)})



 (4)

where

e−W ({!r(s)}) =
∫
D !R(s) exp



−
d

a2

∫ N

0
ds



d!R

ds




2

− g
∫ N

0
ds

∫ N

0
ds′δ

(
!R(s)− !R(s′) +

1

2
(!r(s) + !r(s′))

)




(5)

3
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• One recognizes a Quantum Mechanical 
matrix element

• where the Hamiltonian is given by

•  

Z =
∫

dr < r|e−NH |0 >

H = −4a2

3
∇2 + βv(r)



• In the limit              , only the ground state 
dominates: Ground State Dominance.

• At high temperature,    small, the 
Hamiltonian has no bound state: Denatured 
phase

• At low temperature,     is large, the 
Hamiltonian has a bound state: Helical phase

• where

•  

N →∞

β

β

Z ≈ e−NE0

∫
drΨ0(r)Ψ0(0)

H|Ψ0 >= E0|Ψ0 >



• There is a phase transition at a temperature 

• It is a second order (continuous) unbinding 
transition

•  

Tc

θ =
Nbound

N
=

∫

|r|<R
dr Ψ2

0(r)



• Model for Unzipping with a force

• which can be written as 

•  

In our model, the partition function of the two chains of length N reads :

Z =
∫
D!r1(s)D!r2(s) exp



− d

2a2

∫ N

0
ds




(

d!r1

ds

)2

+

(
d!r2

ds

)2


− β
∫ N

0
ds v(!r1(s)− !r2(s))





× exp

(

−g
∫ N

0
ds

∫ N

0
ds′ δ(!r1(s)− !r2(s

′))

)

(1)

where d is the space dimension, a is the Kuhn length of the monomers, β is the inverse

temperature, g is the excluded volume parameter and v(!r1 − !r2) is the short range binding

potential for monomers s of chain 1 and 2. In the following, we will model this interaction

by an attractive (d dimensional) spherical well potential, of radius r0 and depth −V0.

An approximate treatment of the excluded volume interaction will be given in the next

section. Section III deals with a study of the phase transition in the framework of a quantum

analogy [7]. We finally compare our results with references [5,6].

II. APPROXIMATE TREATMENT OF THE EXCLUDED VOLUME

It is clear from equation (1), that one should focus on the relative coordinate (!r1(s) −

!r2(s)) of the two chain system to study a possible adsorption transition. We introduce the

new coordinates

!R(s) =
!r1(s) + !r2(s)

2
(2)

!r(s) = !r1(s)− !r2(s) (3)

Performing the change of variable in (1), we have

Z =
∫
D!r(s) exp



− d

4a2

∫ N

0
ds

(
d!r

ds

)2

− β
∫ N

0
ds v(!r(s))−W ({!r(s)})



 (4)

where

e−W ({!r(s)}) =
∫
D !R(s) exp



−
d

a2

∫ N

0
ds



d!R

ds




2

− g
∫ N

0
ds

∫ N

0
ds′δ

(
!R(s)− !R(s′) +

1

2
(!r(s) + !r(s′))

)




(5)

3

−βf.r(N)
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Z =
∫

dr < r|e−NHe−βf.r|0 >



The Peyrard-Bishop 
model

• The original Peyrard-Bishop model is exactly 
the Schrodinger model in one dimension, 
with a Morse potential

v(r) = V0(e−4cr − 2e−2cr)



• The Peyrard-Bishop model can be modified 
to include stacking energies.

• The discrete form is given by

Z =
∫ N∏

n=1

dyne−
βk
2 (1+ρe−a(yn+yn−1))(yn−yn−1)

2−βD(e−ayn−1)2



The Poland-Scheraga 
model

• the bases of DNA are modeled as points

• two types of energies between bases

• Hydrogen bonds

• Stacking energies: due to hydrophobicity 
of the rings

• the entropy of loops is calculated using 
polymer theory



Basic model

• only one type of energies:

• unbound loops have entropy: 

• can be easily solved

εi = −ε

Ω(2l)



ZN =
∞∑

p=1

σp
∞∑

l1=1

∞∑

l′1=1

. . .
∞∑

lp=1

∞∑

l′p=1

δ(
p∑

i=1

(li + l′i)−N)wl1Ω(2l′1) . . . wlpΩ(2l′p)

where
σ is the fugacity of loops (due to stacking)≈ 10−5

w = eβε



Loop Entropy

Ω(2l) ∼ s2l

lc

From Polymer theory (Flory, de Gennes, des 
Cloizeaux, ...) we know that

where c is a universal critical exponent

for Brownian walks: c = 1.5
for a Self-Avoiding walk: c = 3ν ≈ 1.75
for interacting Self-Avoiding loops: c ≈ 2.15



Grand partition function
Define the grand canonical partition function

Z(z) =
∞∑

N=0

zNZN

one gets

Z(z) =
∞∑

p=1

σp
∞∑

l1=1

. . .
∞∑

l′1=1

(zw)l1zl′1Ω(2l′1) . . . (zw)lpzl′pΩ(2l′p)

The sum is now decoupled and one obtains

Z(z) =
∞∑

p=1

σp

( ∞∑

l=1

zlwl

)p ( ∞∑

l=1

zlΩ(2l)

)p



Z(z) =
σU(z)V (z)

1− σU(z)V (z)

where

U(z) =
zw

1− zw

and

V (z) =
∞∑

l=1

s2lzl

lc

is the polylogarithm function



Results
• the phase diagram depends on the loop 

exponent c

• If c<1, the 2 strands are always bound

• if 1<c<2, there is a continuous unbinding 
transition

• if 2<c, there is a discontinuous unbinding 
transition

• since     is so small (            ) even if 1<c<2, 
the transition looks discontinuous. 

σ ≈ 10−5



Inhomogeneous sequences

• One can reformulate the problem in terms 
of recursion relations.

• Define the partition function         of the 
non homogeneous fragment of length 

Z(α)
α

2

II. THE POLAND-SCHERAGA MODEL

A. Recursion relations

Although the original Poland-Scheraga model was developped for homopolymeric strands [2, 5, 15], we will focus
on realistic (heteropolymeric) DNA sequences. Exact recursion relations have been derived by Poland [6], using
conditional and thermodynamic probabilities. Here, we follow an equivalent approach using partition functions,
which turns out to be easier to generalize.

We first consider two complementary strands of equal length N , and we denote by Zf (α) the forward partition
function of the two strands, starting at base (1) and ending at base (α), with bases (α) being paired. We model the
interactions of base pairs by stacking energies (εα,α+1;β,β+1), which are known to describe nucleotides interactions in
a more accurate fashion than simple base pairing. These stacking energies account in particular for screened Coulomb
interactions and for hydrogen bonds between Crick-Watson pairs, and depend on pairs of adjacent bases on the two
strands, the pair (α, α + 1) belonging to strand 1 and the complementary pair (β, β + 1) belonging to strand 2 (with
β = α in the PS model). Since the strands are complementary, only 16 stacking energies out of 44 = 256 possible
terms turn out to be non zero. In Appendix D, we give the values of the 10 different stacking energies used in the
program MELTSIM [10]. These energies (which depend on the salt concentration) will be used throughout this paper.
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FIG. 1: Recursion relation for Zf (α + 1) (eq.(1)) in the PS model.

To find the recursion relation obeyed by Zf (α + 1), we notice that there are three ways to bind a pair of chains of
length α + 1 : Either the last pair (α, α + 1) is stacked, or there is a loop starting at any (α′) (1 ≤ α′ ≤ α − 1) and
ending at (α + 1), or there is no loop (Figure 1).

The forward partition function therefore satisfies

Zf(α + 1) = e−βεα Zf (α) + σS

α−1∑

α′=1

Zf(α′)N (2(α + 1 − α′)) + σ̃S M(α) (1)

where β = 1/kBT is the inverse temperature, εα = εα,α+1;α,α+1 is the stacking energy of base pairs (α, α + 1), σS is
the bare loop formation (cooperativity) parameter and σ̃S is the bare free end formation parameter (we assume that
these parameters are base independent). The factor N (2(α + 1− α′)) counts the number of conformations of a chain
starting at base (α′) and ending at base (α + 1) and is asymptotically given by [16]

N (2(α + 1 − α′)) = µα−α′
f(α − α′) (2)

where kB log µ is the entropy per base pair and f(x) = 1
xc is the probability of return to the origin of a loop of length

2x. We assume that the entropy factor µ does not depend on the chemical nature of the base pair. The exponent c
depends on the interaction of the loop with the rest of the chain: It has been extensively discussed in the context of
homopolymeric DNA [5, 15, 17], and is equal to 3/2 for non-interacting Gaussian loops, to ≈ 1.8 for non-interacting
self-avoiding loops, and to ≈ 2.15 for interacting self-avoiding loops. As stated above, eq.(2) is valid only for large
enough loops. For shorter loops, one can use different formulae such as eq. (20) of ref.[11]. A more accurate way to
account for short loop entropies would be to have a look-up table as is currently done in RNA folding [18, 19]. To
the best of our knowledge, this has not yet been implemented for DNA.

The last term on the r.h.s. of eq. (1) represents the contribution of unbound extremities: The factor M(α) counts
the number of conformations of a pair of unbound chains starting at base (1) and paired at base (α + 1) and is
asymptotically given by [16]

M(α) = µαg(α) (3)
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II. THE POLAND-SCHERAGA MODEL

A. Recursion relations

Although the original Poland-Scheraga model was developped for homopolymeric strands [2, 5, 15], we will focus
on realistic (heteropolymeric) DNA sequences. Exact recursion relations have been derived by Poland [6], using
conditional and thermodynamic probabilities. Here, we follow an equivalent approach using partition functions,
which turns out to be easier to generalize.

We first consider two complementary strands of equal length N , and we denote by Zf (α) the forward partition
function of the two strands, starting at base (1) and ending at base (α), with bases (α) being paired. We model the
interactions of base pairs by stacking energies (εα,α+1;β,β+1), which are known to describe nucleotides interactions in
a more accurate fashion than simple base pairing. These stacking energies account in particular for screened Coulomb
interactions and for hydrogen bonds between Crick-Watson pairs, and depend on pairs of adjacent bases on the two
strands, the pair (α, α + 1) belonging to strand 1 and the complementary pair (β, β + 1) belonging to strand 2 (with
β = α in the PS model). Since the strands are complementary, only 16 stacking energies out of 44 = 256 possible
terms turn out to be non zero. In Appendix D, we give the values of the 10 different stacking energies used in the
program MELTSIM [10]. These energies (which depend on the salt concentration) will be used throughout this paper.

= + +

1 1 1
1

1 1 1 1

!+1 ! !+1 ! !+1 !+1

!+1 ! !+1 ! !+1 !+1

"
S

"
S

~

’

’

#
!

FIG. 1: Recursion relation for Zf (α + 1) (eq.(1)) in the PS model.

To find the recursion relation obeyed by Zf (α + 1), we notice that there are three ways to bind a pair of chains of
length α + 1 : Either the last pair (α, α + 1) is stacked, or there is a loop starting at any (α′) (1 ≤ α′ ≤ α − 1) and
ending at (α + 1), or there is no loop (Figure 1).

The forward partition function therefore satisfies

Zf(α + 1) = e−βεα Zf (α) + σS

α−1∑

α′=1

Zf(α′)N (2(α + 1 − α′)) + σ̃S M(α) (1)

where β = 1/kBT is the inverse temperature, εα = εα,α+1;α,α+1 is the stacking energy of base pairs (α, α + 1), σS is
the bare loop formation (cooperativity) parameter and σ̃S is the bare free end formation parameter (we assume that
these parameters are base independent). The factor N (2(α + 1− α′)) counts the number of conformations of a chain
starting at base (α′) and ending at base (α + 1) and is asymptotically given by [16]

N (2(α + 1 − α′)) = µα−α′
f(α − α′) (2)

where kB log µ is the entropy per base pair and f(x) = 1
xc is the probability of return to the origin of a loop of length

2x. We assume that the entropy factor µ does not depend on the chemical nature of the base pair. The exponent c
depends on the interaction of the loop with the rest of the chain: It has been extensively discussed in the context of
homopolymeric DNA [5, 15, 17], and is equal to 3/2 for non-interacting Gaussian loops, to ≈ 1.8 for non-interacting
self-avoiding loops, and to ≈ 2.15 for interacting self-avoiding loops. As stated above, eq.(2) is valid only for large
enough loops. For shorter loops, one can use different formulae such as eq. (20) of ref.[11]. A more accurate way to
account for short loop entropies would be to have a look-up table as is currently done in RNA folding [18, 19]. To
the best of our knowledge, this has not yet been implemented for DNA.

The last term on the r.h.s. of eq. (1) represents the contribution of unbound extremities: The factor M(α) counts
the number of conformations of a pair of unbound chains starting at base (1) and paired at base (α + 1) and is
asymptotically given by [16]

M(α) = µαg(α) (3)



• Algorithm scales like 

• Limited to fairly small sizes (< 10000)

• Must improve to study full genomes
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The Fixman-Freire method
Idea: represent the loop power law as a sum of 

exponentials
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the loop factor f(x) of equations (14,15) by

f(x) =
1
xc

!
I∑

i=1

ai e−bix (17)

In equation (17) the number I of couples (ai, bi) depends on the desired accuracy. The parameters (ai, bi) are
determined by a set of non-linear equations (see [8]).

For a sequence of length N = 2000, the choice I = 9 gives an accuracy better than 0.5% and we have adopted
this value throughout this paper. Larger values (I = 14) are used in [12] for lengths of order 150 kbps and in the
program MELTSIM [10], which implements Poland’s recursion relations [6] with a FF scheme. The CPU time of the
FF scheme scales down the computational cost from O(N 2) to O(N × I), as shown by equations (B8) and (B13) of
Appendix B.

3. Values of the parameters

In equations (14,15), one needs the values of the entropy factor µ, the stacking energies (εα = εα,α+1;α,α+1), the
exponent c of the loop factor (17) and the loop formation (cooperativity) and free end formation effective parameters
σ0 and σ̃1.

For complementary strands, the stacking energies we have used are the ones of MELTSIM [10]; we have also
adopted the value log µ = 12.5047 of this program (see Appendix D). Point mutations, when present, are assigned a
zero stacking energy : In all our numerical calculations, we have indeed checked that the results do not depend on
the precise value of the stacking energy of the mutated pair, as long as it is larger than half of the typical unmutated
stacking energies, i.e. ≈ −2500◦K .

Our calculations have been done with the Flory value c = 1.8, and the MELTSIM value of the cooperativity
parameter σ0 = 1.26 10−5 [10]. As for the free end parameter σ̃1, we have followed reference [11], and taken
σ̃1 =

√
σ0 ∼ 3.5 10−3. This set of parameters will be hereafter referred to as standard.

The exponent c and cooperativity parameter σ0 have given rise to some discussions [21, 22]. However, we did not
find in the literature any discussion on the role of σ̃1. This is why we have tested other values of the parameters such
as c = 2.15, σ0 = 1.26 10−4 and σ̃1 = 1. For the cases studied in this paper, the changes are rather small. We find
for instance that, as long as σ̃1 is non-zero (in fact ≥ 10−6), its value is quite irrelevant (σ̃1 = 0 corresponds to the
case of paired extremities).

The boundary conditions for the recursion equations (14) and (15), as well as their practical implementation are
exposed in Appendix B.

III. GENERALIZING THE PS MODEL

A. Equations

We now generalize the PS model in different ways: We allow for unequal strand lengths denoted by N1 and N2,
and non complementarity of the sequences. This in turn implies that one must allow for pairing of any base (α) of
strand 1 with any other base (β) of strand 2 (while forbidding the crossing of base pairs) [23]. Further, we allow loops
(with a factor σS), only if there is at least one unpaired base on each strand. Finally, we associate a factor of unity,
instead of σ̃S for the pairing of extremities (bases (N1) with (β) or (α) with (N2)) (see Figure 4).

At this stage, it should be noted that since the generalized Poland-Scheraga model (GPS) includes all configurations
from the original PS model, its free energy FGPS(T ) is necessarily lower than that of the PS model FPS(T )

FGPS(T ) ≤ FPS(T ) (18)

We denote by Zf(α, β) the forward partition function of the two strands, starting at base (1) and ending respectively
at base (α) (strand 1) and at base (β) (strand 2), bases (α) and (β) being paired. We further denote by Zb(α, β) the
backward partition function of the two strands, where strand 1 (resp. strand 2) starts at base (N1) (resp. (N2)) and
ends at base (α) (resp. (β)), bases (α) and (β) being paired. Keeping the same notations as in the PS model, and
setting εα;β = εα,α+1;β,β+1, these partition functions satisfy the recursion relations (Figure 3)

Zf (α + 1, β + 1) = e−βεα;βZf(α, β)

With this representation, the algorithmic complexity
goes down from      to  N2 NI

For N = 1000000 and I = 14, the accuracy is better than 
0.1% over the whole range of x.

Possibility to study sequences up to few Mbps



Some examples: gene detection



Limitations of the PS model

• strands of equal length

• complementary sequences

• no mismatches

• generalize to a full theory of DNA 
hybridization



A general model for DNA 
hybridization

We now consider 2 strands of length     and      
where the 2 strands are not necessarily complementary.
Define            as the partition function of the 2 DNA 

strands with strand 1 going from 1 to     and strand 2 from 1 
to    bound at     and  

N1 N2

Z(α, β)
α

β α β
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determined by a set of non-linear equations (see [8]).

For a sequence of length N = 2000, the choice I = 9 gives an accuracy better than 0.5% and we have adopted
this value throughout this paper. Larger values (I = 14) are used in [12] for lengths of order 150 kbps and in the
program MELTSIM [10], which implements Poland’s recursion relations [6] with a FF scheme. The CPU time of the
FF scheme scales down the computational cost from O(N 2) to O(N × I), as shown by equations (B8) and (B13) of
Appendix B.

3. Values of the parameters

In equations (14,15), one needs the values of the entropy factor µ, the stacking energies (εα = εα,α+1;α,α+1), the
exponent c of the loop factor (17) and the loop formation (cooperativity) and free end formation effective parameters
σ0 and σ̃1.

For complementary strands, the stacking energies we have used are the ones of MELTSIM [10]; we have also
adopted the value log µ = 12.5047 of this program (see Appendix D). Point mutations, when present, are assigned a
zero stacking energy : In all our numerical calculations, we have indeed checked that the results do not depend on
the precise value of the stacking energy of the mutated pair, as long as it is larger than half of the typical unmutated
stacking energies, i.e. ≈ −2500◦K .

Our calculations have been done with the Flory value c = 1.8, and the MELTSIM value of the cooperativity
parameter σ0 = 1.26 10−5 [10]. As for the free end parameter σ̃1, we have followed reference [11], and taken
σ̃1 =

√
σ0 ∼ 3.5 10−3. This set of parameters will be hereafter referred to as standard.

The exponent c and cooperativity parameter σ0 have given rise to some discussions [21, 22]. However, we did not
find in the literature any discussion on the role of σ̃1. This is why we have tested other values of the parameters such
as c = 2.15, σ0 = 1.26 10−4 and σ̃1 = 1. For the cases studied in this paper, the changes are rather small. We find
for instance that, as long as σ̃1 is non-zero (in fact ≥ 10−6), its value is quite irrelevant (σ̃1 = 0 corresponds to the
case of paired extremities).

The boundary conditions for the recursion equations (14) and (15), as well as their practical implementation are
exposed in Appendix B.

III. GENERALIZING THE PS MODEL

A. Equations

We now generalize the PS model in different ways: We allow for unequal strand lengths denoted by N1 and N2,
and non complementarity of the sequences. This in turn implies that one must allow for pairing of any base (α) of
strand 1 with any other base (β) of strand 2 (while forbidding the crossing of base pairs) [23]. Further, we allow loops
(with a factor σS), only if there is at least one unpaired base on each strand. Finally, we associate a factor of unity,
instead of σ̃S for the pairing of extremities (bases (N1) with (β) or (α) with (N2)) (see Figure 4).

At this stage, it should be noted that since the generalized Poland-Scheraga model (GPS) includes all configurations
from the original PS model, its free energy FGPS(T ) is necessarily lower than that of the PS model FPS(T )

FGPS(T ) ≤ FPS(T ) (18)

We denote by Zf(α, β) the forward partition function of the two strands, starting at base (1) and ending respectively
at base (α) (strand 1) and at base (β) (strand 2), bases (α) and (β) being paired. We further denote by Zb(α, β) the
backward partition function of the two strands, where strand 1 (resp. strand 2) starts at base (N1) (resp. (N2)) and
ends at base (α) (resp. (β)), bases (α) and (β) being paired. Keeping the same notations as in the PS model, and
setting εα;β = εα,α+1;β,β+1, these partition functions satisfy the recursion relations (Figure 3)
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FIG. 3: Recursion relation for Zf (α + 1, β + 1) (eq.(19)) in the GPS model.

+ σS

α−1∑

α′=1

β−1∑

β′=1

Zf (α′, β′)N (α + 1 − α′ + β + 1 − β′)

+ σ̃SM(α, β) (19)

and

Zb(α, β) = e−βεα;βZb(α + 1, β + 1)

+ σS

N1∑

α′=α+2

N2∑

β′=β+2

Zb(α′, β′)N (α′ − α + β′ − β)

+ σ̃SM(N1 − α, N2 − β) (20)

where N (x) = µ
x
2 −1f(x

2 − 1) and M(x, y) = µ
x+y
2 g(x+y

2 ) . Since we have used an entropy factor of kB log µ per base
pair, we have assigned a factor kB

2 log µ per free base.
The probability p(α, β) that base (α) of strand 1 is paired with base (β) of strand 2 is then expressed as

p(α, β) =
Zf (α, β)Zb(α, β)

Z
(21)

where Z is the thermodynamic partition function of the two strands. Equations (19) and (20) show that the compu-
tational complexity of the generalized model is O(N 2

1 N2
2 ).

As in the PS model, we take from now on c = 0 (i.e. g(x) = 1). Restricting ourselves to configurations with at
least one bound base pair, we may then express Z as (Figure 4)
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FIG. 4: Graphical representation of the thermodynamic partition function Z (eq.(22)) in the GPS model.

Z = Zf(N1, N2) +
N1−1∑

α=1

µ
N1−α

2 Zf (α, N2) +
N2−1∑

β=1

µ
N2−β

2 Zf (N1, β)

+ σ̃S

N1−1∑

α=1

N2−1∑

β=1

µ
N1−α+N2−β

2 Zf (α, β) (22)

Note that the thermodynamic partition function Z can also be expressed in terms of Zb(α, β).
In complete analogy with the PS model, we define

Z$
f (α, β) = µ− (α+β)

2 Zf (α, β) (23)
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Z
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where Z is the thermodynamic partition function of the two strands. Equations (19) and (20) show that the compu-
tational complexity of the generalized model is O(N 2
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Z = Zf(N1, N2) +
N1−1∑

α=1

µ
N1−α

2 Zf (α, N2) +
N2−1∑

β=1

µ
N2−β

2 Zf (N1, β)

+ σ̃S

N1−1∑

α=1

N2−1∑

β=1

µ
N1−α+N2−β

2 Zf (α, β) (22)

Note that the thermodynamic partition function Z can also be expressed in terms of Zb(α, β).
In complete analogy with the PS model, we define

Z$
f (α, β) = µ− (α+β)

2 Zf (α, β) (23)

Now, any base of 1 can pair with any base of 2

εα;β = εα if β = ᾱ

εα;β = 0 otherwise



• Now, algorithm scales like              : 
unusable!

• Use Fixman-Freire trick: it becomes 

• can study sequences of sizes up to 10000

N2
1 N2

2

N1N2I



• For Homogeneous sequences (AAAAA..., 
TTTTTT...), one can again solve analytically. 
Effectively, the exponent c is replaced by c-1

• Comparison of PS and GPS for long 
complementary sequences

Some results
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FIG. 5: The specific heat − dθ
dT for complementary sequences of length N1 = N2 = 1980 for (i) the PS model (∗) and (ii) the

GPS model (full line). A slight difference is observed for the final peak (Tu ∼ 87.2oC).

84.0 86.0 88.0 90.0 92.0
0.0

100.0

200.0

300.0

400.0

N

TTu

X

PS

GPS

!

FIG. 6: Number of bound pairs for the PS (thick line) and for the GPS (thin line) around Tu.
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FIG. 7: Blow-up of the two central peaks of Figure 5 for the GPS model (i) standard parameters (∗) (ii) parameters of reference
[22] (thick line).



• The two curves superimpose, except near 
the last peak           no mismatches if the 
two strands are complementary.  Very strong 
selectivity in molecular recognition.



Effect of single point mutations
Two complementary sequences of length N=1980 with a 

single point mutation somewhere in the center 11
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FIG. 8: Blow-up of the two central peaks for the GPS model (i) complementary strands (thick line) (ii) a mutation in the
middle of strand 1 (◦).

B. Hybridization of short fragments and the influence of mutations

As mentioned in the introduction, the hybridization of short DNA fragments is of interest for DNA microarrays.
We have compared the PS and GPS models for complementary fragments of identical lengths N1 = N2 = 30. In that
case, there is only one peak in − dθ

dT ; around this peak, the situation is very similar to that observed around the last
peak Tu of the previous section. The PS model overestimates the number of bound pairs by about 5 basepairs.

Using the GPS model, we have also studied the hybridization of strand 1 (N1 = 30) taken from the same drosophile
chromosome [24], with a fragment of length N2 = 70 containing the complementary of strand 1 in its middle section
(Figure 9(a). The first and the last 20 bases of strand 2 are taken from a different region of the same DNA fragment.
We have then studied the same system, with a point mutation (see Figure 9(b)), in the middle of strand 1 (X) or
close to its extremities (O).

(a) (b)

1
XO

2 = 1 2 = 1

FIG. 9: Recognition of two strands of different lengths (N1 = 30, N2 = 70) (a) Fragment 1 of strand 2 is complementary to
strand 1 (b) One creates a mutation on strand 1, either in the middle (X, α = 15) or at the end (O, α = 5).

In Figure 10, we plot − dθ
dT for the three cases mentioned above. For short sequences, the effect of mutation (X)

in the middle section of the strand is important: the curve has two maxima instead of one, corresponding to the
opening of the two subfragments of the strand. The effect of mutation (O) is much weaker since it is located near
the extremity of strand 1. This general feature has been checked on many different choices of strand 1. The physical
origin of this phenomenon is easy to understand: since σ̃1 "= 0, fluctuations are larger near the ends of the strands,
and since the extremities of strand 1 are nearly molten, the effect of a mutation in this region is very weak. In Figures
(11,12,13), we plot the opening probability

(
1 − pmax(α)

)
along strand 1, for various temperatures and for the cases

of no mutation, mutation (X), and mutation (O).
As stated in section II, the study of short fragments and loops, would ideally require the use of look-up tables for

the entropies, rather than the asymptotic formula (2). In addition, we have checked that our results do not depend on
the precise value of the stacking energy of the mutated pair, as long as it is larger than half of the typical unmutated
stacking energies, i.e. ≈ −2500◦K.

Strong sensitivity to mutations: molecular selectivity
Shift of 1C for one mutation and 5-10 C for two mutations. 

No more binding for 3 mutations.



Effect of mutations on short 
sequences: DNA chips 
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We have then studied the same system, with a point mutation (see Figure 9(b)), in the middle of strand 1 (X) or
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In Figure 10, we plot − dθ
dT for the three cases mentioned above. For short sequences, the effect of mutation (X)

in the middle section of the strand is important: the curve has two maxima instead of one, corresponding to the
opening of the two subfragments of the strand. The effect of mutation (O) is much weaker since it is located near
the extremity of strand 1. This general feature has been checked on many different choices of strand 1. The physical
origin of this phenomenon is easy to understand: since σ̃1 "= 0, fluctuations are larger near the ends of the strands,
and since the extremities of strand 1 are nearly molten, the effect of a mutation in this region is very weak. In Figures
(11,12,13), we plot the opening probability

(
1 − pmax(α)

)
along strand 1, for various temperatures and for the cases

of no mutation, mutation (X), and mutation (O).
As stated in section II, the study of short fragments and loops, would ideally require the use of look-up tables for

the entropies, rather than the asymptotic formula (2). In addition, we have checked that our results do not depend on
the precise value of the stacking energy of the mutated pair, as long as it is larger than half of the typical unmutated
stacking energies, i.e. ≈ −2500◦K.
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FIG. 10: The effect of mutations X (thin line) and O (dashed line) on the no mutation situation (thick line).
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FIG. 11: Opening probability (1 − pmax(α)) along strand 1 for temperatures t=60, 74.2, 82.2, 85.6, 90.2, for the no mutation
case.
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FIG. 12: Opening probability (1 − pmax(α)) along strand 1 for temperatures t=60, 74.2, 82.2, 85.6, 90.2, for mutation (X) at
α = 15.
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