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Outline

• What is a protein: chemistry, structure, 
interactions, energy scales, time scales, etc.

• The Hydrophobic effect: collapse vs. folding, 
entropy, ϑ-point

• Sequence diversity: heteropolymer models: 
the random bond model, the Hydrophobic-
Hydrophilic model



• Dominant Folding Paths: Langevin dynamics, 
path integrals, dominant paths, Hamilton-
Jacobi representation.

•  



1. What is a Protein

Biological Polymers (biopolymers):  Proteins, Nucleic Acids

(DNA and RNA), Polysaccharides

! catalytic activity: enzymes

!  transport of ions: hemoglobin (O2), ion channels

! motor protein

! shell of viruses (influenza, HIV, etc...)

! prions

! food, etc…

Polymers built with amino-acids

! 20 types of amino acids

! all left-handed

! Ala, Ile, Leu, Met, Phe, Pro, Trp, Val, Asn, Cys,

  Gln, Gly, Ser, Thr, Tyr, Arg, His, Lys, Asp, Glu

! 10 ! Number of Monomers ! 500

H H O

N C C

H OH

R residue

Proteins have an active site: biological activity
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Among the 20 amino-acids:

! 12 hydrophilic (polar)

!   8 hydrophobic (non polar)

In a typical protein:

! polar – ! hydrophobic

Examples of residues:

                         H : glycine

           H

                                    C     H : alanine

           H

8 uncharged
4 charged

: phenylalanine



Polymerisation (polycondensation)

Polycondensation

     NH2---CH—(CO—NH)-- CH—(CO—NH)-- CH—(CO—NH)---

                  |        \-----------/    |                              |

                 R1       peptide      R2                          R3

                              bond

                                                +  H2O

! weakly branched polymer

! Hard degrees of freedom:

 covalent bonds

 valence angles

 peptide bonds

 improper dihedrals

! Soft degrees of freedom

             " torsion angles : #, $, %   very small energies

NH2---CHR1---COOH + NH2---CHR2---COOH + ...
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Proteins exist under two states:

                                            Random Coil (swollen)

! Denatured = Unfolded

                              Molten Globule (compact)

       No biological activity

! Native = Folded =  Unique compact structure

Biologically active

Number of compact structures of a polymer : 

Puzzle: below folding transition temperature, the protein seems to

exist under a unique conformation (zero conformational entropy).

Folding transition: depends on temperature, pH, denaturant agent,

salt, etc…

Time scales:  Microscopic time : 10-15 s

      Folding time: 10-2 to 1 s

N!~



Questions:

! Nature of the transition

- crystallization (liquid-solid)

- glass

- purely dynamical

! How can one understand the uniqueness of the

native state?

! Why is there so much secondary structure?

! What is the dynamics like? Exponential, stretched

exponential, power law?

--------

In all proteins, there is local order in the compact native state. These

are the Secondary Structures.

! One dimensional: !-helix (mainly R)

Hydrogen bonds

3.6 AA / turn

5-7 turns / helix

! Two dimensional: "-sheet
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Tertiary structure: 3d structure of the folded protein!compact

packing of secondary structures.

How can one see the folding transition?

1. Measure the Gyration radius: by X-rays or neutron scattering

2. Biological Activity

3. NMR

4. C.D (circular dichroism)

Renaturation time: 10-3 – 1 s

How can one see the 3d structure?

! X-ray Crystallography : but need to make a crystal first!

! NMR-NOE : measure nearby H-H pairs.



HIV protease (199 residues)
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The Chemist’s Approach

1. Look for effective atom-atom interactions  semi-empirical

Hamiltonian

2. Molecular dynamics or Monte Carlo.

What interactions are present?

-covalent bond 

bonded

-sulfur bridges (cysteins)

-Coulomb (with partial charges)

non bonded

-Van der Waals (steric repulsion)

-Hydrogen bonds : intra-molecular or with the

solvent.

The solvent is polar (Water) and induces hydrophobic interactions

which might be responsible for the collapse transition.



Energy Scales

1 eV = 23 kCal/mole = 10000! K

300! K = 0.6 kCal /mole

" Covalent bond: 50-150 kCal /mole

" Sulfur Bridge: 51 kCal/mole

" Hydrogen bonds: 5-8 kCal/mole (non polar solvent)

 1-2 kCal/mole (polar solvent)

" Van der Waals: 1 kCal/mole

" Coulomb: 1-2 kCal/mole

Denaturation temperature ! 1 kCal/mole

Chemical sequence is frozen and only non-covalent interactions

drive the folding.

Parametrization (CHARMM, AMBER, OPLS, …)
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Use Newton or Langevin dynamics

where !i(t) is a Gaussian noise satisfying the fluctuation-dissipation

theorem:

Then, it is well known that

T o d iscretize , one  m ust u se  "t ~  10 -15  –  10 -13 s

N um ber o f degrees  o f freedom : N  # 1000

L ongest ava ilab le  runs (w ith  w ater) t ~  10 -8  s

W e see  that t < <  fo ld ing  tim e.

R eason: system  is  trapped  in  an  exponentia l num ber o f m etastab le  traps.
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• Can the collapsed state represent the folded 
state of the protein?

• No because collapsed state has finite 
conformational entropy (Hamiltonian walks)

• No because no secondary structure

• OK to describe the first stages of the folding 
transition ( t < 1 μs)



• Very coarse model for the polymer

• where                                             or

•  

Sequence diversity: 
Heteropolymer models

disordered systems. For instance, if one replace the Ising spins of the Edwards-Anderson
model by q-state Potts variables, one also 19 recovers the REM in the limit q →∞.

Beyond the mean-field picture, one has basically to resort to Imry-Ma like domain
arguments 20,21, to variational methods or to numerical calculations. In particular, the
very existence of a spin glass phase in three dimensions, not to mention its nature, is still
an unsettled question. Related models of interest 13 include the random field Ising model,
the role of impurities on the Abrikosov vortex lattice,..., and the heteropolymer folding
transitions that we now present.

2.3 Quenched disorder in polymers

In the case of heteropolymers, we are interested in the statistical mechanics of a d dimen-
sional polymer chain, with random quenched interactions (either with the solvent or with
itself). The positions of monomer i, (i = 1, 2, ...N) is denoted by !ri. The frustration in
this case stems from conflicting terms in the Hamiltonian and from the geometric chain
constraint g(!ri,!ri+1). Throughout this work, we will restrict ourselves to the simplest
forms of chain constraint, namely

(i) g(!ri,!ri+1) = δ(|!ri − !ri+1|− a) for discrete chains (a is the monomer length)
(ii) g(!ri,!ri+1) → exp(− d

2a2

(
d!r(s)

ds

)2
) for a continuous description of the chain (s de-

noting the curvilinear abscissa along the chain).
Other choices are discussed in appendix A. Furthermore, we will only consider ran-

domness in the two body interactions vij(!ri,!rj) or vs,s′(!rs,!rs′). Whenever necessary, we
will also include the usual (homopolymer) many body interactions (e.g. w0(!ri,!rj ,!rk)
for the three body term). Choosing the discrete notation, the partition function of the
heteropolymer chain reads

Z({vij}) =
∫ ∏

i

d!ri

∏

i

g(!ri,!ri+1) exp(−βH({vij})) (13)

where the (reduced) Hamiltonian is

βH({vij}) =
1
2

∑

i!=j

vij(!ri,!rj) +
1
6

∑

i!=j !=k

w0(!ri,!rj ,!rk) + ... (14)

and the dots ... include the possibility of higher order terms. Its free energy reads

F ({vij}) = −T log Z({vij}) (15)

The self-averageness argument of the free energy may be presented in a slightly different
way from the spin glass case. Consider a “soup” of M random chains of N monomers
(a monomer should be thought of as an amino acid). Each of these chains represents a
different choice of {vij} , i.e. a different primary sequence. The free energy per chain of
the soup is given by:

F =
1
M

M∑

1

F ({vij}) (16)

This expression neglects the interchain interactions, and is thus a priori valid, provided
that (i) the interactions in the soup are short-ranged (ii) the soup is dilute enough (one
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• Reduced Hamiltonian

• The free energy is given by

• Assume 3-body term is not sequence 
dependent: excluded volume term

•  
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w0(!ri,!rj ,!rk) = wδ(!ri − !rj)δ(!rj − !rk)



• Assume short-range sequence dependent 
two-body interaction: 

• To get an idea of the behavior of the 
system, assume quenched disorder:

• “Average” heteropolymer

•   

vij(!ri,!rj) = vijδ(!ri − !rj)
chain problem), or concentrated enough (in a melt, interactions between the chains are
screened).

For large M , one may interpret F as an average over all possible choices of {vij}.
Denoting this average by F , we have:

F = F =
∫ ∏

P ({vij})F ({vij})d({vij}) (17)

For a single chain (dilute soup problem), this point of view clearly leads to the use of
replicas, in order to perform the quenched average. This would yield the typical properties
of a typical chain of the soup. In a melt (concentrated soup problem), one may avoid the
use of replicas 22, by using equation (16). On the contrary, if one wants to study a specific
primary sequence, i.e. a given set of {vij} (without any averaging procedure), one must
resort to the self-consistent field method, described in appendix B. Equations (191) are
in some sense the TAP equations of our problem. Solving these equations would require
an involved numerical treatment, which has not been undertaken so far.

We now examine various possible choices of the two-body interaction term vij(!ri,!rj),
with the (reasonable) restriction that we consider only translationally invariant forms.

vij(!ri,!rj) = vij(!ri − !rj) (18)

One may first consider each monomer i to be characterized by a single random (scalar)
“charge” ξi: the most general choice 23 then reads

vij(!ri − !rj) = v0(!ri − !rj) + βa(!ri − !rj)(ξi + ξj) + βb(!ri − !rj)ξiξj (19)

where v0(!x), a(!x) and b(!x) are regular functions of !x. For neutral homopolymers in a
good solvent, v0(!x) is usually taken as a short range repulsive function (excluded volume
term). For polyelectrolytes, v0(!x) is basically the Coulombic interaction. As for the
random “charges” {ξi}, we will consider them as independent random variables. Popular
choices are the binary or Gaussian forms.

More generally, one may consider that a monomer is characterized by z independent
random “charges” ξα

i , (α = 1, 2, ..z) , linked to its electrostatic charge, its hydrophilicity,
its helix forming tendency,..... Of course, the character of these “charges” can be chosen
to be more complicated (vectorial, tensorial,...) but we shall stick to the simple scalar
case. A very general model of heteropolymers may be then defined through a two body
interaction:

vij(!ri − !rj) =
z∑

α=1

cαvα
ij(!ri − !rj) (20)

where vα
ij(!ri − !rj) is defined through equation (19)

vα
ij(!ri − !rj) = vα

0 (!ri − !rj) + βaα(!ri − !rj)(ξα
i + ξα

j ) + βbα(!ri − !rj)ξα
i ξα

j (21)

and cα is a real number. Of course, this general model is not very convenient to investigate,
although it is clearly in the line of the Hopfield model of spin glasses. For instance 24, it
is possible to show, that (i) if bα is a zero range δ function (ii) if aα = 0 (iii) if one takes
the limit z → ∞, then the disordered contribution in the two body interaction yields a
random bond model that we consider below. To illustrate some physical points, we now
present a few simple disordered models.
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vij = v0 + wij

wij

which, in some sense suggests that this random chain can also be viewed as an Imry-Ma
system. The Imry-Ma domain arguments depend on non-extensive (free) energies and are
not easily interpreted in the framework of replica theory. It would be much nicer to work
with a fixed {ξi} distribution: in this respect, one may think of a disorder dependent
variational method, and/or a domain size analysis.

Finally, we close this section by some protein related comments. One may say that
“good” {ξi} sequences (i.e. easily foldable) should not be trapped in a metastable state,
and should yield stable geometrical shapes. This means that a good sequence should
enter neither of the two swollen phases, since one has potentially trapping metastable
states, and the other leads to a θ collapsed phase which has no definite shape (extensive
conformational entropy). In this picture, a good sequence should be, in some appropriate
phase diagram, on the dividing edge between the two swollen phases: the folding transition
would then be a multicritical point, which seems reasonable from a physical standpoint.
This remark is probably related to some dynamical criteria 34,35,36 that may characterize
good folders in various heteropolymer models.

2.6 The random bond chain.

There are various ways to attack this difficult case, and we will present our point of
view along two lines. We will first consider the very high dimensional approach, where
the chain constraint is irrelevant. In this case, one may show directly that a collapsed
phase undergoes a Random Energy Model (REM) freezing transition. One may also
follow the same path as for the hydrophilic-hydrophobic chain, namely to use ground
state dominance plus some saddle point approximation. The main difference here is that
one is faced with a broken replica symmetry saddle point so that the variational wave
function is not replica symmetric.

Very high dimension approach.

Let us consider the Hamiltonian:

βH({wij}) =
1
2

∑

i!=j

(v0 + βwij)δ(%ri − %rj) +
1
6

∑

i!=j !=k

w0δ(%ri − %rj)δ(%ri − %rk) (56)

where the couplings {wij} are random independent couplings, and v0 represents the overall
effect of the solvent, as well as the direct non random pair interactions. For the sake of
simplicity, we use a Gaussian probability distribution for the couplings:

h(wij) =
1√

2πw2
exp

(

−
w2

ij

2w2

)

(57)

The partition function is:

Z({wij}) =
∫
D%ri

∏

i

g(%ri,%ri+1)e−βH({wij}) (58)

where the function g(%ri,%ri+1) again enforces the chain constraint.
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Replicating and averaging (58) yields:

Zn =
∫ ∏

a

D!ra
i

∏

i,a

g(!ra
i ,!ra

i+1) exp



−ṽ0

∑

i<j

∑

a

δ(!ra
i − !ra

j ) +
β2w2

2
∑

a !=b

∑

i<j

δ(!ra
i − !ra

j )δ(!rb
i − !rb

j)





× exp



−w0

6
∑

i!=j !=k

∑

a

δ(!ra
i − !ra

j ) δ(!ra
j − !ra

k)



 (59)

with ṽ0 = v0 − β2 w2

2 .
The above replicated Hamiltonian has three characteristics:
(i) the chain constraint term.
(ii) a possible θ point if ṽ0 < 0.
(iii) a possible freezing transition due to the a #= b term of (59).
Since we wish to emphasize here the freezing transition, we will assume that ṽ0 is

indeed negative, so that the system is in the collapsed phase. To get an easily tractable
model, we further consider a simple but unrealistic geometry, namely a collapsed chain
on a fully connected lattice. On such a lattice, by definition, each point is a neighbor to
all the other points of the lattice. Examples are provided by a triangle ( 3 points, two
dimensions), a tetrahedron ( four points, three dimensions),... so that for a large number
Ω of points, it is a high dimensional (Ω − 1) polyhedron. On such a lattice, the chain
constraint i) is automatically satisfied, since a site has Ω− 1 neighbors, so that the chain
constraint is a 1/Ω effect.

Let us show that in the collapsed phase, the model is equivalent to a Random Energy
Model (REM). For that purpose, we will show that the energies of this system are random
independent Gaussian variables. First, we note that in the collapsed phase, the monomer
density ρ is finite and constant in space; only a number N/ρ of sites are occupied. This
implies that the only conformation dependent term of (56) is the random two-body term∑

i<j wijδ(!ri−!rj). Since this term is a linear combination of Gaussian variables, it is also
a Gaussian variable, and thus, its distribution is entirely characterized by its correlation
functions. Therefore, instead of computing the joint probability P (E1, E2) for two copies
of the chain, we will calculate directly the correlation E1E2 between the energies E1 and
E2 of two conformations {!r(1)

i } and {!r(2)
i } of the chain in the collapsed phase. We have:

E2
1 = w2

2

∑
i,j δ(!r(1)

i − !r(1)
j )

= w2

2

∑
!r ρ2

1(!r)

= w2

2 Nρ (60)

where ρ1(!r) =
∑

i δ(!r−!r(1)
i ). Therefore, E2

1 is independent of the (collapsed) conformation.
Similarly, we have:

E1E2 = w2

2

∑
i,j δ(!r(1)

i − !r(1)
j )δ(!r(2)

i − !r(2)
j )

= w2

2

∑
!r,!r′ q2

12(!r,!r′) (61)

where q12(!r,!r′) =
∑

i δ(!r − !r(1)
i ) δ(!r′ − !r(2)

i ). We have:
∑

!r,!r′
q12(!r,!r′) = N (62)
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Defining, as in equation (39), the parameters qab(!r,!r′) , with a < b, and ρa(!r), and
introducing the associated Lagrange multipliers q̂ab(!r,!r′) and φa(!r), one gets:

Zn =
∫
Dqab(!r,!r′)Dq̂ab(!r,!r′)Dρa(!r)Dφa(!r) exp (G(qab, q̂ab, ρa,φa) + log ζ(q̂ab,φa)) (69)

with

G(qab, q̂ab, ρa,φa) =
∫

ddr
∑

a

(

iρa(!r)φa(!r)− (ṽ0)
ρ2

a(!r)
2

− w0

6
ρ3

a(!r)
)

+
∫

ddr
∫

ddr′ ∑

a<b

(

iqab(!r,!r′)q̂ab(!r,!r′) +
β2w2

2
q2
ab(!r,!r

′)
)

(70)

and

ζ(q̂ab,φa) =
∫
D!ra(s) exp

(

− d

2a2

∫ N

0
ds !̇ra

2
)

× exp



−i
∫ N

0
ds

∑

a

φa(!ra(s))− i
∫ N

0
ds

∑

a<b

q̂ab(!ra(s),!rb(s))



 (71)

To go further, one follows the same approximations as in section (2.5).
(i) one assumes ground state dominance in the “quantum” Hamiltonian associated

with equation (71).
(ii) the free energy is calculated by the SPM.
In view of the high dimension results, point (i) is natural, since one expects first a θ

collapse transition, followed at low temperature by a freezing transition driven by the off-
diagonal (in replica space) terms. The procedure exactly parallels the one of the randomly
hydrophilic-hydrophobic chain of the preceding section, except for the variational wave
function that enters the Rayleigh-Ritz principle. The replica symmetric form extracted
from equation (47) is not valid anymore: the variational wave function should present
replica symmetry breaking. A simple form was proposed by Shakhnovich and Gutin 38,
and reads:

Ψ(!r1, . . . ,!rn) =
(det K)d/4

(2π)nd/4
exp



−1
4

∑

a,b

!raKab!rb



 (72)

where K is a n × n Parisi-like hierarchical matrix (see 12), and d is the dimension of
space. The variational free energy is extremized with respect to K. The result, for large
enough d, is a step function form for K(x), (x ∈ [0, 1]), corresponding to a REM type of
replica symmetry breaking. We briefly recall the physical meaning of a x-dependent length
scale (see equation (72)). The overlap parameter of equation (39) can be understood by
considering two real chains !r1(s) and !r2(s), with the same disorder configuration {vij}
coupled through an infinitesimal term of the form

H12 = ε
∫ N

0
ds δ(!r1(s)− !r2(s)) (73)
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Dominant Folding 
Pathways

• The problem: Assume a protein can go from 
state A to state B. Which pathway (or family 
of pathways) does the protein take?

• Examples: 

• from denatured to native in native 
conditions

• Allosteric transition between A and B
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The case of one particle

• Take Langevin (Brownian) dynamics

• with Gaussian noise: 

•  
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We present a method to investigate the kinetics of protein folding on a long time-scale and the dynamics
underlying the formation of secondary and tertiary structures during the entire reaction. The approach is based
on the formal analogy between thermal and quantum diffusion: by writing the solution of the Fokker-Planck
equation for the time-evolution of a protein in a viscous heat-bath in terms of a path integral, we derive a
Hamilton-Jacobi variational principle from which we are able to compute the most probable pathway of folding.
The method is applied to the folding of the Villin Headpiece Subdomain, in the framework of a Go-model. We
have found that, in this model, the transition occurs through an initial collapsing phase driven by the starting
coil configuration and a later rearrangement phase, in which secondary structures are formed and all computed
paths display strong similarities. This method is completely general, does not require the prior knowledge of any
reaction coordinate and represents an efficient tool to perfom ab-initio simulations of the entire folding process
with available computers.

Understanding the kinetics of protein folding and the dy-
namical mechanisms involved in the formation of their struc-
tures in an all-atom approach involves simulating a statisti-
cally significant ensemble of folding trajectories for a system
of ∼ 104 degrees of freedom. Unfortunately, the existence
of a huge gap between the microscopic time-scale of the ro-
tational degrees of freedom ∼ 10−12 s and the macroscopic
time scales of the full folding process ∼ 10−6 −101 s makes
it extremely computationally challenging to follow the evo-
lution of a typical ∼ 100-residue protein for a time interval
longer than few tens of nanoseconds.

Several approaches have been proposed to overcome such
computational difficulties and address the problem of identi-
fying the relevant pathways of the folding reaction [2]. Un-
fortunately these methods are either affected by uncontrolled
systematic errors associated to ad-hoc approximations, or can
only be applied to small proteins with typical folding time of
the order of few nanoseconds (fast folders). In this Letter we
present a novel approach to overcome these difficulties: we
adopt the Langevin approach and devise a method to rigor-
ously define and practically compute the most statistically rel-
evant protein folding pathway. As a first exploratory applica-
tion, we have studied the folding transition of the 36-monomer
Villin Headpiece Subdomain (PDB code 1VII). This molecule
has been extensively studied in the literature because it is the
smallest polypeptide that has all of the properties of a single
domain protein and in addition, it is one of the fastest fold-
ers [3]. The ribbon representation of this system is shown in
Fig.1. We analyze the transition from different random self-
avoiding coil states to the native state, whose structure was
obtained from the Brookhaven Protein Data Bank.

Our study is based on the analogy between Langevin dif-
fusion and quantum propagation. Previous studies have ex-
ploited such a connection to study a variety of diffusive prob-
lems using path integral methods [4, 5]. In this work we de-

velop the formalism to determine explicitly the evolution of
the position of each monomer of the protein, during the entire
folding transition, without relying on a specific choice of the
reaction coordinate.

Before entering the details of our calculation it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion of a
point-particle in one-dimension, subject to an external poten-
tial U(x):

∂x
∂t

= − D
kBT

∂U
∂x

+ η(t) (1)

where η(t) is a Gaussian noise with zero average and correla-
tion given by 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). In this equation, D is
the diffusion constant of the particle in the solvent, kB and T
are respectively the Boltzmann constant and the temperature.

The probability to find the particle at position x at time t
obeys the well-known Fokker-Planck Equation:

∂
∂t

P(x,t) = D
∂

∂x

(
1

kBT
∂U(x)

∂x
P(x,t)

)
+ D

∂2

∂x2 P(x,t),

(2)

It is well-known that the stationary solution of (2) is the
Boltzmann distribution P(x) ∼ exp(−U(x)/kBT ). The solu-
tion of (2), subject to the boundary conditions x(ti) = xi and
x(t f ) = x f can be expressed in terms of a path-integral:

P(x f ,t f |xi,ti) = e−
U(x f )−U(xi)

2kBT

Z x f

xi
Dx(τ)e−Se f f [x]/2D, (3)

where Se f f [x] =
R t

ti d τ
(

ẋ2(τ)
2 +Ve f f [x(τ)]

)
,

Ve f f (x) =
D2

2

(
1

kBT
∂U(x)

∂x

)2
− D2

kBT
∂2 U(x)

∂x2 . (4)
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We present a method to investigate the kinetics of protein folding on a long time-scale and the dynamics
underlying the formation of secondary and tertiary structures during the entire reaction. The approach is based
on the formal analogy between thermal and quantum diffusion: by writing the solution of the Fokker-Planck
equation for the time-evolution of a protein in a viscous heat-bath in terms of a path integral, we derive a
Hamilton-Jacobi variational principle from which we are able to compute the most probable pathway of folding.
The method is applied to the folding of the Villin Headpiece Subdomain, in the framework of a Go-model. We
have found that, in this model, the transition occurs through an initial collapsing phase driven by the starting
coil configuration and a later rearrangement phase, in which secondary structures are formed and all computed
paths display strong similarities. This method is completely general, does not require the prior knowledge of any
reaction coordinate and represents an efficient tool to perfom ab-initio simulations of the entire folding process
with available computers.

Understanding the kinetics of protein folding and the dy-
namical mechanisms involved in the formation of their struc-
tures in an all-atom approach involves simulating a statisti-
cally significant ensemble of folding trajectories for a system
of ∼ 104 degrees of freedom. Unfortunately, the existence
of a huge gap between the microscopic time-scale of the ro-
tational degrees of freedom ∼ 10−12 s and the macroscopic
time scales of the full folding process ∼ 10−6 −101 s makes
it extremely computationally challenging to follow the evo-
lution of a typical ∼ 100-residue protein for a time interval
longer than few tens of nanoseconds.

Several approaches have been proposed to overcome such
computational difficulties and address the problem of identi-
fying the relevant pathways of the folding reaction [2]. Un-
fortunately these methods are either affected by uncontrolled
systematic errors associated to ad-hoc approximations, or can
only be applied to small proteins with typical folding time of
the order of few nanoseconds (fast folders). In this Letter we
present a novel approach to overcome these difficulties: we
adopt the Langevin approach and devise a method to rigor-
ously define and practically compute the most statistically rel-
evant protein folding pathway. As a first exploratory applica-
tion, we have studied the folding transition of the 36-monomer
Villin Headpiece Subdomain (PDB code 1VII). This molecule
has been extensively studied in the literature because it is the
smallest polypeptide that has all of the properties of a single
domain protein and in addition, it is one of the fastest fold-
ers [3]. The ribbon representation of this system is shown in
Fig.1. We analyze the transition from different random self-
avoiding coil states to the native state, whose structure was
obtained from the Brookhaven Protein Data Bank.

Our study is based on the analogy between Langevin dif-
fusion and quantum propagation. Previous studies have ex-
ploited such a connection to study a variety of diffusive prob-
lems using path integral methods [4, 5]. In this work we de-

velop the formalism to determine explicitly the evolution of
the position of each monomer of the protein, during the entire
folding transition, without relying on a specific choice of the
reaction coordinate.

Before entering the details of our calculation it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion of a
point-particle in one-dimension, subject to an external poten-
tial U(x):
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where η(t) is a Gaussian noise with zero average and correla-
tion given by 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). In this equation, D is
the diffusion constant of the particle in the solvent, kB and T
are respectively the Boltzmann constant and the temperature.

The probability to find the particle at position x at time t
obeys the well-known Fokker-Planck Equation:
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It is well-known that the stationary solution of (2) is the
Boltzmann distribution P(x) ∼ exp(−U(x)/kBT ). The solu-
tion of (2), subject to the boundary conditions x(ti) = xi and
x(t f ) = x f can be expressed in terms of a path-integral:
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• Stationary distribution: the Boltzmann 
distribution

• General form:

•  Boundary conditions: 
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We present a method to investigate the kinetics of protein folding on a long time-scale and the dynamics
underlying the formation of secondary and tertiary structures during the entire reaction. The approach is based
on the formal analogy between thermal and quantum diffusion: by writing the solution of the Fokker-Planck
equation for the time-evolution of a protein in a viscous heat-bath in terms of a path integral, we derive a
Hamilton-Jacobi variational principle from which we are able to compute the most probable pathway of folding.
The method is applied to the folding of the Villin Headpiece Subdomain, in the framework of a Go-model. We
have found that, in this model, the transition occurs through an initial collapsing phase driven by the starting
coil configuration and a later rearrangement phase, in which secondary structures are formed and all computed
paths display strong similarities. This method is completely general, does not require the prior knowledge of any
reaction coordinate and represents an efficient tool to perfom ab-initio simulations of the entire folding process
with available computers.
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namical mechanisms involved in the formation of their struc-
tures in an all-atom approach involves simulating a statisti-
cally significant ensemble of folding trajectories for a system
of ∼ 104 degrees of freedom. Unfortunately, the existence
of a huge gap between the microscopic time-scale of the ro-
tational degrees of freedom ∼ 10−12 s and the macroscopic
time scales of the full folding process ∼ 10−6 −101 s makes
it extremely computationally challenging to follow the evo-
lution of a typical ∼ 100-residue protein for a time interval
longer than few tens of nanoseconds.

Several approaches have been proposed to overcome such
computational difficulties and address the problem of identi-
fying the relevant pathways of the folding reaction [2]. Un-
fortunately these methods are either affected by uncontrolled
systematic errors associated to ad-hoc approximations, or can
only be applied to small proteins with typical folding time of
the order of few nanoseconds (fast folders). In this Letter we
present a novel approach to overcome these difficulties: we
adopt the Langevin approach and devise a method to rigor-
ously define and practically compute the most statistically rel-
evant protein folding pathway. As a first exploratory applica-
tion, we have studied the folding transition of the 36-monomer
Villin Headpiece Subdomain (PDB code 1VII). This molecule
has been extensively studied in the literature because it is the
smallest polypeptide that has all of the properties of a single
domain protein and in addition, it is one of the fastest fold-
ers [3]. The ribbon representation of this system is shown in
Fig.1. We analyze the transition from different random self-
avoiding coil states to the native state, whose structure was
obtained from the Brookhaven Protein Data Bank.

Our study is based on the analogy between Langevin dif-
fusion and quantum propagation. Previous studies have ex-
ploited such a connection to study a variety of diffusive prob-
lems using path integral methods [4, 5]. In this work we de-

velop the formalism to determine explicitly the evolution of
the position of each monomer of the protein, during the entire
folding transition, without relying on a specific choice of the
reaction coordinate.

Before entering the details of our calculation it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion of a
point-particle in one-dimension, subject to an external poten-
tial U(x):
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= − D
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where η(t) is a Gaussian noise with zero average and correla-
tion given by 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). In this equation, D is
the diffusion constant of the particle in the solvent, kB and T
are respectively the Boltzmann constant and the temperature.

The probability to find the particle at position x at time t
obeys the well-known Fokker-Planck Equation:
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It is well-known that the stationary solution of (2) is the
Boltzmann distribution P(x) ∼ exp(−U(x)/kBT ). The solu-
tion of (2), subject to the boundary conditions x(ti) = xi and
x(t f ) = x f can be expressed in terms of a path-integral:
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We present a method to investigate the kinetics of protein folding on a long time-scale and the dynamics
underlying the formation of secondary and tertiary structures during the entire reaction. The approach is based
on the formal analogy between thermal and quantum diffusion: by writing the solution of the Fokker-Planck
equation for the time-evolution of a protein in a viscous heat-bath in terms of a path integral, we derive a
Hamilton-Jacobi variational principle from which we are able to compute the most probable pathway of folding.
The method is applied to the folding of the Villin Headpiece Subdomain, in the framework of a Go-model. We
have found that, in this model, the transition occurs through an initial collapsing phase driven by the starting
coil configuration and a later rearrangement phase, in which secondary structures are formed and all computed
paths display strong similarities. This method is completely general, does not require the prior knowledge of any
reaction coordinate and represents an efficient tool to perfom ab-initio simulations of the entire folding process
with available computers.

Understanding the kinetics of protein folding and the dy-
namical mechanisms involved in the formation of their struc-
tures in an all-atom approach involves simulating a statisti-
cally significant ensemble of folding trajectories for a system
of ∼ 104 degrees of freedom. Unfortunately, the existence
of a huge gap between the microscopic time-scale of the ro-
tational degrees of freedom ∼ 10−12 s and the macroscopic
time scales of the full folding process ∼ 10−6 −101 s makes
it extremely computationally challenging to follow the evo-
lution of a typical ∼ 100-residue protein for a time interval
longer than few tens of nanoseconds.

Several approaches have been proposed to overcome such
computational difficulties and address the problem of identi-
fying the relevant pathways of the folding reaction [2]. Un-
fortunately these methods are either affected by uncontrolled
systematic errors associated to ad-hoc approximations, or can
only be applied to small proteins with typical folding time of
the order of few nanoseconds (fast folders). In this Letter we
present a novel approach to overcome these difficulties: we
adopt the Langevin approach and devise a method to rigor-
ously define and practically compute the most statistically rel-
evant protein folding pathway. As a first exploratory applica-
tion, we have studied the folding transition of the 36-monomer
Villin Headpiece Subdomain (PDB code 1VII). This molecule
has been extensively studied in the literature because it is the
smallest polypeptide that has all of the properties of a single
domain protein and in addition, it is one of the fastest fold-
ers [3]. The ribbon representation of this system is shown in
Fig.1. We analyze the transition from different random self-
avoiding coil states to the native state, whose structure was
obtained from the Brookhaven Protein Data Bank.

Our study is based on the analogy between Langevin dif-
fusion and quantum propagation. Previous studies have ex-
ploited such a connection to study a variety of diffusive prob-
lems using path integral methods [4, 5]. In this work we de-

velop the formalism to determine explicitly the evolution of
the position of each monomer of the protein, during the entire
folding transition, without relying on a specific choice of the
reaction coordinate.

Before entering the details of our calculation it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion of a
point-particle in one-dimension, subject to an external poten-
tial U(x):
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= − D
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+ η(t) (1)

where η(t) is a Gaussian noise with zero average and correla-
tion given by 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). In this equation, D is
the diffusion constant of the particle in the solvent, kB and T
are respectively the Boltzmann constant and the temperature.

The probability to find the particle at position x at time t
obeys the well-known Fokker-Planck Equation:
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It is well-known that the stationary solution of (2) is the
Boltzmann distribution P(x) ∼ exp(−U(x)/kBT ). The solu-
tion of (2), subject to the boundary conditions x(ti) = xi and
x(t f ) = x f can be expressed in terms of a path-integral:
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We present a method to investigate the kinetics of protein folding on a long time-scale and the dynamics
underlying the formation of secondary and tertiary structures during the entire reaction. The approach is based
on the formal analogy between thermal and quantum diffusion: by writing the solution of the Fokker-Planck
equation for the time-evolution of a protein in a viscous heat-bath in terms of a path integral, we derive a
Hamilton-Jacobi variational principle from which we are able to compute the most probable pathway of folding.
The method is applied to the folding of the Villin Headpiece Subdomain, in the framework of a Go-model. We
have found that, in this model, the transition occurs through an initial collapsing phase driven by the starting
coil configuration and a later rearrangement phase, in which secondary structures are formed and all computed
paths display strong similarities. This method is completely general, does not require the prior knowledge of any
reaction coordinate and represents an efficient tool to perfom ab-initio simulations of the entire folding process
with available computers.

Understanding the kinetics of protein folding and the dy-
namical mechanisms involved in the formation of their struc-
tures in an all-atom approach involves simulating a statisti-
cally significant ensemble of folding trajectories for a system
of ∼ 104 degrees of freedom. Unfortunately, the existence
of a huge gap between the microscopic time-scale of the ro-
tational degrees of freedom ∼ 10−12 s and the macroscopic
time scales of the full folding process ∼ 10−6 −101 s makes
it extremely computationally challenging to follow the evo-
lution of a typical ∼ 100-residue protein for a time interval
longer than few tens of nanoseconds.

Several approaches have been proposed to overcome such
computational difficulties and address the problem of identi-
fying the relevant pathways of the folding reaction [2]. Un-
fortunately these methods are either affected by uncontrolled
systematic errors associated to ad-hoc approximations, or can
only be applied to small proteins with typical folding time of
the order of few nanoseconds (fast folders). In this Letter we
present a novel approach to overcome these difficulties: we
adopt the Langevin approach and devise a method to rigor-
ously define and practically compute the most statistically rel-
evant protein folding pathway. As a first exploratory applica-
tion, we have studied the folding transition of the 36-monomer
Villin Headpiece Subdomain (PDB code 1VII). This molecule
has been extensively studied in the literature because it is the
smallest polypeptide that has all of the properties of a single
domain protein and in addition, it is one of the fastest fold-
ers [3]. The ribbon representation of this system is shown in
Fig.1. We analyze the transition from different random self-
avoiding coil states to the native state, whose structure was
obtained from the Brookhaven Protein Data Bank.

Our study is based on the analogy between Langevin dif-
fusion and quantum propagation. Previous studies have ex-
ploited such a connection to study a variety of diffusive prob-
lems using path integral methods [4, 5]. In this work we de-

velop the formalism to determine explicitly the evolution of
the position of each monomer of the protein, during the entire
folding transition, without relying on a specific choice of the
reaction coordinate.

Before entering the details of our calculation it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion of a
point-particle in one-dimension, subject to an external poten-
tial U(x):
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= − D
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where η(t) is a Gaussian noise with zero average and correla-
tion given by 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). In this equation, D is
the diffusion constant of the particle in the solvent, kB and T
are respectively the Boltzmann constant and the temperature.

The probability to find the particle at position x at time t
obeys the well-known Fokker-Planck Equation:
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It is well-known that the stationary solution of (2) is the
Boltzmann distribution P(x) ∼ exp(−U(x)/kBT ). The solu-
tion of (2), subject to the boundary conditions x(ti) = xi and
x(t f ) = x f can be expressed in terms of a path-integral:
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We present a method to investigate the kinetics of protein folding on a long time-scale and the dynamics
underlying the formation of secondary and tertiary structures during the entire reaction. The approach is based
on the formal analogy between thermal and quantum diffusion: by writing the solution of the Fokker-Planck
equation for the time-evolution of a protein in a viscous heat-bath in terms of a path integral, we derive a
Hamilton-Jacobi variational principle from which we are able to compute the most probable pathway of folding.
The method is applied to the folding of the Villin Headpiece Subdomain, in the framework of a Go-model. We
have found that, in this model, the transition occurs through an initial collapsing phase driven by the starting
coil configuration and a later rearrangement phase, in which secondary structures are formed and all computed
paths display strong similarities. This method is completely general, does not require the prior knowledge of any
reaction coordinate and represents an efficient tool to perfom ab-initio simulations of the entire folding process
with available computers.

Understanding the kinetics of protein folding and the dy-
namical mechanisms involved in the formation of their struc-
tures in an all-atom approach involves simulating a statisti-
cally significant ensemble of folding trajectories for a system
of ∼ 104 degrees of freedom. Unfortunately, the existence
of a huge gap between the microscopic time-scale of the ro-
tational degrees of freedom ∼ 10−12 s and the macroscopic
time scales of the full folding process ∼ 10−6 −101 s makes
it extremely computationally challenging to follow the evo-
lution of a typical ∼ 100-residue protein for a time interval
longer than few tens of nanoseconds.

Several approaches have been proposed to overcome such
computational difficulties and address the problem of identi-
fying the relevant pathways of the folding reaction [2]. Un-
fortunately these methods are either affected by uncontrolled
systematic errors associated to ad-hoc approximations, or can
only be applied to small proteins with typical folding time of
the order of few nanoseconds (fast folders). In this Letter we
present a novel approach to overcome these difficulties: we
adopt the Langevin approach and devise a method to rigor-
ously define and practically compute the most statistically rel-
evant protein folding pathway. As a first exploratory applica-
tion, we have studied the folding transition of the 36-monomer
Villin Headpiece Subdomain (PDB code 1VII). This molecule
has been extensively studied in the literature because it is the
smallest polypeptide that has all of the properties of a single
domain protein and in addition, it is one of the fastest fold-
ers [3]. The ribbon representation of this system is shown in
Fig.1. We analyze the transition from different random self-
avoiding coil states to the native state, whose structure was
obtained from the Brookhaven Protein Data Bank.

Our study is based on the analogy between Langevin dif-
fusion and quantum propagation. Previous studies have ex-
ploited such a connection to study a variety of diffusive prob-
lems using path integral methods [4, 5]. In this work we de-

velop the formalism to determine explicitly the evolution of
the position of each monomer of the protein, during the entire
folding transition, without relying on a specific choice of the
reaction coordinate.

Before entering the details of our calculation it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion of a
point-particle in one-dimension, subject to an external poten-
tial U(x):
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Boltzmann distribution P(x) ∼ exp(−U(x)/kBT ). The solu-
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We present a method to investigate the kinetics of protein folding on a long time-scale and the dynamics
underlying the formation of secondary and tertiary structures during the entire reaction. The approach is based
on the formal analogy between thermal and quantum diffusion: by writing the solution of the Fokker-Planck
equation for the time-evolution of a protein in a viscous heat-bath in terms of a path integral, we derive a
Hamilton-Jacobi variational principle from which we are able to compute the most probable pathway of folding.
The method is applied to the folding of the Villin Headpiece Subdomain, in the framework of a Go-model. We
have found that, in this model, the transition occurs through an initial collapsing phase driven by the starting
coil configuration and a later rearrangement phase, in which secondary structures are formed and all computed
paths display strong similarities. This method is completely general, does not require the prior knowledge of any
reaction coordinate and represents an efficient tool to perfom ab-initio simulations of the entire folding process
with available computers.

Understanding the kinetics of protein folding and the dy-
namical mechanisms involved in the formation of their struc-
tures in an all-atom approach involves simulating a statisti-
cally significant ensemble of folding trajectories for a system
of ∼ 104 degrees of freedom. Unfortunately, the existence
of a huge gap between the microscopic time-scale of the ro-
tational degrees of freedom ∼ 10−12 s and the macroscopic
time scales of the full folding process ∼ 10−6 −101 s makes
it extremely computationally challenging to follow the evo-
lution of a typical ∼ 100-residue protein for a time interval
longer than few tens of nanoseconds.

Several approaches have been proposed to overcome such
computational difficulties and address the problem of identi-
fying the relevant pathways of the folding reaction [2]. Un-
fortunately these methods are either affected by uncontrolled
systematic errors associated to ad-hoc approximations, or can
only be applied to small proteins with typical folding time of
the order of few nanoseconds (fast folders). In this Letter we
present a novel approach to overcome these difficulties: we
adopt the Langevin approach and devise a method to rigor-
ously define and practically compute the most statistically rel-
evant protein folding pathway. As a first exploratory applica-
tion, we have studied the folding transition of the 36-monomer
Villin Headpiece Subdomain (PDB code 1VII). This molecule
has been extensively studied in the literature because it is the
smallest polypeptide that has all of the properties of a single
domain protein and in addition, it is one of the fastest fold-
ers [3]. The ribbon representation of this system is shown in
Fig.1. We analyze the transition from different random self-
avoiding coil states to the native state, whose structure was
obtained from the Brookhaven Protein Data Bank.

Our study is based on the analogy between Langevin dif-
fusion and quantum propagation. Previous studies have ex-
ploited such a connection to study a variety of diffusive prob-
lems using path integral methods [4, 5]. In this work we de-

velop the formalism to determine explicitly the evolution of
the position of each monomer of the protein, during the entire
folding transition, without relying on a specific choice of the
reaction coordinate.

Before entering the details of our calculation it is con-
venient to review the mathematical framework in a simple
case. For this purpose, let us consider Langevin diffusion of a
point-particle in one-dimension, subject to an external poten-
tial U(x):

∂x
∂t

= − D
kBT
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∂x

+ η(t) (1)

where η(t) is a Gaussian noise with zero average and correla-
tion given by 〈η(t)η(t ′)〉 = 2Dδ(t − t ′). In this equation, D is
the diffusion constant of the particle in the solvent, kB and T
are respectively the Boltzmann constant and the temperature.

The probability to find the particle at position x at time t
obeys the well-known Fokker-Planck Equation:
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It is well-known that the stationary solution of (2) is the
Boltzmann distribution P(x) ∼ exp(−U(x)/kBT ). The solu-
tion of (2), subject to the boundary conditions x(ti) = xi and
x(t f ) = x f can be expressed in terms of a path-integral:
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• Dominant trajectories: classical trajectories

• with correct boundary conditions.

• Problem: one does not know the transition 
time. 
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Newtonian dynamics to energy-dependent 
Hamilton-Jacobi description.
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• The total time of passage is determined by
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FIG. 1: Ribbon representation of the Villin Headpiece Subdomain,
drawn using Raster3D[12]

This result shows that the problem of studying the diffu-
sion of a classical particle at temperature T in a medium with
diffusion constant D can be mapped into the problem of de-
termining its quantum-mechanical propagation in imaginary
time, subject to the effective potential Ve f f (x). This approach
has substantial differences from the one introduced in Ref. [6],
where the second derivative of eq.(4) is neglected. Such an ap-
proximation is not consistent with the Fokker-Planck equation
(2), and it leads, at large times, to a distribution which is not
the Boltzmann distribution [7]. Our approach also differs from
the one introduced in Ref. [8] where thermal fluctuations were
neglected and friction effects were partially accounted for by
choosing large discretization steps to filter-out high-frequency
modes.

The most probable path contributing to (3) is the one for
which the exponential weight e−Se f f /2D is maximum, hence
for which Se f f is minimum. A trajectory which connects
configurations that are not classically accessible in the ab-
sence of thermal fluctuations corresponds to an instanton in
the quantum-mechanical language.

The same framework can be applied to study the protein
folding, in which the one-instanton solutions represent the
most probable folding trajectories (which we shall refer to
as Dominant Folding Pathway, DFP). Determining the DFP
for realistic proteins using conventional methods —such as
Molecular Dynamics— is extremely challenging from the
computational point of view. In addition to the numerical dif-
ficulties associated with the existence of very different time
scales, one has also to face the solution of boundary-value
problems, which are considerably harder than initial-value
problems.

Fortunately, a dramatic simplification is obtained upon ob-
serving that the dynamics described by the effective action
Se f f is energy-conserving and time-reversible. This property
allows us to switch from the time-dependent Newtonian de-
scription to the energy-dependent Hamilton-Jacobi (HJ) de-
scription. We note that this could not be done at the level
of the Langevin equations (or adopting the Onsager-Machlup
action). In the HJ framework, the Dominant Folding Path-
way connecting given initial and final positions is obtained
by minimizing — not just extremizing— the target function
(HJ functional)

SHJ =
Z x f

xi
dl

√
2(Ee f f +Ve f f [x(l)]), (5)
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FIG. 2: The evolution of the radius of gyration as a function of the
fraction of the total displacement covered during the folding transi-
tions in 6 paths corresponding to different initial random coil config-
urations.

where dl is an infinitesimal displacement along the path tra-
jectory. Ee f f is a free parameter which determines the total
time elapsed during the transition, according to:

t f − ti =
Z x f

xi
dl

√
1

2(Ee f f +Ve f f [x(l)])
. (6)

It should be stressed that the conserved quantity Ee f f does
not correspond to the physical energy of the folding transi-
tion (which is not conserved in the presence of random forces
and friction). In principle, a statistical distribution of folding
times can be obtained by modeling the statistical distribution
of Ee f f (for example through MD simulations). In the present
work, we adopted the simple choice Ee f f =−Ve f f (x f ), which
corresponds to the longest folding time. However, we have
noted that the minimization of the HJ action by varying the
value of Ee f f of a factor up to 5 leads to comparable results.
The HJ formulation of the dynamics leads to an impressive
computational simplification of this problem. In fact, the total
Euclidean distance between the coil state and the native state
of a typical protein is only 1-2 orders of magnitude larger than
the most microscopic length scale, i.e. the typical monomer
(or atom) size. As a consequence, only ∼ 100 discretized dis-
placement steps are sufficient for convergence. This number
should be compared with 1012 time-steps required in the time-
dependent Newtonian description. As a result of this sim-
plification, within our approach simulating the entire folding
process for a typical protein becomes feasible with available
computers. The physical reason why the HJ formulation is so
much more efficient compared to the Newtonian formulation
is the following: in traditional Molecular Dynamics simula-
tions, proteins spend most of their time in meta-stable min-
ima, trying to overcome free-energy barriers. The HJ formu-
lation avoids investing computational times in such "waiting"
phases by considering intervals of fixed displacements, rather
than fixed time-length. The numerical advantages of the HJ
formalism for describing long-time dynamics at constant en-
ergy were first pointed-out in [8]. In this work, we show that
comparable computational advantages can also be achieved
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times can be obtained by modeling the statistical distribution
of Ee f f (for example through MD simulations). In the present
work, we adopted the simple choice Ee f f =−Ve f f (x f ), which
corresponds to the longest folding time. However, we have
noted that the minimization of the HJ action by varying the
value of Ee f f of a factor up to 5 leads to comparable results.
The HJ formulation of the dynamics leads to an impressive
computational simplification of this problem. In fact, the total
Euclidean distance between the coil state and the native state
of a typical protein is only 1-2 orders of magnitude larger than
the most microscopic length scale, i.e. the typical monomer
(or atom) size. As a consequence, only ∼ 100 discretized dis-
placement steps are sufficient for convergence. This number
should be compared with 1012 time-steps required in the time-
dependent Newtonian description. As a result of this sim-
plification, within our approach simulating the entire folding
process for a typical protein becomes feasible with available
computers. The physical reason why the HJ formulation is so
much more efficient compared to the Newtonian formulation
is the following: in traditional Molecular Dynamics simula-
tions, proteins spend most of their time in meta-stable min-
ima, trying to overcome free-energy barriers. The HJ formu-
lation avoids investing computational times in such "waiting"
phases by considering intervals of fixed displacements, rather
than fixed time-length. The numerical advantages of the HJ
formalism for describing long-time dynamics at constant en-
ergy were first pointed-out in [8]. In this work, we show that
comparable computational advantages can also be achieved
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This result shows that the problem of studying the diffu-
sion of a classical particle at temperature T in a medium with
diffusion constant D can be mapped into the problem of de-
termining its quantum-mechanical propagation in imaginary
time, subject to the effective potential Ve f f (x). This approach
has substantial differences from the one introduced in Ref. [6],
where the second derivative of eq.(4) is neglected. Such an ap-
proximation is not consistent with the Fokker-Planck equation
(2), and it leads, at large times, to a distribution which is not
the Boltzmann distribution [7]. Our approach also differs from
the one introduced in Ref. [8] where thermal fluctuations were
neglected and friction effects were partially accounted for by
choosing large discretization steps to filter-out high-frequency
modes.

The most probable path contributing to (3) is the one for
which the exponential weight e−Se f f /2D is maximum, hence
for which Se f f is minimum. A trajectory which connects
configurations that are not classically accessible in the ab-
sence of thermal fluctuations corresponds to an instanton in
the quantum-mechanical language.

The same framework can be applied to study the protein
folding, in which the one-instanton solutions represent the
most probable folding trajectories (which we shall refer to
as Dominant Folding Pathway, DFP). Determining the DFP
for realistic proteins using conventional methods —such as
Molecular Dynamics— is extremely challenging from the
computational point of view. In addition to the numerical dif-
ficulties associated with the existence of very different time
scales, one has also to face the solution of boundary-value
problems, which are considerably harder than initial-value
problems.

Fortunately, a dramatic simplification is obtained upon ob-
serving that the dynamics described by the effective action
Se f f is energy-conserving and time-reversible. This property
allows us to switch from the time-dependent Newtonian de-
scription to the energy-dependent Hamilton-Jacobi (HJ) de-
scription. We note that this could not be done at the level
of the Langevin equations (or adopting the Onsager-Machlup
action). In the HJ framework, the Dominant Folding Path-
way connecting given initial and final positions is obtained
by minimizing — not just extremizing— the target function
(HJ functional)

SHJ =
Z x f

xi
dl

√
2(Ee f f +Ve f f [x(l)]), (5)

0 20 40 60 80 100
Percentage of configurational steps

20

30

40

50

60

G
yr

at
io

n 
 ra

di
us

 (n
m

2 )

FIG. 2: The evolution of the radius of gyration as a function of the
fraction of the total displacement covered during the folding transi-
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tion (which is not conserved in the presence of random forces
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where dl is an infinitesimal displacement along the path tra-
jectory. Ee f f is a free parameter which determines the total
time elapsed during the transition, according to:
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It should be stressed that the conserved quantity Ee f f does
not correspond to the physical energy of the folding transi-
tion (which is not conserved in the presence of random forces
and friction). In principle, a statistical distribution of folding
times can be obtained by modeling the statistical distribution
of Ee f f (for example through MD simulations). In the present
work, we adopted the simple choice Ee f f =−Ve f f (x f ), which
corresponds to the longest folding time. However, we have
noted that the minimization of the HJ action by varying the
value of Ee f f of a factor up to 5 leads to comparable results.
The HJ formulation of the dynamics leads to an impressive
computational simplification of this problem. In fact, the total
Euclidean distance between the coil state and the native state
of a typical protein is only 1-2 orders of magnitude larger than
the most microscopic length scale, i.e. the typical monomer
(or atom) size. As a consequence, only ∼ 100 discretized dis-
placement steps are sufficient for convergence. This number
should be compared with 1012 time-steps required in the time-
dependent Newtonian description. As a result of this sim-
plification, within our approach simulating the entire folding
process for a typical protein becomes feasible with available
computers. The physical reason why the HJ formulation is so
much more efficient compared to the Newtonian formulation
is the following: in traditional Molecular Dynamics simula-
tions, proteins spend most of their time in meta-stable min-
ima, trying to overcome free-energy barriers. The HJ formu-
lation avoids investing computational times in such "waiting"
phases by considering intervals of fixed displacements, rather
than fixed time-length. The numerical advantages of the HJ
formalism for describing long-time dynamics at constant en-
ergy were first pointed-out in [8]. In this work, we show that
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spend most of their time trying to overcome 
free-energy barriers.
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FIG. 3: The evolution of the percentage of monomers in alpha-helix
conformation as a function of the fraction of the total displacement
covered during the folding transitions in 6 paths corresponding to
different initial random coil configurations.

for stochastic dynamics at fixed temperature, in which the ef-
fects associated with thermal fluctuations and dissipation are
consistently taken into account.

Let us now apply this formalism to the study of the kinetics
of the protein folding. Although the ultimate goal is to char-
acterize folding pathways using an all-atom description, in
this exploratory study we test our method on a very schematic
model in which the effective degrees of freedom (monomers)
are representative of amino-acids, and have a fixed mass. The
monomer-monomer interaction is chosen to be the sum of a
harmonic bond along the chain, supplemented by a repulsive
core between non-consecutive monomers and by an attractive
basin between monomers which are in contact in the native
state (Go-Model [9]). The detailed form of the potential used
is:

U = ∑
i< j

u(xi,x j) = ∑
i< j

(
1
2

Kb(|xi −x j|−a
)2

δ j,i+1

+ εσi, j

[(
R0

ri j

)1
2−

(
(2 R0)6

(ri j −R0)6 +(2R0)6)

)]
(7)

+ ε(1−σi, j)

(
Rr

ri j

)1
2,

where ri j = |xi − x j| and σi j = 1 if i and j are in native con-
tact, while σi j = 0 otherwise. The parameters in the potential
have been chosen to be of the same order of similar Go-Model
applications (see [10] and references therein): a = 0.38 nm,
R0 = 0.45 nm , Rr = 0.65 nm, ε = 2 Kcal/mol. In this first
exploratory study we chose to keep the problem as simple as
possible and did not include Coulombic, angular or torsional
interactions. Hence, the present simple model is not expected
to be realistic in predicting the kinetics of tertiary structures
formation: the collapse of the protein will be driven mostly by
the boundary conditions. On the other hand, the Go-potential
may be sufficiently long-ranged to be effective in the determi-
nation of local secondary structures.

The DFP was obtained minimizing numerically the dis-
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FIG. 4: The evolution of the number of contacts as a function of the
fraction of the total displacement covered during the folding transi-
tions in 6 paths corresponding to different initial random coil config-
urations.

cretized target function

SHJ =
N−1

∑
n

√
2(Ee f f +Ve f f (n))∆ln,n+1 + λP, (8)

where P = ∑N−1
i (∆li,i+1 −〈∆l〉)2 and

Ve f f (n) = ∑
i



 D2

2(kBT )2

(

∑
j

∇ ju(xi(n),x j(n))

)2

− D2

kBT ∑
j

∇2
ju(xi(n),x j(n))

]
(9)

(∆l)2
n,n+1 = ∑

i
(xi(n + 1)−xi(n))2, (10)

∆ ln,n+1 is the Euclidean measure of the n− th elementary path
step and P is a penalty function which keeps all the length
elements close to their average [8] and becomes irrelevant in
the continuum limit.

We have checked that, with 100 discretization steps, simu-
lations performed on a wide range of λ lead to consistent re-
sults. The minimization of the discretized HJ effective action
was performed applying an adaptive simulated annealing al-
gorithm and using 50 and 100 path discretization steps. After
a preliminary thermalization phase based on usual Metropolis
algorithm, we performed about 5 cooling cycles, consisting of
8000 cooling steps each. In order to avoid trapping in local
minima, at the begin of each cooling cycle, the configuration
was heated-up with few Metropolis steps. At the end of each
cooling cycle, the boldness of the Monte Carlo moves was
adapted, in order to keep the rejection rate ∼ 90%. Each
calculation lasted for approximately ∼ 12 hours on a single-
processor work station. We considered the folding transitions
from 6 different random self-avoiding coil configurations to
the same native state. The center of mass was subtracted form
each configurations.

The results of the simulations performed at T = 300 K
and damping constant γ = kBT

D = 0.1ns−1 are reported in
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FIG. 3: The evolution of the percentage of monomers in alpha-helix
conformation as a function of the fraction of the total displacement
covered during the folding transitions in 6 paths corresponding to
different initial random coil configurations.

for stochastic dynamics at fixed temperature, in which the ef-
fects associated with thermal fluctuations and dissipation are
consistently taken into account.

Let us now apply this formalism to the study of the kinetics
of the protein folding. Although the ultimate goal is to char-
acterize folding pathways using an all-atom description, in
this exploratory study we test our method on a very schematic
model in which the effective degrees of freedom (monomers)
are representative of amino-acids, and have a fixed mass. The
monomer-monomer interaction is chosen to be the sum of a
harmonic bond along the chain, supplemented by a repulsive
core between non-consecutive monomers and by an attractive
basin between monomers which are in contact in the native
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tact, while σi j = 0 otherwise. The parameters in the potential
have been chosen to be of the same order of similar Go-Model
applications (see [10] and references therein): a = 0.38 nm,
R0 = 0.45 nm , Rr = 0.65 nm, ε = 2 Kcal/mol. In this first
exploratory study we chose to keep the problem as simple as
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interactions. Hence, the present simple model is not expected
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formation: the collapse of the protein will be driven mostly by
the boundary conditions. On the other hand, the Go-potential
may be sufficiently long-ranged to be effective in the determi-
nation of local secondary structures.
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was performed applying an adaptive simulated annealing al-
gorithm and using 50 and 100 path discretization steps. After
a preliminary thermalization phase based on usual Metropolis
algorithm, we performed about 5 cooling cycles, consisting of
8000 cooling steps each. In order to avoid trapping in local
minima, at the begin of each cooling cycle, the configuration
was heated-up with few Metropolis steps. At the end of each
cooling cycle, the boldness of the Monte Carlo moves was
adapted, in order to keep the rejection rate ∼ 90%. Each
calculation lasted for approximately ∼ 12 hours on a single-
processor work station. We considered the folding transitions
from 6 different random self-avoiding coil configurations to
the same native state. The center of mass was subtracted form
each configurations.

The results of the simulations performed at T = 300 K
and damping constant γ = kBT

D = 0.1ns−1 are reported in
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FIG. 3: The evolution of the percentage of monomers in alpha-helix
conformation as a function of the fraction of the total displacement
covered during the folding transitions in 6 paths corresponding to
different initial random coil configurations.

for stochastic dynamics at fixed temperature, in which the ef-
fects associated with thermal fluctuations and dissipation are
consistently taken into account.

Let us now apply this formalism to the study of the kinetics
of the protein folding. Although the ultimate goal is to char-
acterize folding pathways using an all-atom description, in
this exploratory study we test our method on a very schematic
model in which the effective degrees of freedom (monomers)
are representative of amino-acids, and have a fixed mass. The
monomer-monomer interaction is chosen to be the sum of a
harmonic bond along the chain, supplemented by a repulsive
core between non-consecutive monomers and by an attractive
basin between monomers which are in contact in the native
state (Go-Model [9]). The detailed form of the potential used
is:

U = ∑
i< j

u(xi,x j) = ∑
i< j

(
1
2

Kb(|xi −x j|−a
)2

δ j,i+1

+ εσi, j

[(
R0

ri j

)1
2−

(
(2 R0)6

(ri j −R0)6 +(2R0)6)

)]
(7)

+ ε(1−σi, j)

(
Rr

ri j

)1
2,

where ri j = |xi − x j| and σi j = 1 if i and j are in native con-
tact, while σi j = 0 otherwise. The parameters in the potential
have been chosen to be of the same order of similar Go-Model
applications (see [10] and references therein): a = 0.38 nm,
R0 = 0.45 nm , Rr = 0.65 nm, ε = 2 Kcal/mol. In this first
exploratory study we chose to keep the problem as simple as
possible and did not include Coulombic, angular or torsional
interactions. Hence, the present simple model is not expected
to be realistic in predicting the kinetics of tertiary structures
formation: the collapse of the protein will be driven mostly by
the boundary conditions. On the other hand, the Go-potential
may be sufficiently long-ranged to be effective in the determi-
nation of local secondary structures.

The DFP was obtained minimizing numerically the dis-
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FIG. 4: The evolution of the number of contacts as a function of the
fraction of the total displacement covered during the folding transi-
tions in 6 paths corresponding to different initial random coil config-
urations.

cretized target function
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√
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n,n+1 = ∑
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(xi(n + 1)−xi(n))2, (10)

∆ ln,n+1 is the Euclidean measure of the n− th elementary path
step and P is a penalty function which keeps all the length
elements close to their average [8] and becomes irrelevant in
the continuum limit.

We have checked that, with 100 discretization steps, simu-
lations performed on a wide range of λ lead to consistent re-
sults. The minimization of the discretized HJ effective action
was performed applying an adaptive simulated annealing al-
gorithm and using 50 and 100 path discretization steps. After
a preliminary thermalization phase based on usual Metropolis
algorithm, we performed about 5 cooling cycles, consisting of
8000 cooling steps each. In order to avoid trapping in local
minima, at the begin of each cooling cycle, the configuration
was heated-up with few Metropolis steps. At the end of each
cooling cycle, the boldness of the Monte Carlo moves was
adapted, in order to keep the rejection rate ∼ 90%. Each
calculation lasted for approximately ∼ 12 hours on a single-
processor work station. We considered the folding transitions
from 6 different random self-avoiding coil configurations to
the same native state. The center of mass was subtracted form
each configurations.

The results of the simulations performed at T = 300 K
and damping constant γ = kBT

D = 0.1ns−1 are reported in
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This result shows that the problem of studying the diffu-
sion of a classical particle at temperature T in a medium with
diffusion constant D can be mapped into the problem of de-
termining its quantum-mechanical propagation in imaginary
time, subject to the effective potential Ve f f (x). This approach
has substantial differences from the one introduced in Ref. [6],
where the second derivative of eq.(4) is neglected. Such an ap-
proximation is not consistent with the Fokker-Planck equation
(2), and it leads, at large times, to a distribution which is not
the Boltzmann distribution [7]. Our approach also differs from
the one introduced in Ref. [8] where thermal fluctuations were
neglected and friction effects were partially accounted for by
choosing large discretization steps to filter-out high-frequency
modes.

The most probable path contributing to (3) is the one for
which the exponential weight e−Se f f /2D is maximum, hence
for which Se f f is minimum. A trajectory which connects
configurations that are not classically accessible in the ab-
sence of thermal fluctuations corresponds to an instanton in
the quantum-mechanical language.

The same framework can be applied to study the protein
folding, in which the one-instanton solutions represent the
most probable folding trajectories (which we shall refer to
as Dominant Folding Pathway, DFP). Determining the DFP
for realistic proteins using conventional methods —such as
Molecular Dynamics— is extremely challenging from the
computational point of view. In addition to the numerical dif-
ficulties associated with the existence of very different time
scales, one has also to face the solution of boundary-value
problems, which are considerably harder than initial-value
problems.

Fortunately, a dramatic simplification is obtained upon ob-
serving that the dynamics described by the effective action
Se f f is energy-conserving and time-reversible. This property
allows us to switch from the time-dependent Newtonian de-
scription to the energy-dependent Hamilton-Jacobi (HJ) de-
scription. We note that this could not be done at the level
of the Langevin equations (or adopting the Onsager-Machlup
action). In the HJ framework, the Dominant Folding Path-
way connecting given initial and final positions is obtained
by minimizing — not just extremizing— the target function
(HJ functional)

SHJ =
Z x f

xi
dl

√
2(Ee f f +Ve f f [x(l)]), (5)
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FIG. 2: The evolution of the radius of gyration as a function of the
fraction of the total displacement covered during the folding transi-
tions in 6 paths corresponding to different initial random coil config-
urations.

where dl is an infinitesimal displacement along the path tra-
jectory. Ee f f is a free parameter which determines the total
time elapsed during the transition, according to:

t f − ti =
Z x f

xi
dl

√
1

2(Ee f f +Ve f f [x(l)])
. (6)

It should be stressed that the conserved quantity Ee f f does
not correspond to the physical energy of the folding transi-
tion (which is not conserved in the presence of random forces
and friction). In principle, a statistical distribution of folding
times can be obtained by modeling the statistical distribution
of Ee f f (for example through MD simulations). In the present
work, we adopted the simple choice Ee f f =−Ve f f (x f ), which
corresponds to the longest folding time. However, we have
noted that the minimization of the HJ action by varying the
value of Ee f f of a factor up to 5 leads to comparable results.
The HJ formulation of the dynamics leads to an impressive
computational simplification of this problem. In fact, the total
Euclidean distance between the coil state and the native state
of a typical protein is only 1-2 orders of magnitude larger than
the most microscopic length scale, i.e. the typical monomer
(or atom) size. As a consequence, only ∼ 100 discretized dis-
placement steps are sufficient for convergence. This number
should be compared with 1012 time-steps required in the time-
dependent Newtonian description. As a result of this sim-
plification, within our approach simulating the entire folding
process for a typical protein becomes feasible with available
computers. The physical reason why the HJ formulation is so
much more efficient compared to the Newtonian formulation
is the following: in traditional Molecular Dynamics simula-
tions, proteins spend most of their time in meta-stable min-
ima, trying to overcome free-energy barriers. The HJ formu-
lation avoids investing computational times in such "waiting"
phases by considering intervals of fixed displacements, rather
than fixed time-length. The numerical advantages of the HJ
formalism for describing long-time dynamics at constant en-
ergy were first pointed-out in [8]. In this work, we show that
comparable computational advantages can also be achieved
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FIG. 3: The evolution of the percentage of monomers in alpha-helix
conformation as a function of the fraction of the total displacement
covered during the folding transitions in 6 paths corresponding to
different initial random coil configurations.

for stochastic dynamics at fixed temperature, in which the ef-
fects associated with thermal fluctuations and dissipation are
consistently taken into account.

Let us now apply this formalism to the study of the kinetics
of the protein folding. Although the ultimate goal is to char-
acterize folding pathways using an all-atom description, in
this exploratory study we test our method on a very schematic
model in which the effective degrees of freedom (monomers)
are representative of amino-acids, and have a fixed mass. The
monomer-monomer interaction is chosen to be the sum of a
harmonic bond along the chain, supplemented by a repulsive
core between non-consecutive monomers and by an attractive
basin between monomers which are in contact in the native
state (Go-Model [9]). The detailed form of the potential used
is:

U = ∑
i< j

u(xi,x j) = ∑
i< j

(
1
2

Kb(|xi −x j|−a
)2

δ j,i+1

+ εσi, j

[(
R0

ri j

)1
2−

(
(2 R0)6

(ri j −R0)6 +(2R0)6)

)]
(7)

+ ε(1−σi, j)

(
Rr

ri j

)1
2,

where ri j = |xi − x j| and σi j = 1 if i and j are in native con-
tact, while σi j = 0 otherwise. The parameters in the potential
have been chosen to be of the same order of similar Go-Model
applications (see [10] and references therein): a = 0.38 nm,
R0 = 0.45 nm , Rr = 0.65 nm, ε = 2 Kcal/mol. In this first
exploratory study we chose to keep the problem as simple as
possible and did not include Coulombic, angular or torsional
interactions. Hence, the present simple model is not expected
to be realistic in predicting the kinetics of tertiary structures
formation: the collapse of the protein will be driven mostly by
the boundary conditions. On the other hand, the Go-potential
may be sufficiently long-ranged to be effective in the determi-
nation of local secondary structures.

The DFP was obtained minimizing numerically the dis-
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FIG. 4: The evolution of the number of contacts as a function of the
fraction of the total displacement covered during the folding transi-
tions in 6 paths corresponding to different initial random coil config-
urations.

cretized target function

SHJ =
N−1

∑
n

√
2(Ee f f +Ve f f (n))∆ln,n+1 + λP, (8)

where P = ∑N−1
i (∆li,i+1 −〈∆l〉)2 and

Ve f f (n) = ∑
i



 D2

2(kBT )2
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j
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ju(xi(n),x j(n))

]
(9)

(∆l)2
n,n+1 = ∑

i
(xi(n + 1)−xi(n))2, (10)

∆ ln,n+1 is the Euclidean measure of the n− th elementary path
step and P is a penalty function which keeps all the length
elements close to their average [8] and becomes irrelevant in
the continuum limit.

We have checked that, with 100 discretization steps, simu-
lations performed on a wide range of λ lead to consistent re-
sults. The minimization of the discretized HJ effective action
was performed applying an adaptive simulated annealing al-
gorithm and using 50 and 100 path discretization steps. After
a preliminary thermalization phase based on usual Metropolis
algorithm, we performed about 5 cooling cycles, consisting of
8000 cooling steps each. In order to avoid trapping in local
minima, at the begin of each cooling cycle, the configuration
was heated-up with few Metropolis steps. At the end of each
cooling cycle, the boldness of the Monte Carlo moves was
adapted, in order to keep the rejection rate ∼ 90%. Each
calculation lasted for approximately ∼ 12 hours on a single-
processor work station. We considered the folding transitions
from 6 different random self-avoiding coil configurations to
the same native state. The center of mass was subtracted form
each configurations.

The results of the simulations performed at T = 300 K
and damping constant γ = kBT

D = 0.1ns−1 are reported in
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FIG. 3: The evolution of the percentage of monomers in alpha-helix
conformation as a function of the fraction of the total displacement
covered during the folding transitions in 6 paths corresponding to
different initial random coil configurations.

for stochastic dynamics at fixed temperature, in which the ef-
fects associated with thermal fluctuations and dissipation are
consistently taken into account.

Let us now apply this formalism to the study of the kinetics
of the protein folding. Although the ultimate goal is to char-
acterize folding pathways using an all-atom description, in
this exploratory study we test our method on a very schematic
model in which the effective degrees of freedom (monomers)
are representative of amino-acids, and have a fixed mass. The
monomer-monomer interaction is chosen to be the sum of a
harmonic bond along the chain, supplemented by a repulsive
core between non-consecutive monomers and by an attractive
basin between monomers which are in contact in the native
state (Go-Model [9]). The detailed form of the potential used
is:

U = ∑
i< j

u(xi,x j) = ∑
i< j

(
1
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Kb(|xi −x j|−a
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(
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(ri j −R0)6 +(2R0)6)

)]
(7)

+ ε(1−σi, j)

(
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ri j
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2,

where ri j = |xi − x j| and σi j = 1 if i and j are in native con-
tact, while σi j = 0 otherwise. The parameters in the potential
have been chosen to be of the same order of similar Go-Model
applications (see [10] and references therein): a = 0.38 nm,
R0 = 0.45 nm , Rr = 0.65 nm, ε = 2 Kcal/mol. In this first
exploratory study we chose to keep the problem as simple as
possible and did not include Coulombic, angular or torsional
interactions. Hence, the present simple model is not expected
to be realistic in predicting the kinetics of tertiary structures
formation: the collapse of the protein will be driven mostly by
the boundary conditions. On the other hand, the Go-potential
may be sufficiently long-ranged to be effective in the determi-
nation of local secondary structures.

The DFP was obtained minimizing numerically the dis-
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FIG. 4: The evolution of the number of contacts as a function of the
fraction of the total displacement covered during the folding transi-
tions in 6 paths corresponding to different initial random coil config-
urations.

cretized target function

SHJ =
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∑
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√
2(Ee f f +Ve f f (n))∆ln,n+1 + λP, (8)

where P = ∑N−1
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(9)
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n,n+1 = ∑
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(xi(n + 1)−xi(n))2, (10)

∆ ln,n+1 is the Euclidean measure of the n− th elementary path
step and P is a penalty function which keeps all the length
elements close to their average [8] and becomes irrelevant in
the continuum limit.

We have checked that, with 100 discretization steps, simu-
lations performed on a wide range of λ lead to consistent re-
sults. The minimization of the discretized HJ effective action
was performed applying an adaptive simulated annealing al-
gorithm and using 50 and 100 path discretization steps. After
a preliminary thermalization phase based on usual Metropolis
algorithm, we performed about 5 cooling cycles, consisting of
8000 cooling steps each. In order to avoid trapping in local
minima, at the begin of each cooling cycle, the configuration
was heated-up with few Metropolis steps. At the end of each
cooling cycle, the boldness of the Monte Carlo moves was
adapted, in order to keep the rejection rate ∼ 90%. Each
calculation lasted for approximately ∼ 12 hours on a single-
processor work station. We considered the folding transitions
from 6 different random self-avoiding coil configurations to
the same native state. The center of mass was subtracted form
each configurations.

The results of the simulations performed at T = 300 K
and damping constant γ = kBT

D = 0.1ns−1 are reported in


