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® Theory for DNA Hybridization
® cffects of mutations and mismatches

® Effect of a torque: Supercoiling



Review of basic properties of DNA

* DNAis a biopolymer
— RNA (length ~ 70 — 2000)
— DNA (length ~ 106 — 109)
— Proteins (length ~ 102)
— Polysaccharides (length ~ 103)

H. Orland, SPhT, Saclay Trieste, July 24-29, 2006



Composition of Cell (in weight)

Water 70%
Proteins 15%
DNA 1%
RNA 6%
Polysaccharides 3%
Lipids 2%
Mineral ions 3%
Etc...

H. Orland, SPhT, Saclay Trieste, July 24-29, 2006



Central dogma of Biology

DNA (information storage)

transcription

RNA (in%ormation transmission)

translation

Proteins (biological function)

H. Orland, SPhT, Saclay Trieste, July 24-29, 2006



DNA structure

® DNA is a double stranded polymer

® Made of 4 bases:

® adenine
® guanine

® cytosine

® thymine




Native DNA is a double helix of complementary antiparallel chains
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® Watson-Crick pairing

® G -- C:3 Hydrogen bonds , about 3 kCal/
mole (5 kT)

® A --U:2 Hydrogen bonds , about 2 kCal/
mole (3 kT)

® The 2 strands are complementary

® The length of a DNA ranges from few
thousands to few billions.



® |n addition, there are Stacking Energies.

® Nucleic acids are charged == DNA is
soluble

® The organic rings of the bases are
Hydrophobic === bases have a tendency
to cluster: Stacking energies



Electrostatics

DNA is strongly negatively charged
due to Phosphate groups

Usually, there are Mg++, Na+ and
Cl- ions = Screening

Debye-Huckel interaction between

the charged monomers of DNA

2
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[ B is the Bjerrum length 74
Cr is the total ion concentration

Screening length is 41%1 in |M
20A in 0.075 M




Bending and persistence

® Bending energy is characterized by the
persistence length (correlation length of
tangents)

e [, =~ 150 bp for double-stranded DNA
~ 750A

o [, = 15 bp for single-stranded DNA
~ 75A



DNA denaturation

o =3

656 C <T<110C



o8- o Alisthe number of
bound pairs.
Measured by looking

at UV adsorption at
260 nm

6b C <T<110C

Sharp peaks: very cooperative phenomenon
Transition looks discontinuous (st order)



Why is it interesting!?

It is a nice statistical physics problem

Allows to understand molecular recognition

Allows to discriminate between coding and
non coding regions of DNA

Nice and clean experiments

Relevant to DNA chips



A simple polymer
model

® Assume 2 chains of elastic beads

® Model the H-bonds by a short range
attraction between complementary bases

il %)



® Forget about Excluded Volume effects.
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® where a = [, is the persistence length of
single stranded DNA

® For this model, all binding energies are
identical.



® Take the continuous limit === Feynman
path integral

Z:/Dﬂ(s) Dry(s) exp (—2;22/0]\[615 <<%>2+ (i;j:) ) 6/ dsv(ri(s )—’Pz(S)))

® Make the change of variables
() = Tal8) + 7(s)

e | o (o )



® One recognizes a Quantum Mechanical
matrix element

Z:/dr<r\6_NH|O>

® where the Hamiltonian is given by

4 2
H = —%VZ + Bv(r)



In the limit N — oo, only the ground state
dominates: Ground State Dominance.

At high temperature, 3 small, the
Hamiltonian has no bound state: Denatured

phase

At low temperature, (3 is large, the
Hamiltonian has a bound state: Helical phase

7 = e~V Eo / dr®o(r)¥o(0)

where

H|W, >= Ey|¥, >



® There is a phase transition at a temperature 7.

® |tis a second order (continuous) unbinding
transition
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® Model for Unzipping with a force

Z/DF(S)@Xp(—&/ONdS <@> —5/ dsv(r(s)) =B f.r(N ))

® which can be written as

Z = /dr < rle”NHe=PlTI0 >



The Peyrard-Bishop
model

® The original Peyrard-Bishop model is exactly
the Schrodinger model in one dimension,
with a Morse potential

v(r) = Vo(e 4" — 2e72")



® The Peyrard-Bishop model can be modified
to include stacking energies.

® The discrete form is given by

N
7 / TT dyne=% Qe =) myn)*=BD (e 1)
n=1



The Poland-Scheraga
model

® the bases of DNA are modeled as points
® two types of energies between bases
® Hydrogen bonds

® Stacking energies: due to hydrophobicity
of the rings

® the entropy of loops is calculated using
polymer theory
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® only one type of energies: £€; = —¢

® unbound loops have entropy: 2(2[)

® can be easily solved
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Loop Entropy

From Polymer theory (Flory, de Gennes, des

Cloizeaux, ...) we know that

82l

where c is a universal critical exponent

for Brownian walks: ¢ = 1.9
for a Self-Avoiding walk: ¢ = 3v ~ 1.75
for interacting Self-Avoiding loops: ¢ ~ 2.15



Grand partition function

Define the grand canonical partition function
Z(z) =Y 2NZy
N=0

one gets

o

Z(z) = Z o? Z e Z (zw) 2 Q20) ... (zw)lpzl;Q(QZ;)

The sum is now decoupled and one obtains

Z(z) = iap (i zlwl> (i le(21)>



2 = UV )
where
2W
U(Z) 1 — zw
and
0o 9] .1

V(z) :Z slcz

I=1
is the polylogarithm function
~d&




Results

the phase diagram depends on the loop
exponent ¢

If c<I, the 2 strands are always bounda

if 1<c<2,there is a continuous unbinding
transition

if 2<c, there is a discontinuous unbinding
transition

since 0 is so small (~ 107°) even if 1<c<2,
the transition looks discontinuous.



Inhomogeneous sequences

® One can reformulate the problem in terms
of recursion relations.

® Define the partition function Z(«a) of the
non homogeneous fragment of length &

1 o+1 1 o o+1 1 o o+1

[l
™
+
Q




e Algorithm scales like IN*
® Limited to fairly small sizes (< 10000)

® Must improve to study full genomes



The Fixman-Freire method

|dea: represent the loop power law as a sum of
exponentials

1 I
fx) = — =) a;e”*

rt
i=1

With this representation, the algorithmic complexity
goes down from N°to NI

For N = 1000000 and / = |4, the accuracy is better than
0.1% over the whole range of x.

=== Possibility to study sequences up to few Mbps
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Limitations of the PS model

® strands of equal length
® complementary sequences
® no mismatches

® generalize to a full theory of DNA
hybridization



A general model for DNA
hybridization

We now consider 2 strands of length N; and N,
where the 2 strands are not necessarily complementary.
Define Z(a,3) as the partition function of the 2 DNA
strands with strand | going from | to « and strand 2 from |

to 8 bound at « and 3




Zi(a+1,8+1) = e P Zs(a, B)
a—1 B-—1
+ o5 Y > Zi@ BWN(a+1—a +8+1-7)
a’'=1p3"=1
Now, any base of | can pair with any base of 2
—Eaq If B=a

0 otherwise
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® Now, algorithm scales like N7 N3
unusable!

® Use Fixman-Freire trick: it becomes N{ N5/

® can study sequences of sizes up to 10000



Some results

® For Homogeneous sequences (AAAAA..,,
[TTTTT...), one can again solve analytically.
Effectively, the exponent c is replaced by c-|

® Comparison of PS and GPS for long
complementary sequences
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® The two curves superimpose, except near
the last peak === no mismatches if the
two strands are complementary. Very strong
selectivity in molecular recognition.



Effect of single point mutations

Two complementary sequences of length N=1980 with a
single point mutation somewhere in the center

0.8
do

dT |
06

04 -

0.2 -

0.0 ‘ ‘ ‘ ‘ ‘
82.0 83.0 84.0 85.0
T

Strong sensitivity to mutations: molecular selectivity
Shift of | C for one mutation and 5-10 C for two mutations.
No more binding for 3 mutations.



Effect of mutations on short
sequences: DNA chips

0.10
doe |

dT
0.08 |

0.06 -

60.0 70.0 80.0 90.0 100.0

Very strong sensitivity
to a single mutation in
the central region
Very weak sensitivity
near edges



