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Zusammenfassung We calculate the tunnel current of a Luttinger liquid with a
finite density of strong impurities using using combined RG and instanton approach.
For very low temperatures T (or electric fields E) the (nonlinear) conductivity is of
variable range hopping type as for weak pinning. For higher temperatures or fields
the conductivity shows power law behavior corresponding to a crossover from multi-
to single-impurity tunneling. For even higher T and not too strong pinning there is
a second crossover to weak pinning. The determination of the position of the various
crossover lines both for strong and weak pinning allows the construction of the global
phase diagram.

1 Introduction

One-dimensional electron systems exhibit a number of peculiarities which de-
stroy the familiar Fermi-liquid behavior known from higher dimensions. Main
reason is the geometrical restriction of the motion in one dimension where elec-
trons cannot avoid each other. As a consequence, excitation are density waves
(plasmons) similar to sound waves in solids. The corresponding phase is called a
Luttinger liquid [1,2]. Renewed interest in Luttinger liquids arises from progress
in manufacturing narrow quantum wires with a few or a single conducting chan-
nel. Examples are carbon nanotubes [3], polydiacetylen [4], quantum Hall edges
[5] and semiconductor cleave edge quantum wires [6]. From a theoretical point
of view 1D quantum wires allow the investigation of the interplay of interaction
and disorder effects since short range interaction can be treated already within
a harmonic bosonic theory [7]. Central quantity is the interaction parameter K
which plays (under certain conditions) the role of a dimensionless conductance
of a clean Luttinger liquids [8,1].

The effect of disorder on transport in Luttinger liquids has been so far consi-
dered in two limiting cases: (i) The effect of a single impurity was considered in
[8–11]. Here the conductance depends crucially on the strength K of the inter-
action. Impurities are irrelevant for attractive (K > 1) and strongly relevant for
repulsive interaction (K < 1), respectively. For finite voltage V and K < 1, the
conductance is ∼ V 2/K−2 [8] These considerations can be extended to two im-
purities. Depending on the applied gate voltage, Coulomb blockade effects may
give rise to resonant tunneling [8,10].

(ii) In the opposite case of a finite density of weak impurities, (Gaussian) dis-
order is a relevant perturbation for K < 3/2 leading to the strong localization
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of electrons. The shift of the critical values of K to Kc = 3/2 can be traced back
to an additional factor 1/

√
a arising in the effective disorder strength from the

impurity concentration a−1 [2]. For weak external electric field E the conducti-

vity is highly nonlinear: σ(E) ∼ e−c/
√

E [12–15]. At low but finite temperatures
T this result goes over into the variable range hopping expression for the li-

near conductivity σ ∼ e−c′/
√

T [13–17]. The derivation of the result requires a
weak coupling to a dissipative bath to allow energy relaxation [14,18]. At higher
temperatures there is a crossover to σ ∼ T 2−2K [19].

On the contrary, much less is known in the case of a finite density of strong

pinning centers [20,2], which is the topic we will address in the present paper.
In particular we determine both the temperature and electric field dependence
of the (nonlinear) conductivity for this case in a broad temperature and electric
field region. The main results of the paper are the conductivities (10), (11), (13)
and (14) as well as the crossover behavior summarized in Fig. 1 and Fig. 2,
respectively.

The T -dependence of the linear conductivity shows three distinct regions. For
T ≪ Ta = h̄v/a the thermal de Broglie wave length λT = h̄v/T of the plasmons
is larger than a and hence the hopping processes includes many impurities. v
denotes the plasmon velocity. The conductivity is of variable range hopping typ

σ ∼ e−c′/
√

T similar to the case of weak impurities [13].
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Abbildung1. u − T phase diagram of the linear conductivity of disordered Luttinger
liquids. For strong pinning, u > uc ∼ kF (kF a)K−1 and T < T1,cr ∼ Ta(u/uc)

1/(1−K),
Ta/s separates the variable range hopping from the single impurity hopping regime. For
T > T1,cr impurities become weak. For weak pinning, u < uc, Tloc ∼ Ta(u/uc)

2/(3−2K)

separates variable range hopping from renormalized power law behavior. For T > Ta

the power law is unrenormalized.
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In an intermediate temperature region Ta/s < T < T1,cr ≈ Ta(u/uc)
1/(1−K),

hopping occurs through single impurities which act now independently. Here
uc ∼ kF (kF a)K−1 describes the borderline between weak and strong pinning (at
low T), and s is a large number explained below. The conductivity behaves as
σ ∼ T 2/K−2 as found before for isolated weak links [8,10,11] and discussed for
Luttinger liquids with many impurities in [20]. At even higher temperature T >
T1,cr individual impurities become weak and conductivity follows σ ∼ T 2−2K

[20]. A related crossover occurs for the nonlinear conductivity as a function of
the electric field strength E and will be discussed below.

2 Model and Instantons

Starting point of our calculation is the action of interacting electrons subject to
an external uniform electric field and strong pinning centers. In bosonized form
the action takes the form

S =
h̄

2πK

L
∫

0

λT
∫

0

dxdy
{

(∂yϕ)2 + (∂xϕ + fx)2

−
N

∑

i=1

uδ(x − xi) cos(2ϕ + 2kF xi)
}

(1)

The phase ϕ(x) is related to the electron density ρ(x) by πρ(x) = (kF +∂xϕ)(1+
2 cos(2ϕ + 2kF x)). kF is the Fermi wave vector, τ = y/v and f = eEK/vh̄. The
action (1) depends (besides on L) on five dimensionless parameters K, u/kF ,
akF ( ≫ 1), λT kF = ǫF /T ( ≫ 1) and f/k2

F ( ≪ 1), where ǫF ∼ h̄vkF denotes the
energy cutoff (bandwidth). For u > kF the effective cut-off is kF . For u < kF

it is convenient to integrate out the small scale fluctuations in the momentum
shell Λ < |k| < kF [9] which gives:

u → ueff ≈ u(kF /Λ)−K , Λ = max(ueff , a−1, λ−1
T ) . (2)

In particular, ueff ≈ kF (u/kF )1/(1−K) if ueff > a−1, λ−1
T . For strong pinning,

aueff > 1 [21] (as long as λT > a), this condition results in u > uc ≈ kF (akF )K−1.
Only in the absence of interaction, K = 1, uc becomes independent of a. For
λT < a this condition has to be replaced by λT ueff > 1 since impurities are
not longer coupled. This results in u > u1(T ) ≈ kF (T/ǫF )1−K . For u < u1(T ),
i.e. T > T1 ≈ ǫF (u/kF )1/(1−K), isolated impurities become weak [20]. After
this renormalization the effective cut-off is ueff and the number of dimensionless
parameters is reduced by one.

The phase field between the impurities can now be easily integrated out
leaving only its values ϕ(xi, y) ≡ φi(y) at the impurity sites xi which are assumed
to be randomly distributed. The procedure is equivalent to solving the saddle
point equation between impurities with the appropriate boundary conditions
∂2

xϕ + ∂2
yϕ = −f, ϕ(x, y + λT ) = ϕ(x, y) . Since the solution is periodic in
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y-direction, it can be expressed in terms of Fourier components with Matsubara
frequencies φi(y) = λT

−1 ∑

ωn
φi,ωn

e−iωny, ωn = 2πn/λT . The action can now
be rewritten in terms of the φi,ωn

S =
h̄

2πK

N
∑

i=0

{

∑

ωn

ωn

λT

( |φi+1,ωn
− φi,ωn

|2
sinhωnai

+
(

|φi,ωn
|2 + |φi+1,ωn

|2
)

tanh
ωnai

2

)

−f(ai−1 + ai)φi,0 + ueff

∫

dy
[

1 − cos
(

2φi(y) + 2παi

)

]

}

(3)

where ai = xi+1−xi and αi = kF xi/π. Since kF ai ≫ 1 below we will assume the
αi to be random phases but keep the impurity distance approximately constant
ai ≈ a (we come back to this point later).

In the following we consider the current to result from tunneling processes
between metastable states within an instanton approach, assuming strong pin-
ning and weak quantum fluctuations, i.e. K ≪ 1. It is then assumed that the
tunneling process starts from a classical metastable configuration φ̃i which mi-
nimizes the impurity potential for all values of y. Hence φ̃i = π(ni−αi) where ni

is integer. Among the many metastable states there is one (modulo π) zero field
ground state φ̃0

i where ni = n0
i =

∑

j≤i[∆αj−1]G [13]. [α]G denotes the closest
integer to α and here and henceforth ∆Qi = Qi+1 − Qi for an any quantity Qi

depending on the impurity index i. An new metastable state follows from the
ground state by adding integers qi = ±1 to the n0

i . This change corresponds to a
redistribution of electrons in the wire. The energy is correspondingly increased
by

(

νk(q) + νk+m(−q)
)

/πκa where νk(q) = q2 − 2q
(

∆αk − [∆αk]G
)

is propor-
tional to the surface energy of the such a region. Apart from rare bifurcation
sites where νk(±1) = 0 (which correspond to resonance conditions) this energy
is always positive.

Next we consider an instanton configuration which connects the original state
φ̃i with the new state φ̃i + π, ni depends in general on y. Since the instanton
connects two neighboring meta-stable states, we assume a double kink configu-
ration for the instanton at each impurity site:

φi(y) = φ̃i + π , |y − yi| < Di − d,

φi(y) = φ̃i , |y − yi| > Di + d (4)

with a linear interpolation between the two values at the kink walls in the re-
gions

∣

∣|y − yi| − Di

∣

∣ < d. yi ± Di is the kink/anti-kink position, d ∼ 1/u is
the approximate width of the kinks and 2Di their distance. This form of the
instanton has the Fourier components

φi,ωn
= λT φ̃iδωn,0 + 2πeiωyi

sin ωnDi

ωn

sin ωnd

ωnd
. (5)

It is plausible that in the saddle point configuration all yi will be the same,
an approximation we will use in the following. It is convenient to introduce the
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dimensionless quantity zi = πDi/a. The instanton action can then be rewritten
as

Sinst ≈
2h̄

K

∑

i

′{ 1

π
(zi+1 − zi)∆φ̃i − fa2zi + s

+ ln

[

cosh((zi+1 − zi)/2)

cosh((zi+1 + zi)/2)
tanh

zi

2
cosh zi

]

}

(6)

where the sum goes only over impurities with zi > 0. We consider s as a constant
resulting from the scales smaller than a that includes the core action of a kink
and an anti-kink: s = ln(Caueff) ≫ 1, where ln C/K ≫ 1.

For a given initial metastable state {φ̃i}, Sinst is a function of the variational
parameters {Di ; i = 1, ..., N}. The total action can be understood as the action
corresponding to the first term of the partition sum expansion in tunneling
amplitudes [22]. The nucleation rate Γ and hence the current I is given by

I ∝ Γ ∝
N
∏

i=0

∫ i∞

0

dDk exp(−S/h̄). (7)

The calculation of (7) for the general case is possible only if the {φ̃i} are given,
the latter depend on the particular realization of the disorder. Instead we employ
an approximate treatment in which we assume Di ≡ D = az/π for k < i ≤
k + m and Di = 0 elsewhere, i.e. tunneling is assumed to occur simultaneously
through m neighboring impurities. The instanton is then a rectangular object
with extension ma and 2D in x and y direction, respectively. The instanton
action can then be written as

Sinst =
2h̄

K

{

zσm(k) + ln(1 + e−2z) + m(s + ln tanh
z

2
− zf̃)

}

. (8)

Here we introduced the dimensionless field strength fa2/π ≡ f̃ = E/Ea where
Ea = 1/(eκa2), κ = K/πh̄v denotes the compressibility. σm(k) =

(

νk(1) +

νk+m(−1)
)

/2 plays the role of a surface tension of the vertical boundaries of
the instanton. In the ground state σm(k) is equally distributed in the interval
0 ≤ σm(k) < 2 [14]. The second and the third contribution result from the
horizontal boundaries of the instanton and include their surface tension s/a and
their attractive interaction. The last term describes the volume contribution
resulting from the external field.

In addition, we have to include a small dissipative term Sbath = 2h̄
K mη ln z

, η ≪ 1, in the action in order to allow for energy dissipation [14]. However, we
will omit η-dependent terms in all results where they give only small corrections
(apart from possible pre-exponential factors which we do not consider).

A necessary condition for tunneling is ∂Sinst/∂z < 0 for z → ∞, i.e. σm(k) <
mf̃ . The tunneling probability follows from the saddle point value of the instan-
ton action where z fulfils the condition

σm(k) − mf̃ + tanh z − 1 +
m η

z
+

m

sinh z
= 0 . (9)
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3 Results and Conclusions

We discuss now several special cases:
(i) For sufficiently large fields E ≫ Ea the saddle point is zs ≈ 1/f̃ ≪ 1

which gives a tunneling probability Γ ∝ f̃2m/K−1e−2ms/K . The exponent −1
results from the integration around the saddle point. Because of small K and
correspondingly large kink core action, tunneling through single impurities (m =
1) is preferred and hence the nonlinear conductivity is given by

σ(E) ∼ (E/Ea)
2

K
−2

e−2s/K , Ea ≪ E ≪ E1,cr, (10)

in agreement with previous results for tunneling through a single weak link
[8] if we identify e−s/K ∼ t with the hopping amplitude t through the link.
The upper field strength for the validity of this result can be estimated from
Dsueff ≡ zsaueff < 1 since the instantons loose then their meaning. Using ueff ≈
kF (u/kF )1/(1−K) we find E1,cr ∼ (kF /eκa)(u/kF )1/(1−K), which can be also read
off directly from (10) as E1,cr ∼ Eaes. Classically (K = 0), E1,cr corresponds
to the case when the field energy eEa the electron gains by moving to the next
impurity is smaller than the pinning energy u/κ.

At finite temperatures there is a crossover to a temperature dependent con-
ductivity

σ(T ) ∝ (T/Ta)
2

K
−2

e−2s/K , EKea ≪ T ≪ T1,cr (11)

when the instanton extension 2Ds reaches λT , i.e. for E < EaT/Ta. For tempe-
ratures higher than T1,cr isolated impurities are weak. Following the arguments
of [20] one expects in this region σ ∼ T 2−2K . Note that E1,cr ∼ EaT1,cr/Ta as it
should be.

(ii) In the opposite case of weak fields, E ≪ Ea, tunneling happens simulta-
neously through many impurities and the saddle point zs ≫ 1. In this case we
can estimate the typical surface tension as σk(m) ≈ 1/m for a chosen pair of
sites k and k + m, respectively [14]. Then

Sinst ≈
2h̄

K

{ z

m
+ m(s + η ln z) − zmf̃

}

. (12)

For very large values of m we can treat m as continuous and the saddle point
condition gives ms ≈ f̃−1/2 ≫ 1 and zs ≈ s/2f̃ . The tunneling probability and
hence the current is proportional to

I ∼ σ(E) ∼ e−
2s

K

√
Ea/E , E ≪ Ea. (13)

If we write the result in the variable range hopping form [16] I ∼ e−2ma/ξloc

we can identify the localization length ξloc ≈ aK/s of the tunneling charges.
(This localization length differs by a factor K from that used in [10,20]). There
is a crossover to a temperature dependent conductivity if λT ≪ 2Ds, i.e. for
E ≪ sTEa/Ta < Ea where

σ(T ) ∼ e−
2

K

√
csTa/T ) , EKea/s ≪ T < Ta/s (14)
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Abbildung2. Field and temperature dependence of the conductivity in the various
regions of the T − E plane. Ta, T1,cr, s, Ea and E1,cr are explained in the text.

Results (13) and (14) are in agreement with those obtained for weak pinning
[13,14]. The results are summarized in Fig. 2.

(iii) If m is not too large (e.g. for large a) we have to take into account
the discreteness of m. An instanton solution exists only for m >

√

Ea/E. Sin-
ce Sinst(z(m), m) has always a negative derivative with respect to m at m →
√

Ea/E + 0, but for reasonably large values of s the interval of m with negative
derivative is much shorter than 1 and hence the optimal hopping length ms(E)
is the smallest integer exceeding

√

Ea/E, which we denote as
[
√

Ea/E
]

G+
. To

be more realistic we have to take into account the randomness of the impuri-
ty distances ai such that decreasing the field (or the temperature), the current
jumps by a factor ∼ e−2am/ξloc . Clearly, for long wires these jumps will average
out.

Finally, we briefly compare the present case of Poissonian strong disorder,
ueffa ≫ 1 with the Gaussian weak disorder, ueffa ≪ 1 considered in [10,13,14,19].
In the latter case u and a are sent simultaneously to zero but the quantity
u2/a ∼ ξ−3

0 ≪ k3
F is assumed to be finite, ξ0 denotes the bare correlation length.

Fluctuations on scales smaller than ξ0 renormalize ξ0 → ξ ∼ k−1
F (ξ0kF )3/(3−2K).

At low T the conductivity is of variable range hopping type (14) up to a tem-
perature Tloc = h̄v/ξ = Ta(u/uc)

2/(3−2K). For higher T there is a direct cros-
sover to σ ∼ T 2−2K(T ) where K is now renormalized by disorder fluctuations
[19,20]. This renormalization disappears only at much higher Ta ∼ h̄v/a. Both
weak and strong pinning theories should roughly coincide for u → uc where
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Ta ≈ T1,cr ≈ Tloc which is indeed the case since ξ ≈ a. In the strong pinning
region ξ continues as ξ ∼ a/s.

To summarize we have calculated the linear and nonlinear conductivity of
Luttinger liquidss in the strong pinning regime using an instanton approach.
For very low fields E and temperature T the conductivity is of variable range
hopping type, eqs. (13) and (14), as for weak pinning. For higher and E and T
there is a crossover to power law behavior (10) and (11). Quantum fluctuations
reduce the regime of strong pinning to u > uc ∼ kF (kF a)K−1 for T < Ta and
to u > u1 ∼ kF (T/ǫF )1/(1−k) for T > Ta. The determination of the position of
the various crossover temperatures allows the construction of the global phase
diagram Fig. 1 for the linear conductivity as well as the crossover between the
linear and nonlinear conductivity Fig. 2 in the case of strong impurities.

Experimentally, a linear variable range hopping conductivity has been seen
in carbon-nanotubes [3] and polydiacetylen [4].
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