Finding Function Fixed Points for Pinned Manifolds: Why \& How

P. Le Doussal, K. Wiese, LPTENS
A. Alan Middleton, Syracuse University

Support from NSF, ANR

ICTP Seminar, "Modelling Elastic Manifolds", July 29, 2006

Organization

- Reverse historical approach.
- "Experimental" talk.
- See cond-mat/0606160.
- [Reminded of ancient Greek theater festivals.]

This is a glass talk, so we need this diagram

However, we will mostly see this

Inspiration: A Finite- d Glassy System

- Statics of surfaces pinned by disorder (see T. Giamarchi's talk!)
- Domain walls in random magnets, contact lines on a rough surface, vortex lines in type-II superconductor, periodic scalar fields, e.g., vortex-free superconductors or vortex-line arrays
- "Simplest" finite- d glassy phases (?)
- Elastic, no plastic rearrangements.
- At low T, disorder is irrelevant . . .
* Only elasticity v. disorder to compete (or elasticity+disorder)
- Characterize by roughness, $w \sim L^{\zeta}$, energy fluctuations $\sim L^{\theta}$. Statics are preliminary to
- barriers to equilibration
- dynamics (creep or sliding) in disordered background.

Plot Summary

The effective long wavelength pinning potential for $d<4$ interface is universal (depends on symmetries of pinning potential).
\Rightarrow Find fixed points for force-force correlation functions $\Delta(u)$.
\Rightarrow Quantitatively confirm shape of $\Delta(u)$.

- First evidence for cusp at zero u (20 yrs)
- "Chaos" (sensitivity to disorder)
- Universal amplitudes.

Production Crew

P. Le Doussal, K. Wiese, and 1001 GHz processors.
$\Rightarrow \mathrm{C}++$ code to find exact ground state for discrete interfaces $u(x)$ in dimensions $d=1,2,3,4, \ldots$ with

- User-defined lattices.
- Choice of disorder correlations, corresponding to
- Random field (RB): $\left\langle\left[U\left(u^{\prime}, x^{\prime}\right)-U(u, x)\right]^{2}\right\rangle=\left|u-u^{\prime}\right| \delta\left(x-x^{\prime}\right)$
- Random bond (RF): $\left\langle\left[U\left(u^{\prime}, x^{\prime}\right)-U(u, x)\right]^{2}\right\rangle=e^{-\left|u-u^{\prime}\right|} \delta\left(x-x^{\prime}\right)$
- Periodic pinning (RP): $\left\langle\left[U\left(u^{\prime}, x^{\prime}\right)-U(u, x)\right]^{2}\right\rangle=\sin \left[\frac{2 \pi\left(u-u^{\prime}\right)}{P}\right] \delta(x-$ x^{\prime})
- Add in a moving harmonic well to the disorder [P. Le Doussal].

$$
U_{\text {harmonic }}[u(x)]=\frac{m^{2}}{2}(u-v)^{2}
$$

Simulation uses rolling disorder and can incrementally find $v \rightarrow v+\delta v$.

The Play

Act 1: Random field pinning, $D=2+1$ interface, $m^{2}=0.1, L \times W=$ $20 \times 20, \delta v=0.04,100$ steps.

The Play

Act 1: Random field pinning, $D=2+1$ interface, $m^{2}=0.1, L \times W=$ $20 \times 20, \delta v=0.04,100$ steps.
Act 2: Same interface, but $m^{2}=0.01$

The Play

Act 1: Random field pinning, $D=2+1$ interface, $m^{2}=0.1, L \times W=$ $20 \times 20, \delta v=0.04,100$ steps.
Act 2: Same interface, but $m^{2}=0.01$
Act 3: Back to scene 1, but highlights: avalanches/droplets.

The Play

Act 1: Random field pinning, $D=2+1$ interface, $m^{2}=0.1, L \times W=$ $20 \times 20, \delta v=0.04,100$ steps.
Act 2: Same interface, but $m^{2}=0.01$
Act 3: Back to scene 1, but highlights: avalanches/droplets. Act 4: The shocking events from scene 2.

Safety

Have checked code against

- Previous numerics
- Exact lattice results [Johansson, CMP 209, 437 (2000)] for $D=$ $1+1$
- Equalities for coarse-grained correlations for RF
- Finite-size and lattice effects (latter vanishes for small enough m).

Critics: quantify? context?

- First oprev o Next Last o Go Back o Eul Screen o Close o Quit

Critics: quantify? context?

$\mathrm{L}=8$, RF, single sample

Theory - Functional Renormalization Group

FRG seems to be a controlled verifiable approach to manifolds in a disordered potential.

- Below $d=4, \infty$ number of relevant operators and metastability.
- Writing $\left\langle\left[V_{\ell}(u, \vec{x})-V_{\ell}(0, \overrightarrow{0})\right]^{2}\right\rangle=-2 R_{\ell}(u) \delta(\vec{x})$, D. S. Fisher (1986) derived flow equations, using $\Delta(u)=-R^{\prime \prime}(u)$,

$$
\frac{d \Delta(u)}{d \ell}=(\epsilon-4 \zeta) \Delta(u)+\zeta u \Delta^{\prime}(u)+\frac{1}{2}\left[\Delta^{\prime \prime}(u)\right]^{2}-\Delta^{\prime \prime}(u) \Delta^{\prime \prime}(0)
$$

- Non-analytic fixed points: $\Delta(u)$, force-force correlations, have a cusp at $u=0$.

Relevance

$R(u)$ and its derivatives \Rightarrow the physical picture of pinned interfaces:

- Fisher, Narayan, Balents; Balents, Bouchaud, Mezard (19861996): sequence of scalloped potentials [singularity in $R(u)$] due to hopping between metastable states, suggestive connections to Burgers equation.
- Le Doussal, recently: scallops derived from harmonic well + disorder; precise connection to Burgers equation.
- Fixed points for flow of $R(u)$ gives exponents for roughness, etc.
- Finite drive, changing disorder ["chaos"], and temperature round out the singularity at different scales [zero pinning force $\left.\Delta^{\prime \prime \prime}(0)\right]$.

Measured correlations vs. 1-loop predictions

- Compute fixed point: large enough L, small enough m, so that

$$
\tilde{\Delta}\left(m u^{\zeta}\right)=m^{\epsilon-4 \zeta-d}\left[v^{\prime}-\langle u\rangle\left(v^{\prime}\right)\right][v-\langle u\rangle(v)]
$$

is converged.

- Rescale to $Y(u)=\tilde{\Delta}(u) / \tilde{\Delta}(0)$ and scale $z=u m^{\zeta}$ to get $\int Y=1(\mathrm{RF}), \int Y^{2}=1(\mathrm{RB})$.

Measured correlations vs. 1-loop predictions

Residuals, RF

Where one form of the 2-loop prediction is $Y(z)=Y_{1}(z)+(4-d) Y_{2}(z)$

Residuals, RB

Where one form of the 2-loop prediction is $Y(z)=Y_{1}(z)+(4-d) Y_{2}(z)$

RP: crossover from RB to RP

General prediction: $Y(z)$ is a parabola with zero mean (i.e., $6\left(z-\frac{1}{2}\right)^{2}-\frac{1}{2}$).

"Chaos" (sensitivity to disorder)

Recent predictions by P. Le Doussal [PRL 96, 235702 (2006)] for correlations

$$
\Delta_{12}(y)=\left\langle\left[v+y-u_{1}(v+y)\right]\left[v-u_{2}(v)\right]\right\rangle
$$

between samples with disorders U_{1} and U_{2}, with difference measured by δ. We can check this - shapes of curves (1 adjustable parameter).

Chaos

Normalized $\Delta_{12}(y)$, fixed perturbation δ

$\Delta_{12}(0) / \Delta_{11}(0)$, varying δ [parameter free ratio]

Functional Burgers Equation

$d=0$: particle in a single $V(u)$ given by a random walk $+\frac{m^{2}}{2}(u-v)^{2}$. Exact correspondence between $v-\langle u\rangle$ and velocity in Burgers equation, given $t \rightarrow m^{-2}, V \rightarrow v-\langle u\rangle, \nu \rightarrow t$: jumps in $\langle u\rangle$ are shocks in 1 D decaying Burgers equation.

$$
\partial_{t} V+V \partial_{x} V=\nu \partial_{x}^{2} V
$$

Functional equation: formally similar.
Consequences:
In a single sample, see coalescence of jumps as decrease m^{2}.

Sequence of m^{2} in a single sample

$\mathrm{L}=8$, RF, single sample

Sequence of m^{2} in a single sample

$\mathrm{L}=8$, RF, single sample

Sequence of m^{2} in a single sample

$\mathrm{L}=8$, RF, single sample

Highlights \& Sequels

- Confirmed prediction for nonanalytic form, linear cusps inforceforce correlator $\Delta(u)$, for pinned manifold.
- One-loop calculation appears to be very good, not full story; RP shows expected exact parabola.
- Supports exponent values, validates approach, physical picture.
- Functional decaying Burgers eqn. for $v-u(x)$.
- Amplitudes have also been obtained, using measurements of elasticity.

