
Vol. 7, No. 3, M a y J u n e  1974 Rotational Isomeric State Theory and Methods 381 

Reviews 

Foundations of Rotational Isomeric State Theory and General 
Methods for Generating Configurational Averages 
P. J. Flory 
Department of Chemistry, Stanford University, Stanford, California 94305. 
Received January 15,1974 

ABSTRACT: Recent methods for treating configuration-dependent properties of chain molecules are generalized 
and presented in a concise, systematic form. These methods involve, first, the formulation of a generator matrix Fi 
that embodies all contributions associated with bond i; it depends on the conformation of bond i. Serial multiplica- 
tion of the Fi appropriate t o  a specified conformation for i = 1 to n yields the configuration-dependent property f 
for that conformation. The property f may be a scalar, a vector, or a tensor (e.g., r2, r, or &, respectively, where r is 
the chain vector, r2 is its squared magnitude, and & is the anisotropic part of the polarizability tensor). Combina- 
tion of these generator matrices with the statistical weight matrix Ui yields the generator matrix,Si = (Vi @ E,). 
IlFill from whic:h to obtain, again by serial multiplication, the average ( f )  over all configurations of the chain; E, is 
the identity of the same order, (s) as Fi, and liFill is the diagonal development of the Fi for the various rotational 
states. Generator matrices for quantities of higher orders, e.g., tensors r r, etc., and scalars r4, r6, etc., 
are the self-direct products of the generator matrices Fi for the primary quantities. General procedures are present- 
ed for condensing self-direct products as required to render practicable the computation of averages of quantities 
up to sixth or eighth orders. Further condensations applicable in the configurational averaging over symmetric 
chains are presented. The foregoing methods enjoy the utmost generality, being applicable to chains of any length, 
and to copolymers of any composition, including stereoirregular polymers. Their foundations in classical statistical 
mechanics are shown to be secure. A critique is presented of the rotational isomeric state scheme for implementing 
evaluation of integrals over the configuration space. 

r, r r 

Theory pertaining to the configurational statistics of 
polymer chains and the many ramifications of this subject 
has been carried to an advanced stage during recent 
y e a r ~ . l - ~  Methods are now at hand for treating the con- 
figuration-dependent properties of virtually any chain in a 
realistic manner. These methods involve no mathematical 
approximations beyond the replacement of integrals over 
configuration space by sums over a discrete set of rotational 
isomeric states (RIS) . In application, therefore, they are 
limited in accuracy only by choice of rotational states for the 
representation of the array of spatial configurations, and 
not a t  all by the usual compromises of mathematical exact- 
ness with the exigencies of practicability. 

Molecular properties of a linear chain that depend upon 
its spatial configuration invariably comprise vector or ten- 
sor contributions from iindividual skeletal bonds and the 
groups associated with them; or, more frequently, they 
comprise products of such contributions from two or more 
bonds. These contributions must be summed over all 
bonds, all bond pairs, or all combinations of a higher order 
dictated by the given property. The most versatile method 
for evaluation of sums of this nature employs a matrix gen- 
eration t e ~ h n i q u e . ~ - ~  The required summations are execut- 
ed through sequential multiplication of generator matrices. 
One such matrix is required for each bond, or for each re- 
peat unit, of the chain. 1Jpon elaboration of the generator 
matrices to include the statistical weights or appropriately 
chosen rotational isomeric  state^,^-^ averages of various 
quantities over all configurations of the chain can be devel- 
oped in the same manner. The procedure is mathematically 
exact. It is broadly applicable to chains of any length, to co- 
polymers of any specifield composition and to asymmetric 
(e.g., vinyl) chains of any stereochemical configuration and 
sequence, tactic or atactic.8 Properties that  may readily be 
evaluated include averages of the chain vector r and its 
higher moments (scalar"-" and tensor6), the dipole mo- 
ment, the squared radius of gyration and analogous higher 
moments of pair d i s t a n ~ e s , ~  the mean-squared optical an- 

isotropy (r2) relevant to depolarized light ~ c a t t e r i n g , ~ J ~  
the stress-optical parameter Aa,394,13,14 the Kerr constant 
for electric birefringence915J6 the optical rotatory power,17 
and the dichroic r a t i ~ . ~ , ' ~  

Since their i n ~ e p t i o n , ~ ~ ~  matrix generation techniques 
have been greatly simplified and broadened in scope.6B7J1 
I t  is the main purpose of this paper to present a concise re- 
sume of these methods in a coherent form that embodies 
refinements introduced over the past 5 years. 

have their foundations in classical statistical mechanics. 
The validity of treating the configurational statistics of 
macromolecules on this basis has been questioned, quan- 
tum mechanical procedures being advocated in their 
~ t e a d . ~ ~ ~ ~ ~  Quite apart from whatever validity these criti- 
cisms might have, they serve to point out that the statisti- 
cal mechanical foundations of the methods currently em- 
ployed may not have been adequately set forth. These 
foundations are therefore examined in the opening section 
of the paper. 

Representation of the spatial configurations of macro- 
molecules in terms of discrete rotational states in accor- 
dance with the RIS scheme has proved to be an exceedingly 
useful I t  is essential to the matrix generation 
method and has been employed as well in most other theo- 
retical formulations dealing with the configurational statis- 
tics of chain molecules. I t  admits of close correlation with 
molecular features dictating the character of bond rota- 
tional potentials; its heuristic value in this respect is 
strongly in its favor. Yet, the prevalence of the notion that 
rotational states must be identified with energy minima in 
conformation space has obscured the broader potentialities 
of the RIS scheme as a means for evaluating configura- 
tional integrals through summation over discrete states. Al- 
though it is often bot$ justified and expedient to identify 
rotational isomeric states with energy minima, this is not a 
requirement of RIS methods.21 By increasing the number 
of states, and hence decreasing the intervals in rotation 

These methods, and others that have been used as 
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angle between them, any desired degree of accuracy may in 
principle be attained. In practice, the accuracy of calculat- 
ed results is limited much more by the crudity of estimates 
of onformational energies, and by uncertainties in other 
quantities (e.g., bond dipole moments, polarizabilities, 
etc.), than by limitations imposed through the adoption of 
a small number of rotational states. 

The efficacy of the RIS scheme as an instrument for es- 
tablishing connections between the conformational energy 
and the properties of the macromolecule that must be aver- 
aged over all of the configurations is discussed a t  the close 
of the first section. 

Statistical Mechanical Foundations of 
Macromolecular Configuration Theory and Methods 

As pointed out above, current configurational statistical 
theory of polymer chains is founded upon classical statisti- 
cal mechanics. Justification for this intuitively satisfactory 
premise has been called into q u e s t i ~ n ~ ~ ~ ~ ~  on the grounds 
that the frequencies of some of the modes of motion within 
the chain are well beyond the classical limit. This undeni- 
able fact appears to have been construed to imply that a 
comprehensive theory of macromolecular configurations 
should be developed in the terms of quantum statistical 
 mechanic^.^^,^^ The ultimate rectitude of the latter is in- 
contestable, but drastic approximations are necessary in 
order to implement its application to a macromolecule in 
the liquid state. Measures adopted to circumvent the dif- 
ficulties confronting rigorous application of quantum sta- 
tistical mechanics may entail errors far more serious than 
any approximations involved in resort to classical statisti- 
cal mechanics, as we point out below. 

The motions of the macromolecule are subject to influ- 
ences of the neighboring molecules, consisting of solvent or 
of other polymer molecules, which invariably make up its 
environment. Conformational modes of the macromolecule 
are especially vulnerable to restrictions imposed by its 
neighbors. Hence, treatment of the system as a whole is 
obligatory. The Hamiltonian representing the system must 
include kinetic energies of the surrounding molecules as 
well as the intermolecular potential epergies involving 
them. Under the terms of quantum mechanics, the kinetic 
energies of the neighboring species are not separable. 

If, these circumstances notwithstanding, one adopts a 
course paralleling the treatment of gaseous molecules, then 
it is natural to proceed in terms of normal modes for the 
isolated macromolecule. Integration of the partition func- 
tion over those momenta deemed to be in the classical 
range yields the familiar determinant of the matrix of the 
quadratic form representing the kinetic energy in the nor- 
mal coordinates. This intractable quantity, cited by Saita 
and  coworker^'^ and discussed by Gb, Gb,  and Scheraga,20 
is a function of the configuration, and it occurs as a factor 
in their partition functions. I t  defies evaluation for any- 
thing as complex as a macromolecule. 

Thus, resolution of the motions of the macromolecule 
into normal modes, as if it was a dynamically independent 
body, not only is incorrect; treatment in this manner leads 
to insuperable difficulties as well. As we show below, classi- 
cal statistical mechanics offers a practicable alternative 
basis for the treatment of conformations of macromole- 
cules, including the motions associated therewith. The 
need to retain the aforementioned factor within the inte- 
grand of the configuration integral in normal coordinates, 
on the grounds that this factor is a function of the coordi- 
nates, turns out to be spurious. 

Random Coil. Our first concern is with the irregularly 
configured macromolecule interspersed with other mole- 

cules which we choose to designate as “solvent.” These 
neighboring species may, however, consist in part or entire- 
ly of other randomly coiled macromolecules. 

The conformational motions of the macromolecule, i.e., 
those that are primarily associated with bond torsions, are 
“soft” in the sense that their frequencies are low and their 
amplitudes at  ordinary thermal energy are fairly large. The, 
associated displacements of peripheral atoms would, in 
general, exceed 0.5 A if they were not impeded by sur- 
rounding solvent. Clearly, the momenta for motions of this 
amplitude will be markedly affected by solvent molecules. 
To treat them in the manner of the internal motions of an 
isolated molecule, represented by a Hamiltonian that in- 
cludes only intramolecular momenta and coordinates, ob- 
viously is quite wrong. 

On the other hand, modes of higher frequency above the 
range where classical excitation obtains (Le., higher than 
about 400 cm-l at T = 300 K) are affected negligibly by in- 
termolecular collisions. Their amplitudes are small, being 
<-0.1 A a t  thermal energies. Inasmuch as the “lattice” 
frequencies are on the order of 20 cm-’, an internal normal 
mode of 200 cm-l (well within the classical range) would be 
perturbed by less than 1 cm-’, as Prigogine and Belle- 
mens22 have pointed out. Hence, in absence of strong inter- 
actions like hydrogen bonds, the effect of the solvent envi- 
ronment on the motional modes of higher frequency should 
be negligible. This certainly holds in the range where quan- 
tization must be taken into account, Le., a t  frequencies be- 
yond the limit for convergence to classical mechanics. 

As will be intuitively evident from the facts recited 
above, the analysis of conformations and the performance 
of configurational averaging over conformation space 
should fall within the domain of classical statistical me- 
chanics. The following development serves to validate this 
assertion unambiguously. We consider a chain of n + 1 
point masses connected by n chemical bonds. Pendant hy- 
drogen atoms may, in interests of simplicity, be absorbed 
into these mass points; modes dominated by motions of hy- 
drogen atoms, being of high frequency, are immune to ef- 
fects of solvent and of conformation as well. Bond lengths 
and bond angles may be considered to be fixed within nar- 
row limits. The conformation is then defined by the tor- 
sional rotations $2, &,, . . . &-I about internal bonds of the 
chain skeleton. Since internal modes of associated solvent 
molecules are inconsequential, we ignore them and include 
only their translational coordinates and momenta. 

We begin by formulating the classical partition function 
Qclass for a canonical ensemble of systems, each system 
comprising a macromolecule and its complement of N ,  sol- 
vent molecules contained within a volume V. With the 
choice of Cartesian coordinates for all chain atoms (mass 
points) and solvent molecules, the momenta are separable 
from the coordinates. Integration over the former in cus- 
tomary fashion yields 

where N is the total number of particles inclusive of both 
solvent molecules and chain atoms (and also substituents, 
other than H, if present), m is the mass of a particle appro- 
priately averaged over chain atoms and solvent, and ZN is 
the configuration partition function given by 

Zs = i, . . . exp[-U( ~ ( 2 ~ ) )  /hT]dx[.%’) (21 

where x ( ~ )  symbolizes the 3N Cartesian coordinates for the 
system and U(X(”) is the potential energy for the system 
in the specified configuration. The 3(n - 1) internal coor- 
dinates, xint, specifying the positions of the n + 1 skeletal 
atoms of the chain relative to one another may be sepa- 
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rated from the 3N, + 6 external coordinated specifying the 
locations of the N ,  solvent molecules, the location of a ref- 
erence point within the macromolecule, and the orientation 
of the macromolecule. Integration over these external coor- 
dinates yields 

where xint represents the 3(n - 1) internal (Cartesian) coor- 
dinates and u(xj,t) is a potential of mean force defined by 

C,,t e x d - ~ ( x l n t ) / k T 1  

1 . . . J exp[-U( x(N)) / kT]dxe,, (4) 

Here xext represents the 3(N - n + 1) external coordinates; 
Cint is a constant having; the dimensions (volume)N-n+l. 

We next transform from the n - 1 Cartesian internal 
coordinates xjnt to the set of spherical polar coordinates 
consisting of n bond lengths I ,  n - 1 bond angle supple- 
ments 0, and n - 2 torsional angles. Integration over the 
sets of variables /1! and 101 yields 

2, = CiaiZld ( 5 )  
where 

{dl being the set of torsional angles, and old] is defined by 

The constant C,# has the dimensions (vo1ume)N. Thus, 
is the classical mechanical configuration partition function 
for the macromoleculeri expressed as the integral over the 
conformational variables, and n/$i is the potential of mean 
force with respect to the variables I$] that specify the con- 
formation. I t  is in the nature of a free energy for the speci- 
fied conformation. Effects of solvent and of pdssible varia- 
tions in bond lengths 1 and bond angle supplements 8 with 
conformation are included in ~(c#JJ,  as is apparent from the 
equation, eq 7, that  defines the potential of mean force. 

The foregoing formulation errs in ignoring the fact that  
some of the motional modes of the macromolecule possess 
frequencies beyond the classical range. The error may be 
amended by introducing the factor 

where Tf is the ratio of the quantum mechanical partition 
function for normal mode [ to its classical partition func- 
tion. Thus, Tf = y (sinh y)-l with y = huf/2kT. The prod- 
uct is over all normal modes of the macromolecule. No 
harm is done by defining r in terms of normal modes of the 
macromolecule with disregard for the influence of the sol- 
vent; the nonclassical modes ( y  > -1) for which yf is ap- 
preciably smaller than unity are unperturbed by the sol- 
vent, and modes possibly subject to such influence are well 
within the classical range ( y  < l), where the ratio yf differs 
negligibly from unity. The appropriately revised configura- 
tion partition function is therefore 

2” = rc,,,z,,, (9) 
The only modes (apa:rt from those dominated by motions 

of hydrogens, which modes we have eliminated at the out- 
set) for which yf is significantly smaller than unity are 
those at the high frequency ends of the bond stretching and 
in-plane bending brand he^.^^^^^ The frequencies of these vi- 

brations are known to be virtually unaffected by conforma- 
tion and e n v i r ~ n m e n t . ~ ~  Hence, for our purpose r may be 
regarded as a constant that  depends neither on conforma- 
tion nor on the solvent. I t  follows that the classical parti- 
tion function 2141 may be used, without hazard of sensible 
error, in the analysis of the configuration statistics, and 
configuration-dependent quantities may be averaged over 
classical configuration space, the fact notwithstanding that 
some of the modes of the macromolecule occur in the quan- 
tum mechanical range. 

I t  is obligatory in the development of the configuration 
partition function 219  to take account of possible differ- 
ences in intermolecular interactions in the various confor- 
mations. Such differences are incorporated, according to 
the format of theory, in the potential of mean force to- 
gether with the intramolecular energy. Much evidence ex- 
ists indicating intermolecular interactions to be about the 
same in competing conformations of the random coil and 
the differences cited to be negligible. The density of pack- 
ing with neighboring molecules should be little affected by 
changes in conformation; ordinarily the same species of 
molecules will be mutually involved in the interactions in 
the various conformations. Hence, similar intermolecular 
forces are operative. Only in the event of strong polar inter- 
actions is it plausible to expect a significant discrimination 
between conformations, and even in such circumstances 
the effects of discrimination will be discernible only if cer- 
tain conformations are appreciably more conducive to the 
interactions than others. 

The validity of these assertions is attested by the insens- 
itivity of the average spatial configuration of the random 
coil to the solvent in which it is dissolved,* apart from ef- 
fects of excluded volume. Moreover, the configuration of 
the random coil in the undiluted amorphous p ~ l y m e r ~ ~ - ~ ~  
coincides with that of the same polymer in a 8 solvent 
where the excluded volume perturbation should be 
n ~ l l . ~ ~ 7 ~ ~  Thus, considerations of a theoretical naturez9 sup- 
ported by compelling experimental evidence indicate the 
intermolecular (free) energy usually to be little dependent 
on the conformation of the random coil. The intermolecu- 
lar contribution to may be considered constant, and it 
is legitimate, in general, to confine attention to the intra- 
molecular interactions. Treatments of the configurational 
statistics of the random coil are enormously simplified in 
consequence of this generalization. The scope of results ob- 
tained is enlarged by their applicability to the macromole- 
cule in the bulk amorphous state as well as to its configura- 
tion in a dilute solution. 

Cooperative Conformational Changes. Conformation- 
al transitions such as occur in the melting of a crystalline 
polymer or of an isolated helix involve circumstances not 
encountered in the equilibria between various conforma- 
tions accessible to the random coil. The conclusions 
reached above must therefore be reexamined. 

We note a t  the outset, however, that  classical statistical 
mechanics remains valid as a basis for treating the changes 
involved. Frequencies of “internal” modes beyond the clas- 
sical range will be little affected by the transition between 
helix or crystal and coil. The factor r in eq 9 ordinarily 
should be substantially unaltered by passage from helix to 
coil or from the crystalline to the amorphous state. 

Complications arise principally as a consequence of the 
differences between the intermolecular interactions in the 
crystalline or in the helical state on the one hand and in the 
random coil, or the amorphous state, on the other. These 
differences, often large, stem mainly from the greater den- 
sity of packing in the ordered form. They may be augment- 
ed by the regularity of arrangement of molecules in the 
crystal, affording a more efficient arrangement of the inter- 
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acting groups. In contrast to circumstances normally pre- 
vailing in the random coil, it  is not legitimate to consider 
the intermolecular interactions to be equivalent in the 
competing states: crystalline, or helical, and coil. 

The difference between the intermolecular energy in the 
two states separated by the cooperative transition conceiv- 
ably may be estimated with sufficient accuracy by one of 
the various empirical functions now in vogue for calculating 
the interactions between nonbonded atoms or groups. But 
the difficulty is more pervasive. If thermodynamical rela- 
tions between the two states are to be established, their re- 
spective configuration partition functions must be ad- 
duced. 

For the crystal, treatment in terms of vibrational modes 
seems compelling, a t  least for those modes that are pre- 
dominantly intramolecular. If some of the modes involving 
torsional motions are thus dealt with, the opportunity to 
express the skeletal conformations in Cartesian coordinates 
is forfeited and the separation of the classical momentum 
integral as described in the preceding section cannot be ef- 
fected. Treatment of all conformational motions in terms 
of normal modes is then obligatory. Inasmuch as intermo- 
lecular (phonon) motions are not separable, unambiguous- 
ly, from the “soft” intramolecular motions of large ampli- 
tude, their treatment in like manner is indicated. The task 
takes on the scope of a complete evaluation of the thermo- 
dynamic functions of the crystal on the basis of structural 
information (possibly supplemented by spectroscopic data) 
along with semiempirical expressions for conformational 
energies and intermolecular interactions. 

Estimation of the configuration partition function for 
the crystal a t  an acceptable level of approximation by pro- 
ceeding along the lines indicated above may be within 
reach of achievement in favorable instances. But what of 
the random coil? In absence of an adequate theory of the 
liquid state, no corresponding basis exists for treating the 
random coil in an equivalent manner. Intermolecular mo- 
tions and interactions in the liquid of which the random 
coil is a part, must be taken into account in order to match 
the treatment of the crystal. The gap of density cited above 
accentuates the difficulty. 

The difficulties are only partially resolved in the case of 
a dispersed helix, such as the polypeptide a helix in equi- 
librium with the random coil. The lure of analysis in terms 
of normal vibrational modes of the helix can be avoided by 
confining attention to the classical configuration integrals 
for both helix and coil; the momentum integrals may be 
handled classically as above, and hence cancel upon equat- 
ing functions for the two forms. The conformational ener- 
gies of each should, of course, be estimated using the same 
energy functions, with due account of the hydrogen bonds 
in the helix. Difficulties of estimating hydrogen-bond ener- 
gies, and limitations of the semiempirical expression for in- 
teractions of nonbonded atoms, especially as applied to 
conformations so disparate as the helix and the coil, seem 
to preclude a reliable evaluation of the relative energies of 
helix and coil. Alternatively, the magnitude of this differ- 
ence may be adjusted arbitrarily on the basis of experimen- 
tal evidence. 

The conformational energy of the random polypeptide 
chain is separable into independent contributions of indi- 
vidual residues,30 each such contribution being a function 
of the torsion angles and $ for the single bonds adjoining 
the a-carbon of the given residue. Hence, the configuration 
integral may be evaluated in the conventional manner (see 
below) from integrals over the familiar conformational en- 
ergy surfaces for the respective  residue^.^^^^ 

Interactions in the a helix extend over the greater range 
embracing several units of the chain. Hence, the partition 

function cannot be resolved as above into independent fac- 
tors for each of its residues. Taking advantage of the fact 
that the minimum of energy is narrowly confined to a re- 
stricted domain of configurational space, G6 and Schera- 
ga31 employ a harmonic approximation for the conforma- 
tional energy. The resulting quadratic form in the displace- 
ments of the torsional angles from those for the lowest en- 
ergy may be diagonalized, and the configuration integral 
for the helix is readily obtained from the  eigenvalue^.^^ 

The foregoing procedure detailed by GO and S ~ h e r a g a , ~ ~  
and involving evaluation of the configuration integrals for 
random coil and helix as outlined here, is conceptually 
sound. Its proper implementation requires, however, that 
potentials of mean force be employed instead of conforma- 
tional energies that take account only of intramolecular in- 
teractions. The interactions of the respective forms, helix 
and coil, with surrounding solvent cannot here be dis- 
missed, as is warranted for competing conformations of the 
random coil (see preceding section), on the grounds that 
they are equivalent. Owing to disparities in shape, density, 
and hydrogen bonding, the mutual influences operative be- 
tween solvent and solute must be expected to differ sub- 
stantially for the helix and the coil. These differences are 
not accountable merely in terms of specific interactions be- 
tween neighbors. They involve more recondite aspects of 
the liquid state as well. In fact, on careful inspection, estab- 
lishment of the required connections between the helical 
and coil forms will be found to be confronted by difficulties 
resembling those cited above for the melting of a crystal. 

The foregoing difficulties are not necessarily insupera- 
ble. Attention is directed to them with the intention of 
pointing out that treatment of cooperative conformational 
transitions is beset with complications that do not affect 
analysis of the random coil. Evaluation of the configuration 
partition functions for the two states in ways that are suit- 
able for each, respectively, and that also yield mutually 
comparable results is essential for an acceptable treatment 
of cooperative conformational transitions. 

Rotational Isomeric State Scheme. The total confor- 
mational energy for a random chain usually (but not al- 
~ a y s ~ , ~ * )  can be resolved into contributions each of which 
depends on a consecutive pair of bond rotations 4,2-4 The 
surface that represents the energy as a function of two such 
variables can be computed in some instances by semiem- 
pirical methods, but with a degree of reliability not well es- 
tablished. If the function so represented is known with suf- 
ficient accuracy, then it remains to evaluate the averages of 
certain quantities (such as transformation matrices) need- 
ed for treating various properties of the chain molecule. 

In the RIS scheme, integrals over the energy surface are 
approximated by summations over a discrete set of states. 
These should be judiciously chosen with regard to features 
of the surface, and especially with regard to its symmetry.21 
If the conformational energy surface has been computed 
and if it  is deemed to be of sufficient accuracy and reliabili- 
ty to warrant estimation of statistical weights from it, then 
these should be evaluated from the configuration integrals 
over the respective ranges of conformation associated with 
each of the several states; it  may not suffice to evaluate the 
statistical weight solely on the basis of the energy a t  the 
minimum within the given range. All regions of accessible 
energy must be represented by the set of rotational isomer- 
ic states. 

I t  is important also that the rotational states be chosen 
in such manner as to be consonant with the objective of eq- 
uitable representation of the conformation space. A proper 
set of states may coincide with the positions of minima of 
the surface, but identification of rotational states on this 
basis is not r e q ~ i r e d . ~ g ~ l  Serious errors may in fact result 
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from blindly assigning states a t  certain minima while ignor- 
ing other regions of the configuration space of comparable 
energy but devoid of minimaSz1 Such a procedure biases the 
evaluation of a configuration-dependent quantity by giving 
undue weight to regions that happen to exhibit minima a t  
the expense of those that do not display this incidental fea- 
ture. I t  is important to bear in mind that the RIS scheme 
serves as a means by ,which to evaluate continuous inte- 
grals, Le., integrals over the configuration space as a whole. 

In instances where tlhe conformational energy surface is 
diffuse and is not characterized by a simple set of well-de- 
fined minima, a more d'etailed representation of the confor- 
mation space is clearly indicated. Choice of states a t  closer 
intervals (e.g., a t  30°, or even at  10') has proved advanta- 
geous in treating the properties of  polypeptide^^^ and po- 
lynuc leo t ide~ .~~  

A measure of circucnspection obviously is necessary in 
the selection of rotational isomeric states, and the RIS 
scheme is susceptible to errors of judgment in this regard. 
Allegra and  coworker^"^ have developed a more objective 
procedure involving double Fourier expansion of the statis- 
tical weight exp[-E(&, &+l)/hT] for rotations about con- 
secutive bonds i and i + 1 over the full ranges, 0 to 27r, of 
the pair of angles. Designation of rotational states is thus 
avoided. The Fourier cioefficients play a role analogous to 
that of the matrix of statistical weights in the RIS scheme. 
Allegra and coworkers claim their method to be superior to 
the RIS scheme when the Fourier expansions are carried to 
about ten terms in eaclh of the two torsion angles 4 before 
truncation; in the RIS calculations carried out for compari- 
son, three rotational states were assigned for each angle 4. 

If it  is important to compare the advantages of the two 
methods, then the number of rotational states in the RIS 
scheme should be com:parable to the number of terms in- 
cluded in the Fourier expansion. In the limit where these 
numbers are made sufficiently large, the two methods must 
yield identical results. The comparative advantages of the 
two methods in this respect are overshadowed by the real- 
ity that the conformatilonal energy surface is not determin- 
able with an accuracy that would justify pressing either 
method to its limit. For most chains, three states suffice for 
representation in the RYIS scheme well within the limits of 
reliability in the estimation of conformational energies. 

Inasmuch as the Fourier expansion procedure relies on 
eigenvalues of the matrix of Fourier coefficients, it  is appli- 
cable only to uniform chains of great length. The RIS 
scheme enjoys the considerable advantage of greater versa- 
tility, being applicable to finite chains, to copolymers of 
any description and to stereoirregular polymers of any tac- 
tic sequence. I t  also provides a consistent basis for treating 
a wide variety of properties, including higher moments of 
the chain vector r and :more complicated quantities involv- 
ing this vector, as we show in the following sections of this 
paper. If the range of interdependence of skeletal rotation 
angles exceeds two bonds, as assumed above, the RIS 
scheme can be adapted thereto by restructuring (and en- 
larging) the statistical weight m a t r i ~ . ~ ! ~ ~  

As noted earlier, the RIS scheme has the advantage of 
being directly cognate t.o physical features of the particular 
chain and the hindrances affecting rotation about its skele- 
tal bonds. The choice of rotational states usually is dictated 
by circumstances that can be comprehended by inspection 
of a suitable model. Cosnsequently, configurational charac- 
teristics of polymer chains can be interpreted directly and 
rationally in terms of molecular characteristics; conforma- 
tional energies calculated by current empirical methods, 
though helpful, are not essential for this purpose. Also, cor- 
responding conformations in different polymer chains can 

be compared meaningfully, and a high degree of correlation 
has been demon~t ra t ed .~  

For a number of simple chains, conformational energy 
calculations have thusfar failed to reproduce observed 
characteristics. Polyoxymethylene, polyoxyethylene and 
poly(dimethylsi1oxane) are examples.* The RIS scheme 
may nevertheless be applied to treatment of their configu- 
rational statistics and of configuration-dependent proper- 
ties.4 In such instances the statistical weights, or the corre- 
sponding conformational energies, must be evaluated from 
observed configuration-dependent properties. Contrary to 
the usual view of the RIS scheme as an intermediary in the 
process of deducing molecular properties from energies cal- 
culated according to "theory," the RIS scheme may be em- 
ployed inductively to characterize the conformation on the 
basis of experimental information. 

Configuration-Dependent Quantities for Chains of 
Specified Conformation 

Properties of chain molecules that depend on configura- 
tion include the dimensions of the spatial configuration as 
measured by the chain displacement vector r connecting its 
ends, or by any of various products that may be formed 
from r; the radius of gyration or other moments formed 
from higher even powers of the distances between all pairs 
of atoms; molecular dipole moments; and optical anisotro- 
pies. Evaluation of these properties requires summation 
over contributions from the individual bonds or groups 
comprising the chain. These contributions, being vectors or 
tensors identified with the respective skeletal bonds num- 
bered 1 to n, are conveniently expressed in local reference 
frames. A Cartesian coordinate system is therefore defined 
for each skeletal bond. I t  is customary to take the axis X I  
for system i along skeletal bond i, the Y,  axis in the plane 
defined by bonds i - 1 and i and the 2, axis in the perpen- 
dicular direction that completes a right-handed reference 
frame.4 

Also in keeping with previous  convention^,^ we let TI de- 
note the matrix of the transformation between reference 
frames i + 1 and i. It  is a function of 6, and 4,. Throughout 
this section we take the set of parameters ( I ,  8, $1 for all 
bonds to be fixed; 111 and 18' are fixed by the structure and 
@ I  by arbitrary assignment. 

Typically, the sums to be evaluated consist of terms in- 
volving serial products of transformations T I ,  or their self- 
direct products (see below), as required to combine the 
contributions associated with two or more bonds of the 
chain. These serial products may be generated by matrix 
multiplication of suitably constructed matrices, one such 
matrix being formulated for each bond of the chain. Evalu- 
ation of the required sum for a given property then reduces 
to serial multiplication of generator matrices, one for each 
bond 1 to n. 

Chain Displacement Vector. The chain vector r with 
components x ,  y ,  z, being the sum of skeletal bond vectors 
I,, is given by 

r x  -I 
r = 1: J = I, + TJ, + T ~ T . J ~  + ... + T~T~...T"-,I~ 

(10) 
where each bond vector li is expressed in its own frame of 
reference; i .e.  

Since bond 1 has no predecessor, axes Y1 and 21 are not 
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specified by the definitions above; hence is not defined 
and specification of T1 is incomplete. In order to amend 
this deficiency,6 we supply an imaginary zeroth bond and 
direct it parallel to bond 2. Then 41 = 0, the conformation 
of bond 1 being regarded as trans. In effect, the directions 
of bonds 1 and 2 fix the reference frame in which r is ex- 
pressed according to eq 10. 

In the interests of simplifying expressions to follow, seri- 
al products such as TIT2 . . . TI will be written TI(-'). The 
serial index of the first factor of the serial product is identi- 
fied by the subscript and the number of factors by the su-* 
perscript in parentheses. With this convention, eq 10 is re- 
placed by 

n 

1-1 

r 3 rOn = ET?I-l)l, (12) 

Serial generation of the sum of terms in eq 10 or 12 re- 
quires performance of all operations pertaining to bond i at  
step i. These operations include (a) perpetuation of the se- 
rial product T1 . . . T,-l by appending T,, (b) completion of 
a term by appending I,, and (c) retention of all terms simi- 
larly completed a t  previous stages through acquisition of a 
vector lh, where h < i. Two classes of terms may be distin- 
guished a t  a given stage i - 1: the first (1) consists of a sin- 
gle member, namely, the incompleted serial product Tl("-l) 
cited above, and the second (2) is the sum of completed 
terms 

h=l 

Let these classes of terms be presented as the two "ele- 
ments" (actually submatrices) of the matrix Mi-1 defined 
by 

M,-l = [TIcL-'), ro,,-l] 

Performance of operation (a) on the first element generates 
the corresponding element (or submatrix) of Mi, and per- 
formance of the operation (b) on this element yields the 
term required to be added to r0,i-l to obtain r0,i. 

A generator matrix Ai may be formulated6 such that its 
first row is addressed to the incompleted serial product, 
i.e., to the first element of Mi-1, on which it must perform 
the operations (a) and (b), and whose second row is dedi- 
cated to retention of the terms in the second element of 
Mi-1 as required according to (c) above. Thus, we let 

= :I, (13) 

where the subscript i appended to the brackets will be un- 
derstood to denote the serial indices of the quantities T 
and 1 within. Then 

M, = M,-'A, 

Let an initial matrix A[1 be defined as the first row of AI, 

A[h LT l1h (14) 

Then, with h = 1, the serial product A[1A2(n-2) gives Mn-l. 
Postmultiplication by the last column of An, which we de- 
note by 

= [:Ik (15) 

the latter matrix being defined according to eq 13; Le. 

with k set equal to n, yields6 

r = &1A2("2)An] n 2 2 (16) 

i.e., r is obtained as a serial product of generator matrices. 
This result admits of immediate generalization to 

rhk = &h+lAh+,'k-h-2)A k ]  k - h 2 2 (17) 

for the vector spanning the sequence of k - h bonds con- 
necting atom h with k. For h = 0 and k = n, this result re- 
duces to eq 16 with r = ran. 

The exclusion from eq 16 and 17 of the trivial case of a 
chain or sequence of unit length can be amended by an 
alternative, but less versatile, formulation (see footnote 35). 
These results are completely general. No restrictions apply 
to the character of the chain; bonds and bond angles may 
be specified in any manner whatsoever. 

The foregoing treatment of the chain vector r represents 
the simplest application of the matrix generation method. 
The generator matrix A,, like others to follow, is irreducible 
to diagonal form. 

Square of the Magnitude of the Chain Vector. The 
square of the magnitude of r is given by 

n 

r 2  = c#!hz' + 2xlhTThTh+l ... T,-I~, ( 18) 

where IhT is the transposed, or row form of bond vector lh, 
and lh is its magnitude. Each term of the double sum is the 
scalar product of a pair, e.g., h,j, of bond vectors. Like pre- 
ceding expressions, this one is completely general. 

Pursuant to the formulation of a generator matrix suit- 
able for evaluation of eq 18, we observe that at  step i > 1 
three classes of terms occurring in eq 18 must be advanced 
from stage i - 1 to i. These classes, distinguished according 
to the location of i relative to h and j in eq 18, are: (1) those 
for which i I h I j ,  (2) those with h < i I j ,  and (3) those 
having h I j < i. Terms of the first category acquire the ini- 
tial factor IhT a t  or beyond stage i; class (2) comprises 
terms that have acquired this factor but not 1, before stage 
i; and terms of class (3) have acquired both lhT and 1) prior 
to stage i and hence are complete. The generator matrix 
with rows addressed to terms of categories (l), (2), and (3), 
respectively, is 

h-1 h<i 

(19) 

The row matrix with elements (submatrices) representing 
the three classes of terms at  stage i - 1 is 

1 

Postmultiplication of this row by Gi yields the succeeding 
matrix Mi. In the process, each of the terms of the second 
element is extended by the factor TL and the new term 
2li'rTi is added to them; the set of terms completed by the 
factor lL is added to those comprising the third element of 
M,-1. The third element becomes the repository for the 
terms required by eq 18, the full set being acquired when i 
reaches n. 

It  follows at  once that4," 

r 2  = Cy,G2(n-2Y;n1 n 2 2 (20) 

where G[1 and G,] are, respectively, the first row of G1 and 
the final column of G,. In general 

(22) 
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rhh' = G[h+lGh+2'k-h-L'C k] - h 2 2 (23) 

Thus, serial multiplication of G matrices in the manner 
stipulated by eq 20 generates the terms of eq 18 identically. 
Equation 23 likewise generates the terms for the hk se- 
quence. (An alternative procedure is given in footnote 35.) 

Radius of Gyration. The radius of gyration s for a chain 
of n bonds is given by 

s? = ( n  + 1) -2  r h h 2  (24) 

the sum being over all pairs of chain atoms. Substitution of 
eq 23 for rhk2 with k - h 2 2 gives 

O S h < h S n  

The required generator matrix is 

s, = 0 G G ]  (26) 

=I; ; :d'r 11 ( 2 7 )  

with S p  and S,] defined as the first row of SI and last col- 
umn of S,, respectively. Then 

[: 7 :'I! 
1 1 W T  l 2  l 2  

0 0 0  0 1 ,  

s* = ( n  + 1)-2S;,sp-%,] n 2 2 ( 2 8 )  

Quantities of Higher Orders. The dyadic product rrT 
is the matrix of the symmetric second order tensor formed 
from the components x ,  y, z of r. That is 

rrT = y x  y2 yz [:i 1; ::I 
The direct product of r with itself gives the 9 x 1 vector 
comprising the same elements taken in reading order, row 
by row, and arranged as a column; i .e . ,  

r 0 r = col(x2, x y ,  . . . 2 2 )  E col(rrT) (29)  

where 0 denotes the direct product. 
I t  follows from the generating scheme for r as expressed 

by eq 16 together with the theorem on direct products36 
that 

r 0 r = (A 0 A)[,(A 0 A)2(n-2)(A 0 A),] n 2 2 

(30) 
Tensors of higher ordeir can be developed analogously. In- 
troducing the symbolisim rxP for the self-direct product of 
degree p ,  we have for the column form of the tensor of 
order p formed from x ,  .y, and z 

y X P  = 111 1 "P(  AXP)J n--2)An I x P  (31) 

(See also footnote 35.) 
Some of the elements; of r x p  are identically equal for p > 

1; they differ only in the order of their factors x ,  y, and z. 
Such redundant elements may be c6mbined in interests of 
concision without sacrifice of content. In this way the order 
of the vector r x P  may be reduced from 3p to ( p  + 2)!/p!2!. 

Similar redundance occurs in the self-direct products of 
the generator matrices in eq 31. I t  may be eliminated ac- 

cording to the following procedure enunciated by Nagail0337 
and formulated algebraically by Flory and Abe.ll Let the 
rows and columns of A be indexed by digits 1-4. The rows 
and columns of AXP are indexed by numbers formed from p 
digits 1-4. Two or more rows are said to correspond to one 
another if their indexes are formed from the same set of 
digits, but in permuted order. Corresponding columns are 
defined in like manner. Condensation may be effected by 
combining ( i .e . ,  adding) corresponding r 0 ~ s . l ~ ' ~ ~  This oper- 
ation is performed for each set of corresponding rows. Cor- 
responding columns are rendered identical by this process. 
Redundant columns beyond the first indexed by the given 
set of digits are deleted. The pre- and postmultipliers A [ X p  
and AIXp are reduced according to the same rules for delet- 
ing columns and for combining rows, respectively. In this 
way the square order of AXP is reduced from 4 to ( p  + 
3)!/p!3!, and of course the order of rxp is reduced as stated 
above. I t  will be apparent that computation for higher 
values of p (e.g., for p = 6-8), which would otherwise be 
prohibitive, are enormously simplified in this way. 

The higher even moments of the magnitude r of r may be 
formulated by a procedure involving further use of direct 
products. Thus, it is permissible to consider r4 as the self- 
direct product of r2. For the even moments in general 

r p  = ( r 2 ) X p / 2  

where p/2 is an integer >O. Hence, from eq 20 one obtains 

rP = Gox~'2(GX~ 2)2in--2Y; n l  X P ' ~  n 2 2 (32) 
Condensation of the self-direct products of the generator 
matrices may be carried out in the manner prescribed 
above. 

Higher moments S p  analogous to the square of the radius 
of gyration, may be defined as the sums of even powers p of 
the distance rhk between all pairs hk of chain atoms; i.e. 

where p is an even integer. They may be elaborated from 
the quantities rhkP formulated after the manner of eq 32 for 
rOnP = Y P . ~  

Other  Quantities. The dipole moment 1.1 for the mole- 
cule is given by eq 16 in conjunction with eq 13-15 with li 
therein replaced by the dipole contribution mi of group i. 
The squared magnitude wL2 of p is given by eq 19-22 with 
corresponding alterations. 

The squared optical anisotropy y2 that determines the 
contribution to depolarized light scattering by each mole- 
cule in a system of independent and uncorrelated mole- 
cules is defined by 

y2 = (3 /2)  trace (66) (34) 
where & is the anisotropic part of the molecular polarizabil- 
ity tensor a; the former tensor, &, is obtained from the lat- 
ter by subtraction of the trace of a. If the symmetric tensor 
& is expressed instead as a 9 X 1 column vector, denoted by 

with elements taken in "reading order" as above, then 
the scalar product of &c with itself yields the same result; 
i.e. 

y2 = ( 3 / 2 ) 6 P a  (35)  

iUR being the row form of this vector. If & can be regarded as 
the sum of contributions from the respective groups, or 
units, then12 

' 1  h<i 

where &iR and &jc are expressed in their respective refer- 
ence frames. The generator matrix is easily established to 
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be7 to perpetuate terms in the same category and to generate 
terms of such of the other categories in the hierarchy (2) to 
(6) as may be formed therefrom. For example, the third 

P , =  0 T O T  (36') row must possess non-null elements in the third, fifth, and 
sixth columns. The first of these perpetuates terms of the 
same kind, and the other two will convert terms (3) at  bond 
i - 1 to categories ( 5 )  and (6), respectively, at  bond i. The 
generator matrix4J4 formulated in this manner is as seen in 
eq 40, where E3 is the identity matrix of order 3. (Alterna- 
tive forms are obtained by interchanging rows and simulta- 

1 G R ( T  O T) G2 

and 
y* = (3/2)P,,P:"-2'Pn, (37) 

where P[i and P.1 are the first row of PI and the last col- 

1 21TT GR(T O T) ( IT O IT)(T O T) 2&R(1 0 T) GR(1 O 1) 

O T  0 (E, O P)(T O T) &T &I 1 
0 0 T O T  0 

0 0  0 0 
0 T O T  Q , =  i 0 0  0 0 

umn of P,, respectively. 
The stress-optical coefficient obtained from measure- 

ments of the strain birefringence exhibited by a cross- 
linked network depends on the quantity Aa given by334,13J4 

where vector r refers to a representative chain of the net- 
work and & denotes the anisotropic part of the polarizabil- 
ity tensor for such a chain. The angle brackets subscripted 
0 denote the average over all configurations for the unper- 
turbed chain. Our concern at  this juncture is limited to the 
quantity rT&r for a specified configuration. Its evaluation 
is illustrative of the application of matrix generation meth- 
ods to more complicated sums. 

On the assumption that bond polarizahility tensors for 
the bonds, or groups, comprising the chain are additive 

(39) 

where &j is the contribution associated with bond j and the 
sums are over all bonds 1 to n of the chain. The products of 
transformation matrices T required to establish identity of 
reference frames for the three quantities in each term are 
here omitted for simplicity. Two alternative renditions of 
this expression are 

(3Y) 
( 39") 

where and &,c are the row and column forms of a,, re- 
spectively. Which of the three expressions is preferred de- 
pends on the serial order of h, j ,  and h. 

For the construction of a generator matrix, QL for bond i, 
the following six categories of terms must be distinguished 
according to the serial order of i, j ,  h, h 

rT6r = ~Z,R[(ZI~T) o (zlk)] 
= [(ZIhT) @ (Zlk)]z6i,c 

(1) i I h, j ,  h 
( 2 )  h < i 5 j ,  h 
(3) j < i 5 h, h 
(4) h, k < i I j 
( 5 )  h, j < i 5 h 

( 6 )  h, j ,  h < i 
The generator matrix shall consist of six rows addressed re- 
spectively to elements comprising terms in these six catego- 
ries. Each such row is required to include elements chosen 

21 O T 
0 
T 
0 1 Ii 

( 40) 

neously interchanging the corresponding columns.) Then 
for the specified configuration 

rT& = Q:,Qd"-'Q,; (41) 

where &[I i s  the first row of Q1 and Q,] is the last column 

The dipole orientational contribution to the Kerr con- 
stant for electric birefringence depends on the quantity 
lT& where is the dipole moment of the molecule in the 
specified configuration.15J6 This quantity can be generated 
using eq 40 and 41, with li in eq 40 replaced by the dipole 
moment mi associated with skeletal bond i. 

The coefficient of strain dichroism falls within the scope 
of the same f ~ r m a l i s r n . ~ J ~  The transition moment replaces 
& in eq 40. 

Patterson3s has formulated generator matrices for the 
quantities that occur in the complete theory of light scat- 
tering presented by Nagai.39 These quantities depend on 
sums of terms such as (&rijT&jri;), (rij2&iR&jC), and 
(rijT&i&;ri;) over all pairs i ,  j .  The last of these terms is the 
product of two tensors with a vector and with its transpose. 

Statistical Mechanical Averages Over Configura- 
tion Space. Let Ui represent the matrix of statistical 
weights ur,,,i applicable to rotational isomeric states {, 7 = 
a,  /3. . . IJ for bonds i - 1 and i, respectively. The configura- 
tion partition function 2 for the chain molecule is given by 
the serial product of these matrices, i.e. 

= UIlV (42) 

of Qn. 

where 
U, = row(l,O, . . . 0 )  

u, = C O K l ,  L . . . 1) 

(43) 

(44) 

The matrix generation methods presented above for 
evaluating properties of chain molecules in specified con- 
figurations are readily elaborated to yield the correspond- 
ing statistical mechanical averages over all configurations 
as represented in terms of a suitable set of rotational iso- 
meric states. The procedure is general.6~7~11 

Consider a configuration-dependent molecular property 
f = f({4)).  We assume that this property can be expressed as 
a sum of contributions each attributable to, or associated 
with, an individual skeletal bond of the chain. For a speci- 
fied configuration {d] the property f ( { $ ] )  can be generated 

and 
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by serial multiplication of generator matrices Fi of order s. 
For the purpose of generating, in a similar fashion, the av- 
erage (f) off over all configurations of the chain, we formu- 
late the generator matrix 

for 1 < i < n. Terminal! matrices similarly obtained by in- 
troducing elements of LJ1 and U, into the appropriate gen- 
erator matrices, are 

5:1 =: [FIl 0 0 . . . 01 (46) 

(47) 

where F[1 and F,] are the first row and last column of F1 
and F,, respectively. Rotational state designations are not 
required in the terminal matrices 511 and zn] inasmuch as 
neither the row F[1 nor the column F,] depends on the con- 
formation. This is implicit in the fact that neither 41 nor @, 
is defined (except in the arbitrary specification of d1 for the 
purpose of establishing an initial reference frame for repre- 
sentation of chain vector r; see above). The generator ma- 
trices %are more succinctly defined by 

5,: = col(F,,F,, . . . F n ~ )  

5, = (U, 0 E5)l\F,Il 1 < i < n (48) 

where IlFiIl is the diagonal array of the generator matri- 
ces Fi(a), . . . Fi(u) for the rotational states a .  . . u,  and E, is 
the matrix identity of the order s of matrix Pi. Terminal 
matrices are given by 

(49) 

s,,; = U, 0 F,; (50) 

It  will be apparent from the organization of elements 
within the generator matrices 3i that  serial multiplication 
of these matrices from 1 to n generates the complete set of 
products F11F2. . . Fn-1Fn1, one for each and every configu- 
ration of the chain specified by the set of rotational states 
for all internal bonds. Each such product yields the value of 
f = F ( { d ) )  for the configuration {d) it  represents. The serial 
multiplication of the 5,. matrices simultaneously generates 
the product of the statistical weights uf,, that expresses the 
statistical weight D l ~ l  for each configuration, and it joins 
this product as a multiplier of f j 4 l  for the same configura- 
tion. Thus, the serial product 5 ~ ( ~ - ~ ) 5 , 1  comprises the 
sum of the complete set of terms Dlslf{d) for each configura- 
tion. Division by the sum 2 of the statistical weights Dl,+l for 
every configuration yields (f). That is 

( f )  == 5[,5~“-2’5,]2-’ (51) 
This result is easily modified to express the average of a 

scalar configuration-dependent property fhR that comprises 
contributions only from bonds i in the interval h < i < k .  
Then 

3:1 = U, 0 FL1 

f h k  Frt,+iFh+ik-h-2’Fi;i 

and the average over all configurations of the chain as a 
whole is given by4’ 

( f h k )  = Z-1U1’11’3~h+13h+,’fi-h-P)5 h ;  U k+l Ifl--kJ ( 5 2 )  

where 

$!/I+. Uh+lllF[h+l 1 1  (53) 

3k: = (Uk @ E,)//F,](/ = U, @ Fk1 (54) 

(For an alternative formulation, see footnotes 35 and 40.) 
These specifications for the terminal matrices follow di- 
rectly from eq 48 if it is observed that FIh+l is of order 1 X 
s and, hence, that Es in eq 48 must be replaced by unity for 
the purpose of defining 5 [ h + l .  In general, the “elements” 
F[h+l in eq 53 may depend on the rotational state of bond h 
+ 1. If, however, the contribution of the bond is directed 
along the bond, as in the case of the bond vector or its 
products, then the Y “elements” comprising / /F[t,+l/ /  are 
identical, and eq 53 simplifies to 

The Y columns that are the “elements” comprising j/Fkl/l 
are necessarily identical. I t  is on this account that Fk]  

simplifies unambiguously to the final expression in eq 54, 
which corresponds to eq 50. Adaptation of the procedure to 
a vectorial quantity f h k  is straightforward. 

The foregoing methods are applicable to all of the quan- 
tities treated or mentioned in the preceding section; Le., to 
r, r2, s2, b2, y2, Aa and to the higher moments that may be 
obtained from these quantities. These methods are exact. 
They are applicable to chains of any conceivable length, 
and to copolymers and stereoirregular polymers of any 
specified constitution and/or sequence. The orders of the 
generator matrices, us X us, are not excessive. The matrices 
required for generating r, r2, s2, y2, and Aa are of square or- 
ders s = 4, 5, 7 ,  11, and 26, respectively. If, as is often the 
case, three rotational states suffice, then the square orders 
of the generator matrices for the statistical mechanical av- 
erages of these quantities are 12, 15, etc. 

Higher moments such as r x P  and ( r 2 ) P / *  require the larg- 
er generator matrices obtained as the self-direct products 
of A and G ,  respectively. These may be condensed by the 
methods cited above to orders (s + p - l)!/p!(s - l)!, with 
savings in computational effort that  are indispensable for p 
> 3. Through use of the condensed matrices, corresponding 
economies are realized in generating the configuration av- 
erages. The matrix Pi for generating y2 can be condensed 
similarly from square order s = 11 to 8.7 The order of the 
matrix Qi, given in eq 40, for generating Aa can be reduced 
similarly from s = 26 to s = 20. 

If all bonds of the chain are identical, the serial sub- 
scripts 2 to n - 1 may be omitted, and the serial product in 
eq 51 may be replaced by the unsubscripted matrix 5 
raised to the power n - 2. Thus, 

Owing to the fact that the generator matrices 3, like 
their antecedents F, are irreducible to diagonal form, ei- 
genvalue methods cannot be employed for the reduction of 
the serial products in eq 51’. The matrix generation meth- 
ods are therefore incompatible with the more conventional 
procedures whereby averages are expressed in terms of ei- 
genvalues of the statistical weight matrix. These latter pro- 
cedures are necessarily restricted to uniform chains con- 
sisting of identical units which repeat regularly throughout 
the chain. They are restricted also to chains of great length 
for which terms in the largest eigenvalue ~ u f f i c e . ~  If the re- 
peat unit comprises a succession of two or more skeletal 
bonds, terms representing various combinations of the sev- 
eral bonds are required and the formulation in terms of the 
largest eigenvalue for the product of statistical weight ma- 
trices representing the sequence of bonds spanning the re- 
peat unit is correspondingly complicated. Practicable ei- 
genvalue formulations of higher moments and other quan- 
tities of greater complexity are unknown. Even in the case 
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a + o 1  0 . 
a - 0 1  0 . 
p + o o  1 . 

0 0  1 . 

of a simple chain of uniform structure and great length, any 
advantages of eigenvalue methods from a computational 
standpoint are marginal at  best. The matrix multiplication 
procedures offer overriding advantages of simplicity, flexi- 
bility, and much greater scope. 

In general, the generator matrix F is considered to de- 
pend on the rotational state, or conformation, only through 
the transformation matrix T that invariably occurs within 
F. (See matrices A, G ,  S, P, and Q of the preceding sec- 
tion.) The contribution associated with each bond i (e.g., li, 
mi, or &J is considered to be locally invariant to conforma- 
tion; i.e., the contribution is assumed to be independent of 
the rotational state when this contribution is expressed in 
the reference frame of bond i. Inspection of the constitu- 
tion of the generator matrix as expressed in eq 45 shows 
clearly that this assumption is needlessly restrictive. Ob- 
viously, the contribution of bond i to Fi could be varied 
with the rotational state of this bond in any conceivable 
manner. Moreover, possible variations of the contribution 
(e .g . ,  of &J with the rotational state of the preceding bond 
( i .e . ,  bond i - 1) could also be taken into account by replac- 
ing the entries Fi(7) in each column 7 of Ti, as expressed by 
eq 45, with Fi({,7) where ( is the row index denoting the 
state of the preceding bond. (Equation 48 would then be 
rendered void.) 

These potentialities of the matrix generation scheme 
have not been exploited owing to lack of information in the 
detail required for assigning local contributions in the 
higher order of refinement suggested above. The capacity 
and flexibility of these methods exceeds requirements as 
determined by current knowledge of molecular parameters. 

We have pointed out earlier in this paper that the num- 
ber of rotational states for a bond may, if warranted, be in- 
creased beyond the usual number of three in order to 
achieve closer approximation to the integrals over configu- 
ration space. In fact, such refinements seldom are required. 
Often, the nature of the bond torsional potentials and con- 
formational interactions are such as to restrict the rota- 
tions to no more than three well-defined states.* Even in 
instances where physical circumstances suggest subdivision 
of the primary set of three states, inaccuracy.of ancillary 
information, notably the conformational energy, seldom 
warrants refinement beyond that attainable by compromis- 
ing locations and statistical weights of the primary set of 
three states. In any event, the adequacy of the smaller 
number of states may easily by put to test by investigating 
the effect of increasing the number of states on the results 
of computations. The states must, however, be selected in 
such a way as to preserve equitable representation of the 
accessible ranges of angle.21 

The range over which bond .rotations are interdependent 
seldom goes beyond first neighbors. However, in those in- 
stances where the range is greater, the statistical weight 
matrix may be revised to relate the conformation for two 
(or more) bonds to the conformation assigned to the pre- 
ceding pair (or triad, etc.). Such elaboration is, of course, a t  
the expense of enlargement of the statistical weight matrix. 

Symmetric Chains 

If the skeletal bonds of the chain are devoid of intrinsic 
~ h i r a l i t y , ~ ~  then right- and left-handed rotations of the 
same magnitude have equal a priori probabilities. Hence, 
for every rotational state 7 chosen a t  4v in the range 0 < G,, 
< a an equivalent state must be included at  -&. We de- 
note this pair by 7+ and q-, or jointly by 7*. Whether or 
not states should be assigned a t  4 = 0 and/or a t  4 = K will 
be determined by the character of the bond and the associ- 
ated conformational energy. The set of states may be repre- 

sented generally as 0, a*, /3*, . . . , K, with assignments a t  
the extremities, 0 and A, to be determined by circumstanc- 
es in given examples. 

The statistical weight matrix, and the generator matrices 
5i derived from it, may be condensed by combining states 
of opposite signs in an appropriate manner.10J1*42 General 
procedures7J1 to this end are presented below. 

For the reduction of the order of the statistical weight 
matrix. we define matrices Xo and Yo as follows: 

0 a+ cy- p+ p- 
0 1 0 0 0 0  

xo=p*[oo  Q * O %  0 % 0 '/z 0 x 
. . . . . .  
. . . . . .  

1 : : : :  
(56) 

The order of indexing states indicated.on the columns of 
Xo and on the rows of Yo corresponds to the order of index- 
ing in Ui. We note that 

J 
In the familiar case of the three rotational states t, g', 

and g-, which may be identified with 0, a+, and cy- in the 
scheme above, the orders of Xo and Yo are 2 X 3 and 3 X 2, 
respectively; YoXo is 3 X 3; and the statistical weight ma- 
trix is expressed with full generality by4 

u, = 1 a$ au (58)  [: lu ",3, 

3 
With retention of the previous definitions of U1 and U, 
(see eq 43 and 44), the following invariances to multiplica- 
tion by YOXO are readily verified 

(59) 
UlYOXO = u, 
xou,Yoxo = xou, 
YOXOU, = u, 

It  follows that the matrix YoXo may be interdigitated be- 
tween successive U matrices of the serial product in eq 42 
without affecting the result." Reapportioning factors, we 
obtain in place of this equation 

= UJU2tln-2)Unt (60) 

U,t = UlYO = [l 01 (61) 

where 
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U,+ = XOU,YO = ] (62 )  

It  will be apparent that  the invariance relations, eq 59, 
hold for any number of states chosen to conform with the 
requirements of symmetry and assigned a pattern of statis- 
tical weights, expressed in U,, in conformity therewith. The 
condensation consists in the replacement of each pair of 
states 7' by a single state 7. The results achieved by the 
operations specified in eq 61-63 are easily obtained by sim- 
ply adding the columns for a+ and a-, the columns for p+ 
and p-, etc., and then deleting redundant rows. The opera- 
tions are presented in algebraic form above in order to fa- 
cilitate their adaptation to the condensations of the 5 ma- 
trices below. 

Before undertaking t o  effect the corresponding conden- 
sation of the generator matrices, represented generically by 
F,, one should examine the symmetry characteristics of the 
corresponding matrix F, used in the construction of 5,. We 
assume that the contribution from bond i to the property f 
is locally invariant, and, consequently, that  the dependence 
of F, on the conformation resides solely in the transforma- 
tion T,, and/or its self-direct products. (As noted earlier, 
this assumption is needlessly restrictive with respect to the 
preceding mathematical format, although it has been 
adopted invariably in applications to date. It is a require- 
ment for the following treatment, however.) Hence, those 
elements of F, which are not identically zero must fall into 
two classes according to their symmetry with respect to re- 
versal of the sign of @,. On this basis the characters of the 
elements of G,, for examlple, are expressed by 

+ + + o +  

c, -[: ; i: -1 
o o o o + I  

where 0, +, and - denote, respectively, null elements, even 
elements that  are unchanged by replacing 4 by -4, and 
odd elements whose signs are reversed by such replace- 
ment. Then, Go = G+ -1- G - ,  where Go, G+,  and G- are the 
generator matrices for the t, g+ and g- states. In general, 
for any configuration-dependent property f, and any num- 
ber of rotational states 

Fo (1/2)(F,+ + Fv-) (65) 

It follows as a consejquence of the character of F cited 
above that a diagonal elementary matrix E- may be de- 
fined such that 

F,,s = E-F+E- (66) 

and, of course, E- E- =: E+, where E+ is the identity of the 
same order (s) as E-. Further, let 

Eo (1/2)(E+ + E-) (67)  

Le., the negative elements, -1, of E- are replaced by 0 in 
Eo, elements 1 being unchanged. In the ease of the Gi ma- 
trix for generation of +, for example 

(68) E, = diag(l,l,l,*l,l) 
Eo = diag(l,l, 1,0,1) 

The transformation, eq 66, is easily verified for F = G by 
inspection of expression 64. In the case of the matrix Pi for 

1 

generating y2, the required operators are' 

= diag(l,1,1, fl. 1, fl, 41) (69) 

provided that the order of P, has been reduced to 8 X 8 by 
condensation of the self-direct product T 0 T included in 
Pi as defined by eq 36. 

The matrices required for condensation of 5, are ob- 
tained by multiplying each of the columns of Xo and the 
rows of Yo (see eq 55 and 56) by Eo, E+, or E-, depending 
on the character of the column or row. Thus, in general 

En 0 0 0 0 
0 (1/2)E+ ( l /2)E-  0 0 

x=[.  . .  0 0 

. .  

Invariance relations, analogous to eq 59, hold as follows 

It follows that7z1' 

where 
3:1+ = 3;1Y (74) 

5,+ = X 5 , Y  ( 7 5 )  

5, ,+ = x5,, (76)  

In the common case of three rotational states, t, g+, g-, 
the matrix 5,f reduces to 

] ( 7 7 )  
EoF, 2aE,F+ '" = [E$, a($E+ + wE-)F+ 

since EoFoEo = EoFo. Thus, for three rotational states (v = 
3) the square orders of the 5, are reduced by the factor 2/3, 
i .e.,  by the same factor as U,. In general, for a set of v - 1 
rotational states in addition to the trans state, the orders of 
both U, and 5, are reduced by the factor (v + 1)/2v. 

The average of the higher moments of r and of r2, i .e. ,  
( rXp) and ( (r2)pI2), may be treated by a simple extension 
of the foregoing scheme. The order of the generator matrix 
a(p)  for rxP (see eq 48 with F, identified with ALXp) can be 
reduced by the factor ( v  + 1)/2v as above by use of matrices 
X(xp) and Y(xP) obtained by replacing Eo, E+, and E- in eq 
70 and 71 by the respective self-direct products EoXp, 
E+Xp, and E-Xp where 

E, = diag(1, 1, fl, 1) (78) 

and Eo is defined according to eq 68. If, as expediency man- 
dates, the self-direct product AXP has been condensed as 
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outlined in an earlier section of this paper, then EoXP and 
E+‘p must be subjected to the same condensations accord- 
ing to the rules stated above. Thus, the reduction of the 
matrix orders for symmetric chains are superimposed on 
the condensations applicable to the self-direct products. 

Analogous methods are applicable to the higher mo- 
ments of r2, i .e. ,  to S ( p / p )  for generating (rp),  where p is a 
positive even integer. In this case, Eo and E* are given by 
eq 68 and the required matrices X ( x p / z )  and Y(xp/2) are ob- 
tained by replacing Eo, E+, and E- in eq 70 and 71 by 

E+’p12, and E-’p12. These diagonal matrices are to 
be condensed to the same orders as G(p/2) in the matrix 

The generator matrices with orders reduced in the fore- 
going manner will be found to contain one or more null 
rows and corresponding null columns. The fourth row and 
fourth column of S.f are null, for example, as will be appar- 
ent from eq 77 with F = G .  If this row and the correspond- 
ing column are deleted, then the square order of Sit for the 
case u = 3 is reduced from 10 X 10 to 9 X 9. Similarly, the 
third row and column of @it are null and may be deleted. 
The order of Pi is 8 X 8, after condensing the self-direct 
product T @ T. Hence, @it in the case u = 3 is of square 
order 16 X 16. Removal of its fourth and sixth rows and 
columns, which are null, reduces the square order of @it to 
14. Formal procedures for incorporating these reductions 
have been given previ~us ly .~J’  

and S(p/2) for generating the higher moments and may be 
deleted with some economy in computations. The pattern 
of propagation of these null rows and columns with in- 
crease in p ,  or in p / 2 ,  is complicated and apparently not 
amenable to presentation in simple mathematical form. 
The algebraic procedure previously offered1’ for elimina- 
tion of these unnecessary rows and columns in S(p/2) for 
p / 2  > 1 is in error. If the orders of the matrices for generat- 
ing the higher moments are to be reduced beyond reduc- 
tion by the factor ( u  + 1 ) / 2 u  according to the procedure 
presented here, such reduction is best carried out by in- 
spection. 
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