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QUANTUM INFORMATION VIA NON-ADDITIVE ENTROPY

A. K. Rajagopal
Department of Computer Science, George Mason University, Fairfax, VA 22030
and Inspire Institute Inc., McLean, VA 22101

ABSTRACT

This lecture will address some issues of quantum information based on the framework of quantum non-additive
entropy. This is a four part presentation:

(a) General introduction to the issues by discussing known many-body systems;

(b) Exposition of basic concepts of quantum theory — uncertainty and superposition principles - in relation to
quantum information illustrated in simple discrete systems (spins) leading to notions of separability and
entanglement;

(c) Quantification of quantum information based on concepts of entropy illustrated with the simple systems
discussed in (b) and exhibit implications of non-additive entropy in this connection; and finally

(d) Concluding remarks will include topics not covered in this introductory presentation such as continuous
systems (light), some open problems and issues as well as current ongoing attempts at practical implementation
of these ideas.

Collaborators: Sumiyoshi Abe and Ronald W. Rendell



Interplay of Concepts:
Quantum Information and Quantum Many-Body Systems

Quantum
Information

Quanta, (Planck)
Quantized atom
Quantum Mechanics

EPR, Nonlocal correlations

Entanglement, Cat States
(Einstein, Schrodinger)

Bell's Inequalities
Reversible Computation
Confirmation of Bell
Quantum Simulation
Quantum Unitary Gates

Quantum Factoring Algorithm
Quantum Search Algorithm

Quantum Error Correction
Quantum Cryptography

Experimental QI :
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Quantum
Many-Body Systems

11900 19007~
Quanta, (Planck)
1925 1925 Superconductivity Expt.
BEC Theory Bosons,
1935(=)1935 }Helium stom  Fermions
Superfluidity
Quasiparticles
Laser Aharonov-Bohm
Josephson Effect
1980 1980
Quantum Hall Effects
Fractional Charge, Statistics
1990 1990 Composite Fermions, Bosons
High-Tc, Cuprates
g 1005 1995 T\ Atomic Laser Cooling
Bose-Einstein Condensates
<:> >~ EIT, “Slow light”
BEC — Mott Insulator
Quantum Dots

Photons, lons, Atoms, Dots
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BRIEF REVIEW OF QUAN TUM MECHANICS

THIS REVIEW ISNOT MEANTT O BECOMPLETE
(Fora fulla ccount, see references 1 and 2)

CLOSED SYSTEM

OPEN SYSTEM

Pure qu antum state |¥(A))
e.g., Isolated h armoni ¢ oscillator
Solut ion to Schroding er equ ation

0 -
i—|¥)=H|¥
P2 =HI¥)

(Unitary evolution)

Mixed quantum state

De nsity matrix p(A)
e.g.os cillator at finite T (heat bath)
Solut ion to von Neumann equation

_[) — q 07

I e [H ,p]

(Unitary for closed ; non -unitary for
subsy stem evolution )

Density matrix ©: positive, semi

-definite, Hermiti an op erator with unitt race.

> p=10<p<1

If p, =1/N,i=1,2,---, N, chaotic (random ) or noi sy state density matrix : bch

The most general transformat ion

/A?' = Z\Z ;9\7i+’

that maintains the se properties is POV M

VIV =1

Unitary transform ation: special case when i=1:

For a pure state, ,;)2 2/3:> ,(A):|‘P

~

p'=UpU’
(¥

~

For a compo site closed system (A, B), 2(A B) =¥ (A B){¥(A,B)|




Marginal density matrix gives description of system A irrespective of B:
;;( A)=Tr,p(A, B) (in general a mixed state)
Introduction of wave functions as “probability amplitudes”.

SUPERPOSITION PRINCIPLE:

|\P> = al\P1> + bl\P2>’ (‘H | \III> =1 <\P1|‘P2> = K\Pll\PZX exp i¢(12)

(INTERFERENCE)
Expressed in terms of density matrix, this is:

p=ld’ i 10 P+ = forpi(e —p2) 1 p + e}
VTr(am,)

where ab" =|ablexpia and p, =¥ )XW [ (i =1,2).

Trace condition gives

1= + b+ 2allby T, )cos(e— 12))

A more complete discussion of composition law of two pure state density matrices
which are orthogonal to each other, see V. |. Manko et al, PLA 273, 31 (2000) and
quant-ph/0207033 (2002).



Physical quantities are represented by Hermitian operators (have REAL eigenvalues)
(compare classical description using real numbers).

Measurement of two or more physical properties
“commuting” and “non-commuting” operators

“simultaneous measurement of two quantities” & “Uncertainty Principle”.

Outcome of measurement <(5> =Tr ((5 ,(A)] define Aé = (5 —<(5>

1/ ~ - A A
Correlation matrix: Vi :E<AO' AQ; + AO; AC, >

2
Uncertainty Relations:

ViV, ~ Ve = (a6, AG, - 40, A0, )

ij_4

This completes our brief QM review! ANY QUESTIONS???



Classical Information content in astochastic system

P(a,b), > P(a,b)=1
a,b
M argina | prob abil ity distribut ion is giv en by p(a) = Z P(a,b), etc.
b

Classical certaintyi s P(a,b)=1; uUncorrelated systems P(a,b)= p(a)q(b)

A standardm eas ure to examin e statistical correlation between A and B:

Shannonentropy H(A,B)=-> P(a,b)InP(a,b)>0,
And H(A) = - p(a)in p(a)

Comp arisonof twop robab ility densities: Kul Iba ck-Le ibl er relativ e entropy
K(p(A)a(B))= > p(a)log (p(a)a(b))>0
a,b
Uncorr elated syst ems, H (A,B)=H(A)+ H(B) (ADD ITIVE ENT ROPY)

Impo rtant CLASSICA L RESULT: H(A,B)> H(A)or H(B)

fol low s from > (P(a,b)/ p(a))=1=0<(P(a,b)/p(a))<1

Intuitively , Info contentin the comp osite system isalwaysgreater
than in its par ts!

AN IM PO RTA NT ASPEC T OF CL ASSICAL PROBA BILISTIC
CORR ELAT IONS BETWEEN A and B!



In Quantum version,
Von Neumanm entropy S(A,B)= —Trp(A,B)In p(A,B)>0,

and S(A)=-Tr,p(A)In p(A)>0

S(ﬁPure):O S(Iéch)zln N

Uncorr elated (Non -interacting) quantu m systems: p(A, B) = p(A)® o (B)
S(A,B)= S(A)+ S(B) (Addit iveprop erty)

S doesnot chang e under Unitaryt ransformation butdo es under
POVM!

QUAN TUM RESULT IS COUNTER INTUI TIVE

S(A,B)canbe > or < S(A)orS(B)

AN IMP OR TANT ASPECTOFQUAN TUM CO RRELATIONSBETWEEN A and B
BEYOND CLASSICALCOR RELATION !

TWO LESSON S:
(@) CORRE LATIONSBE TW EEN SUBSYSTE MS
(b) IMPORTAN CE OF A ME ASURE TOQ UAN TIFY THEM

Mo tivation for “en tropy ” in quan tum information theory inco mposite systems.

ANY QU ESTION S?



Quantum Theory

Comparison of two density matrices,
Kullback-Leibler Relative Entropy

(oMl o(B))=Trp(Aflogo(A)- logo(B) 20

If the two density matrices have the same domain.

In the respective eigenexpansions of the two density matrices
N
K(p(Alo(B))= kel bf’ p@)log(p@y a(b))=0
a,b

CLASSICAL VERSION does not have the overlap matrix element.



TWO ALTERNATIVE ENTROPY MEASURES

RENYI ENTROPY:

T
S (p) Hp_) o real#

TSALLIS ENTROPY:

q(p)_Tr'O . Q:real#

Both reduce to von Neumann e ntropy when & = 1, gq=1
For uncorrelated bipartite system, IB(A, B)= ,5(A) ® 5—( B):
S (0(A B))= 5, (p(A))+5;(5(B)) (Additive)

S, (A(A,B))=S,(p(A)+ S, (c(B))+ A -a)S; (p(A))S; (¢(B))

(Non-additive)



Non-additive Formulation - Tsallis

Comparison of two density matrices, g-KL entropy
(Abe, AKR) for 0<qg<1

K, (olo)=Tr ,oq(lnq p—In, (T)

1
1-q

ey (90

[1-Trp? o]

Afterusing  (1-x")p=(1-x),(x>0,0<p<1)



Bloch-Sphere Representation of a Quantum Bit

: — Physically implement states usin
Start with one y y1mp J

two-level state

electrons, Cooper pairs, nuclei, etc.

()
} properties of atoms, photons,

Classical state (bit) ‘ >

‘T> North Pole

Quantum state (qubit)

‘¢> South Pole
latitude longitude

M ibl |
twa(l)r-?/esglssstlatgs y)=cos(8/2) ‘ T> +e'’sin(0/2) ‘ ¢>

Superposition Principle

Unitary Evolution .
(processing quantum information) ‘wOut > =U (t) ‘ Win>

Output — Quantum Measurement Input -State Preparation




Data Collection Experiment

P(a,b/A, B)

A (If no communication
between A and B) B
Pla|A,B)= > Pla,bl/A/B -
(a/A.B) 2 (2.b]A.B) No Signaling P(b|A, B) > P(a,b|A, B)
= P(a\A) Condition” _ P(b‘B)
(Einstein)

(R.F. Werner & M.M. Wolf: Qu. Inf. & Comp 1, 1 (2001) )



Construction of Joint Probability for the Data

- HLOCC”
< >

P (a ﬁ) “Local Operations &
Classical Communication”

A
)
S\

P(a,b|A,b)

- > ;H(E)PA(E’" #)Pa(b.2)=P




Definition of Quantum Entanglement

R.F. Werner, Phys. Rev. A40, 4273 (1989)

Then p(A,B) is “separable”

Otherwise (A B) is “entangled”



Quantum Entanglement

Two or more qubits : possibilities of nonlocal correlations

Nonlocal

e.g. “1 light-year”

12 12 1 2
1041 ™) (¢>+¢>]
AN P(1,2))= Mg M)
Pure states \‘P(l,2)>:‘ >j§‘ > | ) 2 > N
“Entangled state” “Separable state” (or unentangled)

p=w(1.2))(y(L2) zggesif;ar;eatrix




Quantum Theory

Celebrated example of entangled states (Bell):

0= (1) £44) 19 = (1) [41)

The pure state density matrices formed from these, all have the same
marginals of the Chaotic form
with marginal entropies, log2. “maximally entangled”.

Several Implications: No cloning theorem; teleportation; quantum
computing algorithms, etc.



Quantum Entanglement

Two or more qubits : possibilities of nonlocal correlations

Mixed state
density matrix

p=% [cos(e)(\ T+ UM + @=sin(@) 1) |+ @+ sin(@)) | T )T

1.0

( @ follows a slice of two-qubit space )

o
oo
I

o
(2}
I

Entanglement as a physical resource | /=>

Entanglement

©
I

Maximally
entangled

©
N

0.0 T T T
0.0 0.5 1.0 1.5\ 2.0

General Transformation: o' = ZVi YA ZViTVi = |

Entanglement Measure : quantitative degree of entanglement
known only for small #’s of qubits or special symmetries.




Entropy Difference for a Werner State

l-«o

i@ Y+ 4T
pW(A,B)—( ; j|2@<>|2+a\\11+><\11+ \‘PJJ )+NT)

Ny

[S(A B)-S(A)]/In2 = {— 3(1‘T“jln(1‘—“ —(1+3“jln(1+3“)— In 2}/In2

4 4

1.0 !
Separable statVv 7 |
(mixed) |
| —
E 05 - i o =0.748
—~ (Peres, | (von
< Exact) i Neumann
N | Entropy)
~ 0.0 |
m Entangled | Separable
$ :::
% |
0.5 | i
|
|
i
|
100 02 04 06 08 10

Bell State

/ (pure)



APPLICATIONS OF NON-EXTENSIVE FORMALISM

Three applications of non-additive formalism to quantum information
theory will be given to demonstrate its usefulness.

The problems chosen are of current interest and the procedures
employed are novel as will be evident presently.

Mostly we will be concerned with Bell entangled states:

@ (A,B)) = % (") £[I)) ¥ (AB)-= %([TQ £[11))

These cannot be written in the form

+b‘¢]



Maximum Tsallis Entropy Method

Quantum Entanglement is non-additive:

Consider EPR pair A, B of spin-1/2 with
Bell, Clauser, Horne, Shimony, Holt (Bell-CHSH)

observable: -~ ~ ~ ~ ~
B :1/5{% X o, +0, Vo,
& in Bell basis this is

B=22{0 X

-l X}

Maximum von Neumann entropy 51[,0] , given constraint of
mean value of this operator

b,=TrpB, 0<b, <242
gave “fake” entanglement (HHH,PRA59, 1799 (1999)



Maximum Tsallis Entropy Method

Kullback-Leibler relative entropy is a measure of diff. between
two density matrices:

Kl(PuPz): Tr ,02(|n Lo — Inpl)2 0
Let ,2)2 maximize S . with two constraints, b1 and another,

then S <SS
This shows that a 2nd constraint resolves the puzzle!

We choose o) =Trp B? . Uncertainty Principle gives o > 2+/2 b,.

Equality gives minimum uncertainty.

Entanglement criterion: Eigenvalues of den.matrix < 1/2 leads to
o, > (8 —2+2 bl)

Power of maxent with appropriate constraints!
AKR, PRAGO, 4338 (1999).



Maximum Tsallis Entropy Method

We now examine the maximum Tsallis entropy
. 1 ~
Sq[p]: 1-q {Tl’p _1}

- Tr(5° Q
subject to normalized g-mean values <Q> _M
of the operators above: d

Uncertainty relation still holds:

0'2 > 24/2 b,



Maximum Nonadditive g-Entropy

g-Entropy Entanglement Condition :

1
O'§+2\/§bq ! 1

>
16(Z,)" 2

Sub-additive :
(@) g=5, (b) g=2, (c)g=1.5

Super-additive :

(d) g=0.9, (e) g=0.5, and (f) g=0.1

S. Abe & A K. Rajagopal PRA 60, 3461 (1999)




g - conditional entropy: entanglement criterion of a Werner state

Def.. Separable state has the form

p(AB)= ;wﬂ p.(A)® p,(B), ;wﬂ =1.

The composite density matrix has marginals

p(A)=Tr,p(AB). p(B)=Tr,p(A B)

Quantum entanglement if

S,(A B)-S, (A)
1+ (1 — q)Sq (A) '

S, (BIA), S,(AB)<0; S,(BA)=

Entanglement criterion for Werner state defined by

1;X Lo, +x|e Wy |

/’}W (A’ B) =
P

Noise



g - conditional entropy: entanglement criterion of a Werner state

The separability criteria known so far of this state are:
(a) Bell inequality x < 1/~2
(b) Renyi entropy (o = 2) X < 1/1/§

(c) Peres criterion (Exact) X <1/3

e now show that the g - conditional entropy for (| — o0
coincides with the Peres condition (c).

NOTE: Necessary & sufficient for 2x2 and 2x3 systems



Nonadditive g-Conditional Entropy

S, (AB)=0
1.0 7 10
O.9i
0.8
0.8 o
0.6
< 0.6 1 )
0.4
6 1 2 é 4 5
| q
04 ............................................................................................ E
3
02 +——————

0 5 10 15 20 25 30 35 40 45 50
q

S. Abe & A.K. Rajagopal, Physica A 289, 157 (2001) (Fig.by Rendell)



q - relative entropy : “fidelity” of a given state

In orderto examine how well one has reached a known target
state, [, ,after obtaining a state 0, ,a measure is introduced

called “fidelity”: o — . =
F[pl’pZ]: {rr(ﬁ P- ﬁ)}

For a pure state target, ,(A)l = |l//><l//|, this becomes

Flo., o, 1={v|p:lw)
Fidelity close to 1 is thus desired !

Kullback-Leibler (KL) relative entropy is a convenient measure
of diff. between two density matrices:

Kl(/;)l’laz): Trlz\)Z(In /;72 — Inlz\)l)z 0

Equality sign is obtained when ,271 = ,2)2 :
If target state is a pure state, KL is undefined.



q - relative entropy to examine the “fidelity” of a given state

This is where the g-KL for 0 < q < 1 becomes useful:

K, p)= o TP G - )]0
In the case when the target state is a pure state as before

1

Kq(bl,|w>(w|)=m

Additive limit g=1 cannot be taken here.

~(wlplp))=0

Example: Degree of purification of a Werner state
(A B):lTxf o1, + x| W]
Here Fidelty — F ={¥ |p,|¥ ) =(1+3x)/4
~ . _ 1
And K, (0w [P )& |):m(1— F*)>0

S. Abe, PRA 68, 032302 (2003)



Concluding Comments

There has been some discussion about Thermodynamics of
Information, in particular Quantum Information. Since there
are hints that qguantum entanglement may not be additive, and
since the concept of entropy has been introduced into the
discussion, Abe and AKR (PRA 60, 3461 (1999)) examined
the maximum g-entropy principle subject to constraints such
as Bell -Clauser-Horne-Shimony-Holt observable, for
inferring quantum entanglement.

They also showed that quantum entanglement can be
quantified by the g-KL entropy.

Our examples illustrate the usefulness of the g-formalism
where g=1 theory is inadequate or unsuitable.

The use of these techniques in quantum computing algorithms
have not yet been explored.



State Property : Entanglement

Example of application : Quantum Computation (QC)

1. State preparation ‘l//in >:‘TTTTTTTT>

2. Unitary evolution (gates)
“computation + error correction” ‘ W out > =U (t) ‘ Vin >
3. Quantum Measurement |::> Output

Role of Entanglement :

» Quantum computation by
focusing ‘many paths’ to
desired result (some
algorithms: factoring, search,
etc.)

 Error correction by
delocalizing within larger
entangled state.

QC algorithms:

Shor’s Factoring (1994), Grover’s Search (1997), van Dam (2000), Hallgren (2002),...

PN

Prime factors of large integers |::> break RSA public key cryptography
Exponential advantage : 250 digits, ~107 years classically; ~ hours by QC

Implementation is demanding : ~ 10> qubits for 250 digit factorization

Require at least ~ 102 qubits to begin useful computations (currently: 7 qubits / NMR)

Error correction / fault tolerance is essential and adds to overhead

More immediate applications of entanglement : quantum cryptography, noise, etc.
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