The Abdus Salam
International Centre for Theoretical Physics

SCHOOL and CONFERENCE on
 COMPLEX SYSTEMS
 and NONEXTENSIVE STATISTICAL MECHANICS

3I July - 8 August 2006

Quantum Information via Non-Additive Entropy
A. K. Rajagopal

Department of Computer Science
George Mason University
Fairfax, VA 22030
and Inspire Institute Inc.
McLean, VA 22IOI

QUANTUM INFORMATION VIA NON-ADDITIVE ENTROPY

A. K. Rajagopal
Department of Computer Science, George Mason University, Fairfax, VA 22030 and Inspire Institute Inc., McLean, VA 22101

Abstract

This lecture will address some issues of quantum information based on the framework of quantum non-additive entropy. This is a four part presentation: (a) General introduction to the issues by discussing known many-body systems; (b) Exposition of basic concepts of quantum theory - uncertainty and superposition principles - in relation to quantum information illustrated in simple discrete systems (spins) leading to notions of separability and entanglement; (c) Quantification of quantum information based on concepts of entropy illustrated with the simple systems discussed in (b) and exhibit implications of non-additive entropy in this connection; and finally (d) Concluding remarks will include topics not covered in this introductory presentation such as continuous systems (light), some open problems and issues as well as current ongoing attempts at practical implementation of these ideas.

Collaborators: Sumiyoshi Abe and Ronald W. Rendell

Interplay of Concepts:

\section*{Quantum Information and Quantum Many-Body Systems
 Quantum Information
 | 1900 | 1900 |
| :--- | :--- |
| 1925 | 1925 |
| $1935 \Leftrightarrow$ | | Entanglement, Cat States (Einstein, Schrödinger) Bell's Inequalities Reversible Computation
 Confirmation of Bell Quantum Simulation Quantum Unitary Gates
 Information

Quanta, (Planck)
Quantized atom
Quantum Mechanics

 Quantum Factoring Algorithm Quantum Search Algorithm Quantum Error Correction Quantum Cryptography
 Experimental QI : Photons, Ions, Atoms, Dots
 Quantum
 Many-Body Systems
 Quanta, (Planck)
 Superconductivity Expt.
 BEC Theory Bosons,
 Helium atom Fermions
 Superfluidity
 Quasiparticles
 BCS Theory
 Laser
 Aharonov-Bohm
 Josephson Effect
 Quantum Hall Effects
 Fractional Charge, Statistics
 Composite Fermions, Bosons
 High-Tc, Cuprates
 Atomic Laser Cooling
 Bose-Einstein Condensates
 EIT, "Slow light"
 BEC - Mott Insulator Quantum Dots}

BRIEF REVIEW OF QUAN TUM MECHANICS

THIS REV IEW IS NOT MEANT T O BE C OMP LETE

(For a full a ccount, see references 1 and 2)

CL OSE D SYSTEM	OPEN SYSTEM
Pure qu antum state $\|\Psi(A)\rangle$	Mixed quantum state
e.g., I solated h armoni c oscillator	De nsity matrix $\hat{\rho}(A)$
Solut ion to Schroding er equation	e.g. os cill ator at finite T (heat bath)
$i \frac{\partial}{\partial t}\|\Psi\rangle=\hat{H}\|\Psi\rangle$	Solut ion to von Ne um ann equation (Unit ary evolution)$\quad i \frac{\partial \hat{\rho}}{\partial t}=[\hat{H}, \hat{\rho}]$
	(Unitary for closed ; non -unit ary for
	subsy stem evolution)

Density matrix $\hat{\rho}$: positive, semi-definite, Hermiti an op erator with unit t race.

$$
\hat{\rho}=\sum_{i} p_{i}|i\rangle\langle i|, \quad \sum_{i} p_{i}=1, \quad 0 \leq p_{i} \leq 1
$$

If $p_{i}=1 / N, i=1,2, \cdots, N$, chao tic (random) or noi sy state density matrix : $\hat{\rho}_{c h}$

The most general transformation that maintains the se properties is POV M

$$
\hat{\rho}^{\prime}=\sum_{i} \hat{V}_{i} \hat{\rho} \hat{V}_{i}^{+}, \quad \sum_{i} \hat{V}_{i}^{+} \hat{V}_{i}=1
$$

Unit ary transform ation: special case when $i=1$:

$$
\hat{\rho}^{\prime}=\hat{U} \hat{\rho} \hat{U}^{+}
$$

For a pure state, $\hat{\rho}^{2}=\hat{\rho} \Rightarrow \hat{\rho}=|\Psi\rangle\langle\Psi|$

For a compo site closed system (A, B), $\hat{\rho}(A, B)=|\Psi(A, B)\rangle\langle\Psi(A, B)|$

Marginal density matrix gives description of system A irrespective of B:

$$
\hat{\rho}(A)=\operatorname{Tr}_{B} \rho(A, B) \text { (in general a mixed state) }
$$

Introduction of wave functions as "probability amplitudes".
SUPERPOSITION PRINCIPLE:

$$
\begin{array}{r}
|\Psi\rangle=a\left|\Psi_{1}\right\rangle+b\left|\Psi_{2}\right\rangle, \quad\left\langle\Psi_{i} \mid \Psi_{i}\right\rangle=1, \quad\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle=\left\langle\Psi_{1} \mid \Psi_{2}\right\rangle \exp i \phi(12) \\
\text { (INTERFERENCE) }
\end{array}
$$

Expressed in terms of density matrix, this is:

$$
\hat{\rho}=\left|\left.\right|^{2} \hat{\rho}_{1}+|b|^{2} \hat{\rho}_{2}+\frac{|a||b|}{\sqrt{\operatorname{Tr}\left(\hat{\rho}_{1} \hat{\rho}_{2}\right)}}\left\{\operatorname{expi}(\alpha-\phi(12)) \hat{\rho}_{1} \hat{\rho}_{2}+\text { h.c. }\right\}\right.
$$

where $a b^{*}=|a b| \operatorname{expi} \alpha \quad$ and $\quad \hat{\rho}_{\mathrm{i}} \equiv\left|\Psi_{i}\right\rangle\left\langle\Psi_{i}\right|(i=1,2)$.
Trace condition gives

$$
1=|a|^{2}+|b|^{2}+2|a||b| \sqrt{\operatorname{Tr}\left(\hat{\rho}_{1} \hat{\rho}_{2}\right)} \cos (\alpha-\phi(12))
$$

A more complete discussion of composition law of two pure state density matrices which are orthogonal to each other, see V. I. Manko et al, PLA 273, 31 (2000) and quant-ph/0207033(2002).

Physical quantities are represented by Hermitian operators (have REAL eigenvalues) (compare classical description using real numbers).

Measurement of two or more physical properties
"commuting" and "non-commuting" operators
"simultaneous measurement of two quantities" \& "Uncertainty Principle".

Outcome of measurement

$$
\langle\hat{O}\rangle \equiv \operatorname{Tr}(\hat{O} \hat{\rho}) ; \text { define } \quad \Delta \hat{O} \equiv \hat{O}-\langle\hat{O}\rangle
$$

$$
V_{i j}=\frac{1}{2}\left\langle\Delta \hat{O}_{i} \Delta \hat{O}_{j}+\Delta \hat{O}_{j} \Delta \hat{O}_{i}\right\rangle
$$

Uncertainty Relations:

$$
V_{i i} V_{j j}-V_{i j}^{2} \geq \frac{1}{4}\left|\left\langle\Delta \hat{O}_{i} \Delta \hat{O}_{j}-\Delta \hat{O}_{j} \Delta \hat{O}_{i}\right\rangle\right|^{2}
$$

This completes our brief QM review!
ANY QUESTIONS???

Classical Information co nt ent in as to chastic sy stem

$$
P(a, b), \quad \sum_{a, b} P(a, b)=1
$$

M argina l prob abil ity distribut ion is giv en by $p(a)=\sum_{b} P(a, b)$, etc.
Classical certaintyi s $P(a, b)=1$; Uncorr elated system s $P(a, b)=p(a) q(b)$

A standardm eas ure to examin e statisticalcor relation between A and B:
Sha nn onent ropy $\quad H(A, B)=-\sum_{a, b} P(a, b) \ln P(a, b) \geq 0$,
A nd

$$
H(A)=-\sum_{a} p(a) \ln p(a)
$$

Comp aris on of twop robab ility densities: Kul lback-Le ibl er relative entropy

$$
\begin{aligned}
& \qquad K(p(A) \mid q(B))=\sum_{a, b} p(a) \log (p(a) / q(b)) \geq 0 \\
& \text { Uncorr elated syst ems, } H(A, B)=H(A)+H(B) \quad(\text { ADD IT IV E E NT ROPY) } \\
& \text { Impo rtant CLASSICA L RESULT: } H(A, B) \geq H(A) \text { or } H(B) \\
& \text { fol low s from } \\
& \qquad \sum_{b}(P(a, b) / p(a))=1 \Rightarrow 0 \leq(P(a, b) / p(a)) \leq 1
\end{aligned}
$$

Intu iti vely, Inf ocontent in the co mposite system is al way greater th an in its p ar ts!

In Quantum version,

Von Ne um ann entropy $S(A, B)=-\operatorname{Tr} \rho(A, B) \ln \rho(A, B) \geq 0$,
and

$$
\begin{aligned}
& S(A)=-\operatorname{Tr}_{A} \rho(A) \ln \rho(A) \geq 0 \\
& S\left(\hat{\rho}_{\text {Pure }}\right)=0 \quad S\left(\hat{\rho}_{c h}\right)=\ln N
\end{aligned}
$$

Uncorr elated (Non -int erac ting) quantu m syst ems: $\hat{\rho}(A, B)=\hat{\rho}(A) \otimes \hat{\sigma}(B)$

$$
S(A, B)=S(A)+S(B) \quad \text { Addit ive prop erty })
$$

S does not chang e under Unitary transformation but do es under POVM!

QUAN TUM RESULT IS COUNTER INTUI TIVE

$$
S(A, B) \text { can be } \geq \text { or } \leq \mathrm{S}(\mathrm{~A}) \text { or } \mathrm{S}(\mathrm{~B})
$$

AN IMP OR TANT ASPECTOFQUAN TUM CO RRELA TI ON S BET WE EN A and B BEYOND CLASSICALCOR RELATION!

TWO LESS ON S:
(a) CORRE LAT IONSBE TW EE N SUB SYSTEMS (b) IM PO RTAN CE OF A ME ASURE TOQ UAN TIFY THEM

Mo tivation for "en tropy" in quan tum information theory in co mpo site sys tems.
ANY QU ESTI ON S?

Quantum Theory

Comparison of two density matrices, Kullback-Leibler Relative Entropy

$$
K(\rho(A) \mid \sigma(B))=\operatorname{Tr} \rho(A)\{\log \rho(A)-\log \sigma(B)\} \geq 0
$$

if the two density matrices have the same domain.

In the respective eigenexpansions of the two density matrices

$$
K(\rho(A) \mid \sigma(B))=\sum_{a, b}^{N} K a|b\rangle^{2} p(a) \log (p(a) \mid q(b)) \geq 0
$$

CLASSICAL VERSION does not have the overlap matrix element.

TWO ALTERNAT IVE EN TROPY MEA SURES

RÉNYI ENTR OPY:

$$
S_{\alpha}^{R}(\hat{\rho})=\frac{\ln \operatorname{Tr}\left(\hat{\rho}^{\alpha}\right)}{1-\alpha}, \quad \alpha: \text { real } \#
$$

TSALLIS ENTR OPY:

$$
S_{q}^{T}(\hat{\rho})=\frac{\operatorname{Tr} \hat{\rho}^{q}-1}{1-q}, \quad q: \text { real } \#
$$

Both reduce to von Neumann e ntropy when $\alpha=1, \quad q=1$

For uncorrelated bipartite system, $\hat{\rho}(A, B)=\hat{\rho}(A) \otimes \hat{\sigma}(B)$:

$$
\begin{aligned}
& S_{\alpha}^{R}(\hat{\rho}(A, B))=S_{\alpha}^{R}(\hat{\rho}(A))+S_{\alpha}^{R}(\hat{\sigma}(B)) \text { (Additive) } \\
& S_{q}^{T}(\hat{\rho}(A, B))=S_{q}^{T}(\hat{\rho}(A))+S_{q}^{T}(\hat{\sigma}(B))+(1-q) S_{q}^{T}(\hat{\rho}(A)) S_{q}^{T}(\hat{\sigma}(B)) \\
& \text { (Non-additive) }
\end{aligned}
$$

Non-additive Formulation - Tsallis

Comparison of two density matrices, q-KL entropy (Abe, AKR) for $0 \leq q \leq 1$

$$
\begin{aligned}
K_{q}(\rho \mid \sigma) & =\operatorname{Tr} \rho^{q}\left(\ln _{q} \rho-\ln _{q} \sigma\right) \\
& =\frac{1}{1-q}\left[1-\operatorname{Tr} \rho^{q} \sigma^{1-q}\right] \\
& =\left.\frac{1}{1-q} \sum_{a, b}\langle K a| b\right|^{2} p(a)\left\lfloor 1-\left(\frac{q(b)}{p(a)}\right)^{1-q}\right\rfloor \geq 0
\end{aligned}
$$

After using

$$
\left(1-x^{p}\right) / p \geq(1-x),(x \geq 0,0<p<1)
$$

Data Collection Experiment

Construction of Joint Probability for the Data

Definition of Quantum Entanglement

R.F. Werner, Phys. Rev. A40, 4273 (1989)

If $\rho(A, B)=\sum_{\lambda} \Pi(\lambda) \rho_{\lambda}(A) \otimes \sigma_{\lambda}(B), \sum_{\lambda} \Pi(\lambda)=1$

Then $\rho(A, B)$ is "separable"

Otherwise $\rho(A, B)$ is "entangled"

Quantum Entanglement

Two or more qubits : possibilities of nonlocal correlations
(x)

Pure states

$$
\begin{aligned}
& \left.|\Psi(1,2)\rangle=\frac{|\uparrow \downarrow\rangle+|\uparrow \uparrow\rangle}{\sqrt{2}}=1 \uparrow\right\rangle \otimes\left(\frac{|\downarrow\rangle+|\uparrow\rangle}{\sqrt{2}}\right) \\
& \left.|\Psi(1,2)\rangle=\frac{|\uparrow \downarrow\rangle+|\uparrow \uparrow\rangle}{\sqrt{2}}=1 \uparrow\right\rangle \otimes\left(\frac{|\downarrow\rangle+|\uparrow\rangle}{\sqrt{2}}\right) \\
& \text { "Separable state" (or unentangled) }
\end{aligned}
$$

$$
\rho=|\psi(1,2)\rangle\langle\psi(1,2)| \quad \begin{aligned}
& \text { Pure state } \\
& \text { density matrix }
\end{aligned}
$$

Quantum Theory

Celebrated example of entangled states (Bell):

$$
\left.\left.\left|\Phi^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(\uparrow \uparrow\rangle \pm|\downarrow \downarrow\rangle\right) \quad\left|\Psi^{ \pm}\right\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow\rangle \pm|\downarrow \uparrow\rangle\right)
$$

The pure state density matrices formed from these, all have the same marginals of the Chaotic form with marginal entropies, log2. "maximally entangled".

Several Implications: No cloning theorem; teleportation; quantum computing algorithms, etc.

Quantum Entanglement

Two or more qubits : possibilities of nonlocal correlations

$\rho=\frac{1}{2}[\cos (\theta)(|\uparrow \downarrow\rangle\langle\downarrow \uparrow|+|\downarrow \uparrow\rangle\langle\uparrow \downarrow) \mid)+(1-\sin (\theta))|\downarrow \uparrow\rangle\langle\downarrow \uparrow|+(1+\sin (\theta))|\uparrow \downarrow\rangle\langle\uparrow \downarrow|]$
Mixed state density matrix
(θ follows a slice of two-qubit space)

Entanglement as a physical resource

General Transformation: $\rho^{\prime}=\sum V_{i} \rho V_{i}^{\dagger}, \quad \sum V_{i}^{\dagger} V_{i}=I$

Entanglement Measure : quantitative degree of entanglement known only for small \#'s of qubits or special symmetries.

Entropy Difference for a Werner State

$$
\begin{gathered}
\rho_{W}(A, B)=\left(\frac{1-\alpha}{4}\right) I_{2} \otimes I_{2}+\alpha\left|\Psi_{+}\right\rangle\left\langle\Psi_{+}\right| \quad\left|\Psi_{+}\right\rangle=\frac{|\uparrow \downarrow\rangle+|\downarrow \uparrow\rangle}{\sqrt{2}} \\
{[S(A, B)-S(A)] / \ln 2=\left\{-3\left(\frac{1-\alpha}{4}\right) \ln \left(\frac{1-\alpha}{4}\right)-\left(\frac{1+3 \alpha}{4}\right) \ln \left(\frac{1+3 \alpha}{4}\right)-\ln 2\right\} / \ln 2}
\end{gathered}
$$

Three applications of non-additive formalism to quantum information theory will be given to demonstrate its usefulness.

The problems chosen are of current interest and the procedures employed are novel as will be evident presently.

Mostly we will be concerned with Bell entangled states:

$$
\left.\left.\left|\Phi^{ \pm}(A, B)\right\rangle=\frac{1}{\sqrt{2}}(\uparrow \uparrow\rangle \pm|\downarrow \downarrow\rangle\right)\left|\Psi^{ \pm}(A, B)\right\rangle=\frac{1}{\sqrt{2}}(\uparrow \downarrow\rangle \pm|\downarrow \uparrow\rangle\right)
$$

These cannot be written in the form

$$
\left(a_{1}|\uparrow\rangle+a_{2}|\downarrow\rangle\right) \otimes\left(b_{1}|\uparrow\rangle+b_{2}|\downarrow\rangle\right)
$$

Maximum Tsallis Entropy Method

Quantum Entanglement is non-additive:
Consider EPR pair A, B of spin-1/2 with
Bell, Clauser, Horne, Shimony, Holt (Bell-CHSH) observable:

$$
\hat{B}=\sqrt{2}\left\{\hat{\sigma}_{A x} \otimes \hat{\sigma}_{B x}+\hat{\sigma}_{A z} \otimes \hat{\sigma}_{B z}\right\}
$$

\& in Bell basis this is

$$
\hat{B}=2 \sqrt{2}\left\{\left|\Phi^{+} X / \Phi^{+}\right|-\left|\Psi^{-} X / \Psi^{-}\right|\right\}
$$

Maximum von Neumann entropy $S_{1}[\rho]$, given constraint of mean value of this operator

$$
b_{1}=\operatorname{Tr} \hat{\rho} \hat{B}, \quad 0 \leq b_{1} \leq 2 \sqrt{2}
$$

gave "fake" entanglement (HHH,PRA59, 1799 (1999)

Maximum Tsallis Entropy Method

Kullback-Leibler relative entropy is a measure of diff. between two density matrices:

$$
K_{1}\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right)=\operatorname{Tr} \hat{\rho}_{2}\left(\ln \hat{\rho}_{2}-\ln \hat{\rho}_{1}\right) \geq 0
$$

Let $\hat{\rho}_{2}$ maximize S_{1} with two constraints, b_{1} and another,
then $\quad S_{2} \leq S_{1}$
This shows that a 2 nd constraint resolves the puzzle!
We choose $\quad \sigma_{1}^{2}=\operatorname{Tr} \hat{\rho} \hat{B}^{2}$. Uncertainty Principle gives $\sigma_{1}^{2} \geq 2 \sqrt{2} b_{1}$.
Equality gives minimum uncertainty.
Entanglement criterion: Eigenvalues of den.matrix $<1 / 2$ leads to

$$
\sigma_{1}^{2}>\left(8-2 \sqrt{2} b_{1}\right)
$$

Power of maxent with appropriate constraints! AKR, PRA60, 4338 (1999).

Maximum Tsallis Entropy Method

We now examine the maximum Tsallis entropy

$$
S_{q}[\hat{\rho}]=\frac{1}{1-q}\left\{\operatorname{Tr} \hat{\rho}^{q}-1\right\}
$$

subject to normalized q-mean values of the operators above:

$$
\langle\hat{Q}\rangle_{q} \equiv \frac{\operatorname{Tr}\left(\hat{\rho}^{q} \hat{Q}\right)}{\operatorname{Tr}\left(\hat{\rho}^{q}\right)}
$$

$$
\begin{aligned}
& b_{q}=\langle\hat{B}\rangle_{q} ; \quad 0 \leq b_{q} \leq 2 \sqrt{2} \\
& \sigma_{q}^{2}=\left\langle\hat{B}^{2}\right\rangle_{q} ; \quad \sigma_{q}^{2} \leq 8
\end{aligned}
$$

Uncertainty relation still holds:

$$
\sigma_{q}^{2} \geq 2 \sqrt{2} b_{q}
$$

(c)

(d)

q-Entropy Entanglement Condition :

$$
\left[\frac{\sigma_{q}^{2}+2 \sqrt{2} b_{q}}{16\left(Z_{q}\right)^{q-1}}\right]^{1 / q}>\frac{1}{2}
$$

Sub-additive :

(a) $q=5$, (b) $q=2$, (c) $q=1.5$

Super-additive :

(d) $q=0.9$, (e) $q=0.5$, and (f) $q=0.1$
S. Abe \& A.K. Rajagopal PRA 60, 3461 (1999)

Def.: Separable state has the form

$$
\rho(A, B)=\sum_{\lambda} w_{\lambda} \rho_{\lambda}(A) \otimes \rho_{\lambda}(B), \quad \sum_{\lambda} w_{\lambda}=1
$$

The composite density matrix has marginals

$$
\hat{\rho}(A)=\operatorname{Tr}_{B} \hat{\rho}(A, B), \quad \hat{\rho}(B)=\operatorname{Tr}_{A} \hat{\rho}(A, B)
$$

Quantum entanglement if

$$
S_{q}(B \mid A), S_{q}(A \mid B)<0 ; \quad S_{q}(B \mid A)=\frac{S_{q}(A, B)-S_{q}(A)}{1+(1-q) S_{q}(A)}
$$

Entanglement criterion for Werner state defined by

$$
\begin{aligned}
& \hat{\rho}_{W}(A, B)=\frac{1-x}{4} \hat{I}_{A} \otimes \hat{I}_{B}+x\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right| \\
& \text {Noise }
\end{aligned}
$$

q-conditional entropy: entanglement criterion of a Werner state

The separability criteria known so far of this state are:
(a) Bell inequality

$$
x<1 / \sqrt{2}
$$

(b) Renyi entropy $(\alpha=2) \quad x<1 / \sqrt{3}$
(c) Peres criterion (Exact) $\quad x<1 / 3$

We now show that the q-conditional entropy for $\quad q \rightarrow \infty$
coincides with the Peres condition (c).

NOTE: Necessary \& sufficient for $2 x 2$ and $2 x 3$ systems

Nonadditive q-Conditional Entropy

$$
S_{q}(A \mid B)=0
$$

(Fig.by Rendell)

q - relative entropy : "fidelity" of a given state

In order to examine how well one has reached a known target state, ρ_{1}, after obtaining a state ρ_{2}, a measure is introduced called "fidelity":

$$
F\left[\hat{\rho}_{1}, \hat{\rho}_{2}\right]=\left\{\operatorname{Ir}\left(\sqrt{\hat{\rho}_{1}} \hat{\rho}_{2} \sqrt{\hat{\rho}_{1}}\right)\right\}
$$

For a pure state target, $\hat{\rho}_{1}=|\psi\rangle\langle\psi|$, this becomes

$$
F\left[\hat{\rho}_{1}, \hat{\rho}_{2}\right]=\langle\psi| \hat{\rho}_{2}|\psi\rangle
$$

Fidelity close to 1 is thus desired !
Kullback-Leibler (KL) relative entropy is a convenient measure of diff. between two density matrices:

$$
K_{1}\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right)=\operatorname{Tr} \hat{\rho}_{2}\left(\ln \hat{\rho}_{2}-\ln \hat{\rho}_{1}\right) \geq 0
$$

Equality sign is obtained when

$$
\hat{\rho}_{1}=\hat{\rho}_{2} .
$$

If target state is a pure state, KL is undefined.
q - relative entropy to examine the "fidelity" of a given state

This is where the $q-K L$ for $0<q<1$ becomes useful:

$$
K_{q}\left(\hat{\rho}_{1}, \hat{\rho}_{2}\right)=\frac{1}{1-q} \operatorname{Tr}\left[\hat{\rho}_{1}^{q}\left(\hat{\rho}_{1}^{1-q}-\hat{\rho}_{2}^{1-q}\right)\right] \geq 0
$$

In the case when the target state is a pure state as before

$$
K_{q}\left(\hat{\rho}_{1},|\psi\rangle\langle\psi|\right)=\frac{1}{1-q}\left(1-\langle\psi| \hat{\rho}^{q}|\psi\rangle\right) \geq 0
$$

Additive limit $q=1$ cannot be taken here.
Example: Degree of purification of a Werner state

$$
\hat{\rho}_{W}(A, B)=\frac{1-x}{4} \hat{I}_{A} \otimes \hat{I}_{B}+x\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|
$$

Here Fidelity

$$
F=\left\langle\Psi^{-}\right| \hat{\rho}_{W}\left|\Psi^{-}\right\rangle=(1+3 x) / 4
$$

And

$$
K_{q}\left(\hat{\rho}_{w},\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|\right)=\frac{1}{1-q}\left(1-F^{q}\right) \geq 0
$$

Concluding Comments

There has been some discussion about Thermodynamics of Information, in particular Quantum Information. Since there are hints that quantum entanglement may not be additive, and since the concept of entropy has been introduced into the discussion, Abe and AKR (PRA 60, 3461 (1999)) examined the maximum q-entropy principle subject to constraints such as Bell-Clauser-Horne-Shimony-Holt observable, for inferring quantum entanglement.

They also showed that quantum entanglement can be quantified by the $q-K L$ entropy.

Our examples illustrate the usefulness of the q-formalism where $q=1$ theory is inadequate or unsuitable.

The use of these techniques in quantum computing algorithms have not yet been explored.

State Property : Entanglement

Role of Entanglement :

- Quantum computation by focusing 'many paths' to desired result (some algorithms: factoring, search, etc.)
- Error correction by delocalizing within larger entangled state.

QC algorithms:
Shor's Factoring (1994), Grover's Search (1997), van Dam (2000), Hallgren (2002), ...

Prime factors of large integers \square break RSA public key cryptography
Exponential advantage : 250 digits, $\sim 10^{7}$ years classically; \sim hours by QC

Implementation is demanding : $\sim 10^{5}$ qubits for 250 digit factorization
Require at least $\sim 10^{2}$ qubits to begin useful computations (currently: 7 qubits / NMR)
Error correction / fault tolerance is essential and adds to overhead

More immediate applications of entanglement : quantum cryptography, noise, etc.

SOME REFERENCES:

(1) A. Peres, Quantum Theory: Concepts and Methods (Kluwer Academic Publishers, The Netherlands) (1993)
(2) M. A. Nielsen and I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University Press, U.K.) (2000)
(3) Most of the references are in a recent review of some of these issues discussed here: A. K. Rajagopal and R. W. Rendell, Europhysics News, 36, 221 (2005).
(4) There are two additional references that discuss entropic relations and entropy:
K. G. H. Vollbrecht and M. M. Wolf, J. Math. Phys. 43, 4299 (2002);
O. Guhne and M. Lewenstein, Phys. Rev. A 70, 022316 (2004).
5. Comprehensive reviews of various approaches to quantum entanglement have just appeared: K. Zyczkowski and I, Bengtsson, quant-ph/0606228 (2006) and M. B. Plenio and S. Virmani, quant-ph/0504163 v3 (2006)

