

The Abdus Salam International Centre for Theoretical Physics

SMR.1763-3

SCHOOL and CONFERENCE on COMPLEX SYSTEMS and NONEXTENSIVE STATISTICAL MECHANICS

31 July - 8 August 2006

Momentum Distributions in Astrophysical Plasmas

P. QUARATI

Dipartimento di Fisica Politecnico Torino Italy

Momentum Distributions in Astrophysical Plasmas

P. Quarati^{1,2}, M. Coraddu², F. Ferro^{1,3} and G. Maero⁴ piero.quarati@polito.it

¹Politecnico di Torino - Dipartimento di Fisica

²INFN - Sezione di Cagliari

³INFN - Sezione di Torino

⁴Gesellschaft für Schwerionenforschung (GSI), Darmstadt, Germany

Trieste, 2006

- Non-resonant nuclear reactions in stars
- Resonant reactions in stars
- Radiative Recombination (RR) in stars
- Dielectronic recombination (DR)
- Deuteron-deuteron fusion reactions in deuterated metals with deuteron beams

Only very few particles responsible of energy production

- Coulomb repulsion makes fusion difficult
- Tunnel effect (Gamow peak)
- Rate very sensitive to the tail of the distribution
- Small enhancement or depletion leads to major consequences on rates
- Experiments on light ion fusion at Gran Sasso Lab

Described by a Lorentzian cross section

- Rate sensitive to position and width of the resonance with respect to the Gamow peak
- Careful evaluation of $f(E_R)$ close to resonance required
- Small changes from MB lead to great discrepancies (much more than for non-resonant reactions)
- Studied in Lab, although measures are prohibitively difficult at stellar temperatures (< 1 MeV)

Radiative Recombination (RR) in Stars (Atomic)

Acts among electrons and ions in stellar systems $A^{Z+} + e^- \rightarrow A^{(Z-1)+} + h\nu$

- Can be studied in cooling devices in storage rings
- Non-resonant process: high at $E_R \rightarrow 0$
- Very sensitive to the head of distribution

Dielectronic Recombination (DR) (Atomic)

Resonant process in star atmospheres and storage rings¹

$$A^{Z+} + e^- \rightarrow (A^{(Z-1)+})^* \rightarrow A^{(Z-1)+} + h\nu$$

The rate depends on:

- DR peaks' position with respect to temperature
- Head and cutoff of the distribution (for $T < 100 \,\mathrm{eV}$)
- Complicated atomic structure
 - 21 resonances for C^{3+} between $0.2 \div 0.6 \,\mathrm{eV}^{-2}$

Transfer of information from Lab experiment to astrophysical plasmas complicated because:

- In Lab, plasmas **are not** in a global equilibrium state
- Stellar plasmas are in other stationary states
- Hypothesis that everything is Maxwellian hardly verified

¹E.Schmidt *et al.*, ApJ **641** (2006) 157; N.Bandell, astro-ph/0607412 ²S.Mannervik *et al.*, PRL **81** (1998) 313

Deuteron-Deuteron Fusion Reactions in Metals

- Accelerated deuteron beams against deuterated metal matrix
- Very important for applications
- Related to problem of hydrogen stocking in cells

Experimental increase (Bochum) not explained by atomic screening or other classical effects³

- Energy-momentum uncertainty increases the $f(E_R)$ tail
- Looks like a non-extensive deformation, although it is a quantum effect
- The energy-momentum dispersion is Lorentzian
- Enhancement if deformation close to Lorentzian peak

³F.Raiola *et al.*, EPJ A **19** (2004) 283

Approach for Treating the Previous 5 Problems

Usually it is based on assumptions of:

- Global or local thermodynamical equilibrium (TE, LTE)
- Maxwellian distribution of particles (also when radiation is not described by a Planck distribution)

MB is a good approximation for describing the 5 problems

Let us consider the Sun

After solving the neutrino oscillation puzzle:

- We forgot about **structural problems**, still to be solved
- We forgot the problem of choosing a suitable distribution function f(v)

The Solar Model Problem resurrected⁴

⁴M.A.Asplund *et al.*, Nature **436** (2005) 525

For passing from MB to another distribution with more particles either in the head or in the tail we must:

- either receive energy from the system
- or give energy

If the system is isolated this energy is *exchanged with the* system itself owing to

- **correlations** among particles (non-linearizable effects)
- presence of an internal finite energy bath (related to a cutoff in the distribution)

Reasons for Choosing a Slightly Deformed Maxwellian

In addition to experimental facts, other few reasons call for a deformed Maxwellian distribution:

- Electric *microfields*
- Correlations
- Fluctuations
- Random forces
- Light elements admixture: knock-on perturbations of ion distributions caused by close collisions with fusion products⁵

All previous effects are non-linearizable!

A departure from TE and LTE can go towards **Non-Extensive (NE) generalized statistics**

⁵N.Nakamura, physics/0607127

Stationary Distribution Function Under Random Forces

We start from a kinetic equation in presence of an external/internal random force \mathcal{F} , with collision frequency ν :

$$\pm \frac{2}{3} \frac{\mathcal{F}^2}{\mu^2 \nu^2} \frac{\mathrm{d}f}{\mathrm{d}\nu} + \kappa \left(\nu f + \frac{k_\mathrm{B}T}{\mu} \frac{\mathrm{d}f}{\mathrm{d}\nu}\right) = 0$$
$$f(\nu) \propto \exp\left[-\int_0^\nu \mathrm{d}\nu' \frac{\mu \nu'}{k_\mathrm{B}T \pm \frac{2}{3} \frac{\mathcal{F}^2}{\mu \kappa \nu^2}}\right]$$

- \mathcal{F} due to electric *microfields* or random forces
- $\nu^2 \equiv \nu_0^2 + \nu_1^2 + \nu_2^2 + \dots$ if many competing interactions are present
- \pm due to sub-/super-diffusivity

 $\nu(\mathbf{v}) \equiv \mathbf{n}\mathbf{v}\sigma(\mathbf{v})$

- $\sigma_0(v) = \alpha_0 v^{-1}$: interaction between and ion and an induced-dipole
 - gives MB even in the presence of the external fi eld ${\cal F}$
- $\sigma_1(v) = \alpha_1$: reinforced Coulomb interaction
- $\sigma_2(v) = \alpha_2 v$: we shall show it is related to quantum effect

The Long-Life Stationary State $(\frac{T_{eff}}{T} \leq \frac{\alpha_1^4}{4\alpha_2^2\alpha_2^2})$

$$f(v) \propto \exp\left(-rac{\mu v^2}{2k_{
m B}T}
ight) imes \left(rac{2c_2v^2 + c_1 - 2\sqrt{|K|c_2}}{2c_2v^2 + c_1 + 2\sqrt{|K|c_2}}
ight)^{rac{\mu \tau}{4k_{
m B}T\sqrt{|K|c_2}}}$$

•
$$c_1 \equiv \left(\frac{\alpha_1}{\alpha_0}\right)^2$$
 and $c_2 \equiv \left(\frac{\alpha_2}{\alpha_0}\right)^2$
• $\tau \equiv T_{\text{eff}}/T - 1$ and $K \equiv -\frac{c_1^2}{4c_2} + \tau + 1$
• $k_{\text{B}}T_{\text{eff}} = k_{\text{B}}T \pm \frac{2}{3}\frac{\mathcal{F}^2}{\kappa\mu n^2\alpha_0^2}$

Useful, for instance, for low-energy atomic physics

The Long-Life Stationary State $(\frac{T_{eff}}{T} > \frac{\alpha_1^4}{4\alpha_0^2\alpha_2^2})$

$$f(\varepsilon_{\rho}) \propto \exp\left[-\frac{\varepsilon_{\rho}}{k_{\rm B}T_{\rm eff}}\right] \exp\left[-\delta\left(\frac{\varepsilon_{\rho}}{k_{\rm B}T_{\rm eff}}\right)^{2}\right] \exp\left[-\gamma\left(\frac{\varepsilon_{\rho}}{k_{\rm B}T_{\rm eff}}\right)^{3}\right]$$
$$\delta = \pm \frac{2}{3} \frac{\mathcal{F}^{2}}{\kappa\mu^{2}n^{2}} \frac{\alpha_{1}^{2}}{\alpha_{0}^{4}}$$
$$\gamma = \pm \frac{8}{9} \frac{\mathcal{F}^{2}k_{\rm B}T}{\kappa\mu^{3}n^{2}} \frac{\alpha_{2}^{2}}{\alpha_{0}^{4}} \left(1 - \frac{\alpha_{1}^{4}}{\alpha_{0}^{2}\alpha_{2}^{2}}\right) + \frac{16}{27} \frac{\mathcal{F}^{4}}{\kappa^{2}\mu^{4}n^{4}} \frac{\alpha_{2}^{2}}{\alpha_{0}^{6}}$$

- δ -exp (Druyvenstein): if $\varepsilon_{p} \sim k_{\rm B} T_{\rm eff} / |\delta|$
- γ -exp: if $\varepsilon_{p} \sim |\delta/\gamma| k_{\rm B} T_{\rm eff}$

Connection with Non-Extensive Statistics

Our $f(\varepsilon_p)$ reduces to the NE distribution:

• In the limit $(q-1)\frac{\varepsilon_p}{k_{\rm B}T_{\rm eff}} \to 0$

• With the position
$$\delta = (1 - q)/2$$

• $q = 1 \mp \frac{4}{3} \frac{\mathcal{F}^2}{\kappa \mu^2 n^2} \frac{\alpha_1^2}{\alpha_0^4}$

In the case of the electric microfields we get $\delta \simeq 12\Gamma^2 \alpha^4$:

- Γ , plasma parameter (generally $\Gamma \lesssim 1$ or $\Gamma \geq 1$)
- $0.4 < \alpha < 1$ (for dense stellar plasmas)
 - α parameter related to ion-ion correlation function

The quantum energy-momentum uncertainty with a Lorentz dispersion $\mathcal{D}(E, \varepsilon_p)$ gives a power-like tail on the $f(\varepsilon_p)$ distribution

$$\begin{split} f(\varepsilon_{p}) &\equiv \int \mathrm{d}\varepsilon \mathcal{D}(\varepsilon, \varepsilon_{p}) \propto \frac{\sqrt{\varepsilon_{p}}}{(k_{\mathrm{B}}T)^{3/2}} \left[\exp\left(-\frac{\varepsilon_{p}}{k_{\mathrm{B}}T}\right) + \mathrm{const} \cdot \frac{(k_{\mathrm{B}}T)^{3/2}}{\varepsilon_{p}^{4}} \right] \\ f(\varepsilon_{p}) &\sim f_{MB}(\varepsilon_{p}) + \mathrm{const} \cdot \frac{\sqrt{\varepsilon_{p}}}{(k_{\mathrm{B}}T)^{3/2}} \frac{(k_{\mathrm{B}}T)^{3/2}}{\varepsilon_{p}^{4}} \end{split}$$

This behaviour is obtained from the kinetic equation if $\sigma_2 \propto \sqrt{\varepsilon_p}$ is assumed

From Which Interaction Does $\sigma_2 \propto \sqrt{\varepsilon_p}$ Come?

From a dimensional analysis, the interaction that hypothetically links quantum and non-extensive effects is tidal-like

$$F_{Q}(r) = f_{Q_0}\left(rac{r}{R_0}
ight)^3$$
 $r \leq R_0$

Assuming:

- An entropic parameter $q \sim 0.1$
- A proton plasma
- Density $n \approx 10^{-14} \, \mathrm{fm}^{-3}$
- $R_0 \approx 10^5 \,\mathrm{fm}$

We obtain
$$f_{Q_0} \approx 10^{-12} \, \mathrm{MeV/fm}$$

Non-Extensive Approach to Non-Resonant Fusion Reactions in the Sun

Schism between helioseismology and models with revised composition arise because:

- Abundant elements (C, N, O, Ne) provide major contributions to the opacity of the solar interior
- This in turn influences internal the structure and the depth at which the interior becomes convective

Problems with SSM:

- Revision of abundances
- Neutrino fluxes $(B^8, Be, hep)^6$
- CNO flux

Little cracks in the solar neutrino physics?⁷

⁶B.Aharmin *et al.* (SNO), hep-ex/0607010 ⁷G.Fogli *et al.*, hep-ph/0605186

P. Quarati, M. Coraddu, F. Ferro and G. Maero Momentum Distributions in Astrophysical Plasmas

Represents the frequency of fusion reactions occurring among the nuclear species *i* and *j*

$$r_{ij} = \frac{N_i N_j \langle v\sigma \rangle_f}{1 + \delta_{ij}} = \frac{N_i N_j}{1 + \delta_{ij}} \int_0^{+\infty} f(E) v(E) \sigma(E) dE$$

- N: Number density
- $\langle v\sigma \rangle$: Thermal average
- f(E): Distribution function
- v(E): Relative velocity of reacting nuclei
- $\sigma(E)$: Reaction cross section

Thermonuclear Reaction Cross Section

$$\sigma(E) = \frac{S(E)}{E} \exp\left(-bE^{-1/2}\right)$$

• $\exp\left(-bE^{-1/2}\right)$: Coulomb tunnelling factor

•
$$b=\sqrt{2\mu_{ij}}\pi Z_i Z_j \mathrm{e}^2/\hbar$$

- μ_{ij} : reduced mass
- Z: atomic number
- S(E): astrophysical factor
 - contains the details of the reaction matrix element
 - experimentally measured for many reactions

The Astrophysical Factor S(E)

• For non-resonant reactions (e.g. *pp* reaction):

 $S(E) \sim \text{const}$

• For resonant reactions (e.g. ${}^{12}C + p \rightarrow {}^{13}N + \gamma$):

$$S(E) = \frac{\pi}{2} \omega_{ij} \frac{\hbar^2}{\mu_{ij}} \frac{\Gamma_{in} \Gamma_{out}}{(E - E_R)^2 + (\Gamma_T/2)^2}$$

- E_R : Resonance energy
- Γ_T : Total resonance width
- Γ_{in} , Γ_{out} : Input and output channel widths
- ω_{ij} : Quantum statistical weighting factor

The Energy Distribution Function f(E)

• For plasmas in a Global Thermodynamical Equilibrium (GTE):

• Maxwell-Boltzmann (MB):

$$f_{MB}(E) = rac{2}{\pi^{1/2}} rac{E^{1/2}}{(k_{\rm B}T)^{3/2}} \exp\left(-rac{E}{k_{\rm B}T}
ight)$$

- For plasmas in a Metaequilibrium State:
 - Generalized statistical theories (e.g. non-extensive Tsallis-Clayton):

$$f_{NE}(E) \propto \left[1 - (1 - q) rac{E}{k_B T}
ight]^{rac{1}{1 - q}} \sim f_{MB}(E) \cdot \exp\left[-\delta \left(rac{E}{k_B T}
ight)^2
ight]$$

• $\delta \sim (1 - q)/2$, for small deformations

The integrand of the thermal average in MB case is:

$$v(E)\sigma(E)f(E) \propto S(E) \cdot \exp\left(-\frac{E}{k_BT} - \frac{b}{\sqrt{E}}\right)$$

For non-resonant reactions, it shows a rather narrow peak at:

- $E_G = (bk_BT/2)^{2/3}$ (MB case)
- $\widetilde{E}_G \approx E_G \cdot [1 4\delta E_G / (3k_B T)]$ (NM case)
- Only very few particles responsible of energy production in astrophysical plasmas

The Gamow Peak

Non-Resonant Reaction Rate

• The Maxwell-Boltzmann rate (MB)

$$r_{ij}^{M}[NR] = \frac{2^{5/2}}{3^{1/2}} N_{i} N_{j} \mu_{ij}^{-1/2} \frac{S(E_{G})}{(k_{B}T)^{1/2}} \left(\frac{E_{G}}{k_{B}T}\right)^{1/2} \exp\left(-\frac{3E_{G}}{k_{B}T}\right)$$

. ...

• The non-extensive rate (NM)

$$\begin{cases} r_{ij}^{NM}[NR] = r_{ij}^{M}[NR] \cdot \frac{S(\widetilde{E}_{G})}{S(E_{G})} \left(1 + \frac{15}{4}\delta - \frac{7}{3}\delta\frac{E_{G}}{k_{B}T}\right) \exp(-\Delta_{ij}) \\ \Delta_{ij}(\delta, \widetilde{E}_{G}) = -\frac{3E_{G}}{k_{B}T} \left[1 - \left(1 + \frac{5}{3}\delta\frac{\widetilde{E}_{G}}{k_{B}T}\right) \left(1 + 2\delta\frac{\widetilde{E}_{G}}{k_{B}T}\right)^{-2/3}\right] \end{cases}$$

Why Using Generalized Statistics in Astrophysical Systems?

Ideal hypotheses:

- purely binary collisions
- instantaneous collisions
- olilute plasma
- Markovian system
- no correlations
- ፩ Γ≪1

Real conditions:

- many-body collisions
- 2 dense plasma
- memory effects
- weakly-coupled plasma

Neutrino Luminosity Constraint

From experiments and the SSM we get the upper limit

$$\left(\frac{L_{CNO}}{L_{\odot}}\right)_{max} \simeq 7.3\%$$

The NE luminosity reads:

$$(\Phi_{CNO}^{max})_{NM} \equiv (\Phi_{CNO}^{max})_{M} \exp(-338.5\delta)$$

$$(\Phi_{CNO}^{max})_M \simeq 2.49 \cdot 10^9 \, \mathrm{cm}^{-2} \mathrm{s}^{-1}$$

This imposes an **upper limit** to the deformation:

 $|\delta| \simeq 0.0045 \qquad \Longleftrightarrow \qquad 0.991 \lesssim q \lesssim 1.009$

Narrow Resonances at Low Energy (r)

$$\begin{cases} E_R \approx E_G \\ \Gamma_T \ll E_R \end{cases}$$

 Only the cross section around the resonance contributes to the rate

$$r_{ij}[r] \approx N_i N_j f(E_R) v(E_R) \int_0^{+\infty} \sigma(E) dE$$

• The Maxwell-Boltzmann rate:

$$r_{ij}^{MB}[r] = (2\pi)^{3/2} N_i N_j \frac{\hbar^2}{(\mu_{ij} k_B T)^{3/2}} \frac{\Gamma_{in}(E_R) \Gamma_{out}}{\Gamma_T} \exp\left(-\frac{E_R}{k_B T}\right)$$

• The non-extensive rate:

$$r_{ij}^{NM}[r] = r_{ij}^{MB}[r] \left(1 + \frac{15}{4}\delta\right) \exp\left[-\delta\left(\frac{E_R}{k_BT}\right)^2\right]$$

Wide Resonances at Higher Energy (R)

 $\begin{cases} E_R > E_G & \text{(or } E_R \gg E_G) \\ \Gamma_T > E_G \end{cases}$

- The reaction occurs in the low energy tail of the resonance
- The Breit-Wigner formula expresses the S-factor at E_G
- The Maxwell-Boltzmann rate:

$$r_{ij}^{MB}[R] = \frac{2^{3/2}\pi}{3^{1/2}} \frac{N_i N_j \hbar^2 E_G^{1/2}}{\mu_{ij}^{3/2} k_B T} \frac{\Gamma_{in} \Gamma_{out}}{(E_G - E_R)^2 + (\Gamma_T/2)^2} \exp\left(-\frac{3E_G}{k_B T}\right)$$

The non-extensive rate:

$$r_{ij}^{NM}[R] \approx r_{ij}^{MB}[R] \left[1 + \frac{15}{4}\delta - \frac{7}{3}\delta \frac{E_G}{k_B T} + \frac{8}{3} \frac{(E_G - E_R)E_G}{(E_G - E_R)^2 + \Gamma_T^2/4} \delta \frac{E_G}{k_B T} - \left(\frac{E_G}{k_B T}\right)^2 \delta \right]$$

The CNO-Cycle Scheme

$$\begin{cases} {}^{12}C(p,\gamma){}^{13}N(e^+\nu_e){}^{13}C \\ {}^{13}C(p,\gamma){}^{14}N \\ {}^{14}N(p,\gamma){}^{15}O(e^+\nu_e){}^{15}N \\ {}^{15}N(p,\alpha){}^{12}C \end{cases}$$

Physically equivalent to

$$X + 4p \rightarrow X + \alpha + 2e^+ + 2\nu_e + 25MeV$$

- ${}^{14}N(p,\gamma){}^{15}O$ is the slowest⁸
- ${}^{12}C(p,\gamma){}^{13}N$ resonant at $E_R \simeq 460 \text{keV}$
- ¹⁴ $N(p, \gamma)^{15}O$ resonant at $E_R \simeq 278 \text{keV}$

⁸A. Lemut *et al.* (LUNA), PLB **634** (2006) 483; G. Imbriani *et al.* (LUNA), Astron. Astrophys. **420** (2004) 625

P. Quarati, M. Coraddu, F. Ferro and G. Maero

Non-Extensive Approach to CNO-Cycle Reactions

The star luminosity ratio L/L_{\odot} versus plasma temperature $(q = 0.991 \div 1.009)$

- Larger NE effects on CNO than on pp
- Only slight deformations allowed in the Sun
- CNO provides nearly all luminosity at higher T

C, N, O Concentrations at Equilibrium

A slight deformation modifies the nuclide concentrations without affecting the bulk properties of the stellar system

P. Quarati, M. Coraddu, F. Ferro and G. Maero

Momentum Distributions in Astrophysical Plasmas

- Occurs in white dwarfs
 - $M \simeq 1.4 M_{\odot}$
 - $ho \simeq 10^9 \, {
 m g/cm}^3$
 - Γ ~ 5
- Ignition temperature $T \sim 10^8 \, {
 m K}$
- Experimental cross section resonant at E = 2.4 MeV and possibly also far below
 - $\Gamma_{in}(E_R) \ll \Gamma_T \ll E_R$
- Screening effects
- Big NE corrections!

$$A^{Z+} + e^- \rightarrow A^{(Z-1)+} + h\nu$$

Only recombination channel with naked ions!

$$\sigma_n^{RR}(E_k) = 2.10 \cdot 10^{-22} \cdot g_n(E_k) \cdot \frac{Z^4 E_{1s}^2}{nE_k(Z^2 E_{1s} + n^2 E_k)} [\text{cm}^2]$$

$$\alpha^{RR} \propto \int_0^{+\infty} f(E_k) \sigma_{tot}^{RR}(E_k) \sqrt{E_k} \, \mathrm{d}E_k$$

- Is the usual assumption $f = f_{MB}$ correct? \implies experiments at storage rings
- In electron coolers, cold parallel electron beam merged with a hot ion beam, along B-field lines ("freezing" of radial motion)

Experimental Results on Radiative Recombination

• Different conditions in experiments imply isotropic $f_{MB} \implies$ anisotropic (flattened) f_{MB} :

$$f(E) = rac{m}{2\pi kT_{\perp}} \left(rac{m}{2\pi kT_{\parallel}}
ight)^{rac{1}{2}} imes 1 i$$

^aA. Hoffknecht *et al.*, arXiv: physics/0003088 v1 (2000)

• Approaching zero relative E_k , α^{RR} increases more than predicted (RR enhancement); no complete theoretical explanation

Explanations and Non-Extensive Approach

Note: α^{RR} is theoretically calculated in free space, but in experimental conditions, external forces ($\overrightarrow{E}, \overrightarrow{B}$ field)!

$$\Delta lpha^{RR} \propto Z^{2.5} B^{0.5} T_{\perp}^{-1.0} T_{\parallel}^{-0.3} \equiv \left| f(Z, B, T_{\perp}, T_{\parallel}) \right|^{-9}$$

 α^{RR} sensitive to low relative energy particle, i.e. head of the distribution $\implies f_q$ with q < 1; in the isotropic case:

$$\alpha_q^{RR} = B_q \frac{1}{(Mc^2)^2} c^4 \int_0^{E_{cut}} \left[1 - (1-q) \frac{E}{k_B T_q} \right]^{\frac{q}{1-q}} \sigma_{tot}^{RR}(E_k) E_k \, \mathrm{d}E_k$$

with the correct "non-extensive" temperature $k_B T_q = \frac{2}{5-3q} k_B T_{MB}$ (q < 1) and the cutoff $E_{cut} = \frac{k_B T_q}{1-q}$

$$q pprox 1 - f(Z, B, T_{\perp}, T_{\parallel})$$

⁹C. Heerlein, G. Zwicknagel and C. Toepffer, NIM B 205 (2003) 395

P. Quarati, M. Coraddu, F. Ferro and G. Maero Momentum Distributions in Astrophysical Plasmas

Results of the Non-Extensive Approach

- Major effects at high T $(x_{MB} = k_B T / E_{1s})$ on deformed-to-MB rate ratio $(R = \alpha_q / \alpha_{MB})$
- Cutoff experimental observation: test of validity
- Cutoff presence in stars: finite heat reservoir

Non-Extensive Fit to DR Astrophysical Rate for C^{3+}

• The Maxwell-Boltzmann rate¹⁰

$$\alpha_{\rm fit}^{\rm DR}(k_{\rm B}T) = \frac{1}{T^{3/2}} \sum_{i} c_{i} \exp\left(-\frac{E_{i}}{k_{\rm B}T}\right)$$

• The non-estensive case

$$\alpha_{\rm fit}^{\rm DR}(k_{\rm B}T) = \frac{1}{T^{3/2}} \left(1 + \frac{15}{4}\delta\right) \sum_{i} c_{i} \exp\left[-\frac{E_{i}}{k_{\rm B}T} - \delta\left(\frac{E_{i}}{k_{\rm B}T}\right)^{2}\right]$$

• For C^{3+} : $i = 1 \div 5$

¹⁰S.Schippers *et al.*, ApJ **555** (2001) 1027

P. Quarati, M. Coraddu, F. Ferro and G. Maero Mor

Momentum Distributions in Astrophysical Plasmas

The Non-Extensive DR Astrophysical Rate for C^{3+}

$$\begin{aligned} \alpha^{DR}(k_B T) &\simeq \sum_{i} \frac{\bar{\sigma}_i E_{R,i} c}{(k_B T)^{\frac{3}{2}} \sqrt{\mu c^2}} \left[1 - \frac{\delta}{2} \left(\frac{\Gamma_i}{k_B T} \right)^2 \right] \times \\ &\times \exp\left[- \frac{E_{R,i}}{k_B T} \left(1 + \delta \frac{E_{R,i}}{k_B T} - \frac{\Gamma^2}{4E_{R,i} k_B T} \right) \right] \times \\ &\times \exp\left[-\delta \left(\frac{\Gamma_i}{k_B T} \right)^2 \left(\frac{\Gamma_i^2}{4 (k_B T)^2} - \frac{E_{R,i}}{k_B T} \right) \right] \end{aligned}$$

- The Γ parameter stongly varies with T
- Correlations different for $T = 10^6$ K and $T = 10^2$ K
- The plasma does not preserve its Maxwellian behaviour
- For $T > 10^5$ K we assume $\delta = 0$
- For $T < 10^3$ K we assume $\delta = 0.2$

Non-Extensive Approach to DR for C^{3+}

Due to many body collision effects, particle energy E and momentum

$$p = \sqrt{2m\epsilon_p}$$

can be affected by a dispersion relation characterized, in first approximation, by the Lorentzian¹¹:

$$\delta(\boldsymbol{E}-\epsilon_{\boldsymbol{p}})_{\gamma} = \frac{1}{\pi} \frac{\gamma}{(\boldsymbol{E}-\epsilon_{\boldsymbol{p}})^2 + \gamma^2}$$

As a consequence a given particle population can be Maxwellian distributed in energy but not in momentum

¹¹V. Galitskii and V. Yakimets, Sov. Phys. JETP **24** (1967) 637; A. Starostin *et al.*, PLA **274** (2000) 64

P. Quarati, M. Coraddu, F. Ferro and G. Maero Momentum Distributions in Astrophysical Plasmas

Since momentum rather than energy determines the scattering amplitude, the reaction cross section must be averaged over momentum distribution

As a consequence quantum dispersion effect can be extremely relevant, for instance, in fusion reaction between charged particles

The interacting particles energy momentum dispersion relation has been proposed recently by us to explain the strong enhancement observed for the low energy d(d, p)t fusion reaction experiment performed using a deuterated target¹²

¹²F. Raiola *et al.*, PLB **547** (2002) 193; F. Raiola *et al.*, EPJA **27** (2006) 79

P. Quarati, M. Coraddu, F. Ferro and G. Maero Momentum Distributions in Astrophysical Plasmas

Low energy fusion reaction experiment

- Monochromatic beam particles at energy E_b
- Target particles Maxwellian distributed in energy: $n(E_t) \propto \exp(E_t/k_BT)$

Target particles momentum distribution:

$$f(\epsilon_{p_t}) = \frac{\int dE_t \delta_{\gamma}(E - \epsilon_{p_t}) \exp(E_t/k_B T)}{\int dE_t \int d^3 \mathbf{p}_t \delta_{\gamma}(E - \epsilon_{p_t}) \exp(E_t/k_B T)}$$

The reaction rate is given by: $n_p n_t \langle \sigma v_{rel} \rangle$

$$\langle \sigma V_{rel} \rangle = \int \mathrm{d}^3 \mathbf{p}_t f(\epsilon_{p_t}) V_{rel} \sigma(E_{CM})$$

Quantum Dispersion Effect (4)

Momentum distribution function $f(\epsilon_{p_t})$ in eV^{-1} (full line) compared with the Maxwellian distribution (dashed line) for $T = 10^{o} C = 0.0244 eV$

Quantum Dispersion Effect (5)

- In stellar plasmas, MB is only a first-order approximation and corrections originate from the microscopical dynamics
- Quantum corrections may be related to a $\sigma(\varepsilon_p) \propto \sqrt{\varepsilon_p}$ cross section
- All deformations may be understood within NE statistical mechanics
- Momentum distributions other than MB may be interpreted as long-life stationary states
- If both Lab and stellar plasmas are not in a Maxwellian state, one must be very careful in transferring info obtained in Lab to interpret astrophysical observations

Bibliography (1)

- M. Coraddu, G. Kaniadakis, A. Lavagno, M. Lissia, G. Mezzorani, P. Quarati, *Thermal Distributions in Stellar Plasma, Nuclear Reactions and Solar Neutrinos*, Braz. J. Phys. 29 (1999) 29 (nucl-th/9811081).
- G. Kaniadakis and P. Quarati, A Set of Stationary Non-Maxwellian Distributions, Physica A 192 (1993) 677.
- G. Kaniadakis and P. Quarati, Polynomial Expansion of Diffusion Drift Coefficients for Classical and Quantum Statistics, Physica A 237 (1997) 229.
- A. Lavagno and P. Quarati, Classical and Quantum Non-Extensive Statistics Effects in Nuclear Many-Body Problems, Chaos Solit. Fract. 13 (2002) 569.
- F. Ferro and P. Quarati, Collisional Cross Sections and Momentum Distributions in Astrophysical Plasmas: Dynamics and Statistical Mechanics Link, Phys. Rev. E 71 (2005) 026408.

Bibliography (2)

- F. Ferro, A. Lavagno and P. Quarati, *Metastable and Stable Equilibrium States of Stellar Electron-Nuclear Plasmas*, Phys. Lett. A 336 (2005) 370.
- F. Ferro, A. Lavagno and P. Quarati, Nonextensive Resonant Reaction Rates in Astrophysical Plasmas, Eur. Phys. J. A 21 n. 3 (2004) 529.
- F. Ferro, A. Lavagno and P. Quarati, *Temperature Dependence of Modifi ed CNO Nuclear Reaction Rates in Dense Stellar Plasmas*, Physica A **340** n. 1-3 (2004) 477.
- G. Maero, P. Quarati and F. Ferro, Nonextensive Interpretation of Radiative Recombination in Electron Cooling, Eur. Phys. J. B 50 (2006) 23.
- F. Bachari, F. Ferro, G. Maero and P. Quarati, *Dielectronic recombination rates in astrophysical plasmas*, submitted to PoS (2006).

Bibliography (3)

- F. Bachari, F. Ferro, G. Maero and P. Quarati, *Microdynamical Effects on Momentum Distribution in Stellar Plasmas*, submitted to PoS (2006).
- M. Coraddu, M. Lissia, G. Mezzorani, Yu.V. Petrushevich,
 P. Quarati and A.N. Starostin, *Quantum-tail effect in low-energy* d+d reaction in deuterated metals, Physica A 340 (2004) 490.
- M. Coraddu, G. Mezzorani, Yu.V. Petrushevich, P. Quarati and A.N. Starostin, *Numerical modelling of the quantum-tail effect on fusion rates at low energy*, Physica A 340 (2004) 496.
- M. Coraddu, M. Lissia, G. Mezzorani and P. Quarati, Fusion reactions in plasmas as probe of the high-momentum tail of particle distributions, Eur. Phys. J. B 50 (2006) 11.
- For the non-extensive statistics reference see: M. Gell-Mann and C. Tsallis, *Nonextensive Entropy*, Oxford Univ. Press, N.Y. (2004).