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Debye relaxation:
¾ Temporal rate of change in response
is proportional to the response itself,

¾ Also called Boltzmann’s relaxation
time approximation 
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¾ Simplest dynamics; possesses a 
single time-scale τ (Boltzmann-
Gibbs-Shannon Statistics)
¾Obviously LLR of the RRTN 
(indeed a RRN) follows this 
dynamics

V< Vg: Lower Linear Regime (LLR)
V >Vg: Non Linear Regime (NLR)
V >> Vg: Upper Linear Regime 
(ULR)Kar Gupta and Sen, PRB 57, 3375 (1998)

Recapitulation of
static G-V response:



Power-law Relaxation/s:
• Belongs to a non-Debye class, as an outcome of an inherent 
property of the system having multiple/infinite time-constants τ

• An example: a relaxation function φ (t) with multiple τ’s, 
weighted by a self-similar probability density function (p.d.f.),
w(κt) = t−α w(κ), where κ=1/τ

•With a proper choice of the p.d.f., one finds two power-law 
relaxations; one at a short-time scale and another at an 
asymptotically long-time scale

τττφ )dw(t=t ∫ − )/(exp)(

 Ref.: Weron and Jurlewicz, J Phys A, 26, 395 
(1993)



Two initial Power-law Relaxations:

Appear, in general, due to a sequence of
� Re-distribution of local clusters/fields in time

crossing over to a
� re-distribution of global clusters/fields in time

�Eventually,
φ (t) for t          ∞, 
crosses over to an 
exponential dynamics,
towards a steady-state



Re-association of ligands of Fe in folded heme-
Proteins; Parak et al, Physica A201, 332 (1993)

Photocurrent in Amorphous Si:H and

As2Se3

Blinking kinetics in CdSe Quantum Dots

Earthquake (a) fore- and (b) after-
shocks; Case (b) is called Omori law



Ca+2 channel dynamics in Living Cells

Sputtering of Ag particles on Si(001) surface

Comp-expt On radial DLA growth (N=105 - 108 )

x-axis is time-like; a DLA is shown below.



¾ Update the microscopic voltages at each node using the Continuity 
Eqn. Σ<ij> Iij = 0 locally; i.e., a lattice Kirchhoff’s dynamics:

 vij (t+1) ) vij (t) + Σ<ij>  Iij / Σ<ij>  gij

Relaxation in the RRTN model; some typical parameters:
go= 1.0,  g t=0.01, c=10-5, displacement current :  idis =  c dv/dt for t-
bonds with v < vg

¾ Check the global continuity to ascertain 
the
final steady state, i.e., stop iteration when
| I(1st layer)−I(Nth layer) | ≤ ε, a pre-
assigned small +ve number (for controlling 
precision)

Bhattacharya and Sen, Europhys. Lett. 71, 797 (2005)

¾ Use a graded random initial voltage configuration vij at each node



Two early-stage power-law dynamics for a p=0.50 RRTN sample

The steady current is subtracted out to treat 
all cases under the same footing; also the 
final exponential dynamics is not shown 

further.  For different samples (iseeds), α1
and α2 vary widely; non-self averaging

A typical two power-law dynamics (t−α
1

and t−α2) and final exponential dynamics to 
an unique steady current (strong memory). 
The α1 and α2 are app. robust; for some 
separate classes of vij(t=0); thus on the
edge of chaos



Histogram of P(I) for p=0.2, L=20; Kar Gupta and Sen, PRB57, 3375(1998)

Non self-averaging  depends on 
the nature of the tail in P(I)

Power-law tail 

Self-averaging w/ Exponential tail

Origin of non self-averaging property of the dc response in the RRTN



Two early-stage power-laws in RRTN current dynamics

S. Bhattacharya and A.K. Sen,  Europhys. Lett. 71, 797 (2005)

α1 > α2 (somewhat rare in expts.)α1 < α2 (appear in most expts.)



Thus, the out-of-equilibrium dynamics of various systems of 
nature as well as the same in the RRTN model, suggests that:
9The 1st. order D.E. for the relaxation is strongly non-Debye type, 
and
9In particular, it should have the empirical form,

dI/dt = - λq Iq – λr Ir – (1/τ) I ;   with q, r > 1
[following Tsallis, Bemski and Mendes; Phys Lett A257, 93 (1999), and adding a 
q=1, τ >> 1 (Boltzmann-Gibbs-Shannon) term explicitly].
9As expected it gives rise to two early power-law relaxations with 
the following exponents α1 = 1/(q−1) and α2 = 1/(r−1) for τ>>1

9Eventually for t >> τ, RRTN’s dc-response is in the Upper Linear 
Regime (ULR), and there is expnl. relxn. (consistent with B-G-S)

9Very strong memory of the steady state (ULR regime); due to 
perfect correlation in placing the t-bonds; to be studied by ac field next



Strong Memory and statistically perfect correlation; ac-voltage 
Hysteresis in a sinusoidal voltage-driven RRTN (LLR
regime):
�Driving voltage V(t) = V0 cos(ω t) s.t. V0 < Vg on an RRTN with 
p>pc, the stable current response I(t)=I1 Cos(ω t +φ) lags behind by an
angle φ

Hysteresis loop; Lissajous figureLinear response, same ω and a lag



¾ p>pct, V0>>Vg, all t-bonds are

active (ULR of maximal 

RRTN) 
¾Again, linear response; 

with a phase-lag 90 0

¾ Hysteresis/ Lissajous loop, 

simple ellipse; Area, function 

of driving time-period (T)

Memory and statistical correlation; Hysteresis in a 
sinusoidal voltage-driven RRTN (at ULR):



Unconventional Hysteresis loops in the sigmoidal, Non-
Linear Regime (NLR) of the RRTN’s dc-response:
For V0 >Vg,
• Nonlinearity manifests through generation of higher harmonics of ω
(n odd for resistive o-bonds and even for capacitive t-bonds (for v < vg):
I(t) = I1 cos (ωt-φ1) +I2cos (2ωt-φ2) +I3 cos (3ωt-φ3) + …….

Fourier co-efficients:

I1 =  7.15.10-2,  φ1=1.05 
I2 = 4.3 10-6, φ2= 0.65
I3 = 1.5. 10-2, φ3= −0.07
I4 =   9.4. 10-7, φ4= −1.34
I5 =  -2.8 10-3 , φ

5= −0.9 .....



Symmetries in a stable hysteretic response:

� (a) The stable (non-changing) loop-shapes/areas imply neither an 

equilibrium nor a steady state.  For a resistive symmetry, I(−V) = −I(V)

leads to I(t+T/2) = −I(t); this allows only odd-n harmonics

� (b) The semi-quantum tunneling/capacitive symmetry of t-bonds (v<vg) 

has no loss; thus zero-crossing with  I(t)=−I(t +T/4) and even-n harm. 

� For v>vg, the t-bonds become conducting and falls in the class (a) above.

� No percolation with only capacitive t-bonds; also idis<<iohm; so at low p

and (V-Vg), even-harmonics may appear as a small pinching effect near the 

origin



Odd n, tiny edge loops in the RRTN.  Exptl. loop (top R inset) shows Magnetic hyst. 

in Co nanodot arrays on Cu(001) surface at 142 K; Komori et al, J Phys cond mat 14, 8177 



Memory applications and even  
harmonic effect in a thiophene-
based conjugated polymer, 
sandwiched between InSn-
oxide layers; Mazumder et al,  J 
Phys D 36, 211 (2003)

Even harmonic pinching
effect in the RRTN



Hysteresis loop-area A vs ω (or, T=2π/ω) is found 
empirically to follow the scaling function:

A(ω)=A0(ω/ω0)s exp[-(ω0/ω)γ],

s =2.1 

γ =0.75

Scaling in A/Am vs T/Tm

The excellent data 
collapse bears tell-tale 
testimony of its 
accuracy.

where A0, ω0, s and γ
depend on V0 



Conclusion for dynamical study:
¾Dynamics in the RRTN in the presence of disorder and nonlinearity/interaction due to 
its basic and simple ideas on the bond arrangements and microscopic voltage threshold 
vg in tunneling bonds, shows intriguing non-Debye relaxation..
¾This opens a scope to apply non-extensive thermo-statistics for the explanation 
of  power-law relaxations.  Whereas, the steady state/current remains unique, 
independent of initial voltage configurations, the exponents do not (on the edge of 
chaos!!).
¾ Existence of initial power-laws in time-dynamics, far from the critical points, assures 
that their origin is not related to any self-organized criticality, but due to the nonlinearity 
and the perfect statistical correlation, in the placement of the t-bonds, in-built in the 
model.
¾ Two early power-law dynamics seem to be due to the correlated random fluctuations
in the microscopic voltage distribution in different iterations (or, time evolution); and the 
bulk system still picks up a time-scale (τ) while going through these correlated 
pathways.
¾ No chaoticity in reaching the final steady state from any initial voltage configuration 
leads to a robust pattern-recognition property (i.e., a biased statistics).  This property is 
comparable to the memory of the natured state in a protein-folding problem, and the 
Leventhal’s paradox.
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