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"7/ Abstract

fyr*. T h e classic and the Levy-Gnedenko central limit t heo rems play a key role in theory of
(~r"} probabilities, and also in Boltzmann-Gibbs (BG) statistical mechanics. They both concern the
C3 paradigmatic case of probabilistic independence of the random variables that are being summed.
^̂ O A generalization of the BG theory, usually referred to as nonextensive statistical mechanics and
^r~ characterized by the index q (q — 1 recovers the BG theory), introduces global correlations
^ s between the random variables, and recovers independence for q = 1. The classic central limit
*"*-*. theorem was recently g-generalized by some of us. In the present paper we q-generalize the
Ĉ  Levy-Gnedenko central limit theorem.

£
"O 1 Introduction

Q In the recent paper by some of us [1], a generalization of the classic central limit theorem applicable
1/ to nonextensive statistical mechanics [2, 3] (which recovers the usual, Boltzmann-Gibbs statistical

mechanics as the q = 1 particular instance), was presented. We follow here along the lines of that
r > paper. One of the important aspects of this generalization is that it concerns the case of globally
C3 correlated random variables. On the basis of the g-Fourier transform Fq introduced there (Fi being

the standard Fourier transform), and the function

we described attractors of conveniently scaled limits of sums of ^-correlated random variables 1

with a finite (2q — l)-variance 2. This description was essentially based on the mapping

Fq:Gq[2}^gz{q)[2], (1)

^-correlation corresponds to standard probabilistic independence if q — 1, and to specific global correlations if

2We required there q < 2. Denoting Q — 2q — 1, it is easy to see that this condition is equivalent to the fmiteness
of the Q-variance with Q < 3.



where Qq\2] is the set of g-Gaussians (the number 2 in the notation will soon become transparent).
In the current paper, which consists of two parts, we will introduce and study a ^-analog of the

a-stable Levy distributions, and establish a ^-generalization of the Levy-Gnedenko central limit
theorem. In this sense, the present paper is a conceptual continuation of paper [1]. The classic
theory of the a-stable distributions was originated and developed by Levy, Gnedenko, Feller and
others (see, for instance, [4, 5, 6, 7, 8] and references therein for details and history). The a-stable
distributions found a huge number of applications in various practical studies [9, 10, 11, 12, 13, 14,
15, 16, 17, 18, 19], confirming the frequent nature of these distributions.

For simplicity we will analise only symmetric densities in the one-dimensional case. Stable
distributions with skewness and multivariate stable distributions can be studied in the same way
applying the known classic techniques.

In Part 1 we study a ^-generalization of the a-stable Levy distributions. Namely, we consider

the symmetric densities f(x) with asymptotics / ~ C\x\ l+a(i~l), \x\ —> oo, where C is a positive
constant 3. We classify these distributions in terms of their densities depending on the parameters
q < 2 (or equivalently Q < 3, Q — 2q — 1) and 0 < a < 2. We establish the mapping

Fq : QqL[2] ^ gq[al (2)

where Qq[a] is the set of all densities {beq , b > 0, (3 > 0}, and

i.e.,

qL - 1 1 + a(q - 1) '

The particular case q = Q = 1 recovers qL = j ^ , already known in the literature [3]. We consider
the values of parameters Q and a ranging in the set

Qo = {(Q,a) : - K Q < 3 , 0 < a < 2 , a < j ^ g } -

The values of Q and a in
) :-KQ<3, a = 2}

were studied in [1]. Note that for Q and a in

<2i - {(Q,a) : YZTQ < <* < 2, - K Q < 0},

the densities have finite (2q — l)-variance. Consequently, the theorem obtained in [1] is again
applicable. For (Q,a) G QQ the Q-variance is infinite. We will focus our analysis namely on this
case. Note that the case a = 2, in the framework of the present description like in that of the
classic a-stable distributions, becomes peculiar.

In Part 2 we study the attractors of scaled sums, and expand the results of the paper [1] to the
region

Q - {(Q, a) : - 1 < Q < 3, 0 < a < 2} ,

generalizing the mapping (1) into the form

F(a{q) : 9q[a] - GZa{q)[a], q < 2, 0 < a < 2, (3)
3Hereafter g(x) ~ h(x), x —> a, means that lim,T_*a ^ | = 1.



where

a " v ; Q4l-g.

Note that, if a = 2, then (2(<?) = g and 22(9) = (1 + q)/{3 - q), thus recovering the mapping (1),
and consequently, the result of the paper [1],

These two types of ̂ -generalized descriptions of the standard symmetric a-stable distributions,
based on mappings (2) and (3) respectively, allow us to draw a full picture of the ^-generalization
of the Levy-Gnedenko central limit theorem that we have obtained.

2 Basic operations of ^-mathematics

We recall briefly basics of ̂ -mathematics. Indeed, the analysis we conduct is entirely based on the
^-structure (for more details see [20, 21, 22, 23, 24] and references therein). Let x and y be two given
real numbers. By definition, the q-sum of these numbers is defined as x®qy = x + y+(l — q)xy. The
Q-sum is commutative, associative, recovers the usual summing operation if q = 1 (i.e. x ©1 y =
x 4- y), and preserves 0 as the neutral element (i.e. x ©g 0 = x). By inversion, we can define
the q-subtraction as x Qq y = i+

x[^ \y • The q-product for x,y is defined by the binary relation
1

x <giq y = [x q 4- y q — 1] l~q. This operation also commutative, associative, recovers the usual
product when q = 1, and preserves 1 as the unity. The Q-product is defined if x1~q 4- y1~q > 1.

1

Again by inversion, it can be defined the q-division: x <2)qy = (x q — y q 4- 1) 1~i. Note that, for
97^1, X<8>90T^0, and division by zero is allowed.

3 g-generalisation of the exponential and cyclic functions

Now we introduce the q-exponential and ^-logarithm [20], which play an important role in the
nonextensive theory. These functions are denoted by ex and lnqx and respectively defined as

1

ej = [1 + (1 - q)x]\rQ and \nqx — x
 ll~

l, (x > 0). Here the symbol [x\+ means that [x}+ = x if
x > 0, and [x}+ = 0 if x < 0. We mention the main properties of these functions, which we will
use essentially in this paper. For the <?-exponential the relations eq®

qV = ex
qe

y
q and ex+y = ex ®q e

y

hold true. These relations can be written equivalently as follows: \nq(x ®g y) — lng x 4- \i\qy
 4, and

\vtq{xy) = (m9:c) 0q (\nqy). The q-exponential and g-logarithm have the asymptotics

and

ex
q = 1 + x 4- \x2 + o(x2), x -> 0, (4)

o(x2), x-^0, (5)

1

respectively. If q < 1, then, for real x, \elx\ > 1 and \el
q

x\ ~ (1 4- x2)2^-q), x —> 00. Similarly, if
q > 1, then 0 < \eq

x\ < 1 and |e^ | —»- 0 if \x\ —> 00.

Lemma 3.1 Let An(q) = Ylk=oak(q) where ak(q) = q — k(l — q). Then there holds the series
expansion

71=0

'This property reflects the possible extensivity of Sq in the presence of special correlations [25, 26, 27, 28].



Corollary 3.2 For arbitrary real number x the equation

9 ^ n 2n + 2 ! j * ^ f t 2n + 3)! ;

n=0 • ' n=0 v '

holds.

Define g-cos and g-sin by formulas

cos,W = 1 - J t tg^f,2", (6)
n=0 ^ ''

and
s i n W _ T _ J y (-l)M2TvVI(q) 2 n + 1

sirig^j - x a: 2^ /2n + 3)! ^ ^

Properties of g-sin, g-cos, and corresponding ^-hyperbolic functions, were studied in [22]. Here we
note that the q-analogs of the well known Euler's formulas read

Corollary 3.3 (i) el* = cosq(:c) +i sing(;r);

(ll) COSq{X) = ^ ~ i " ^

(in) 81^(2:) = e? ~^ .

Lemma 3.4 The following equality holds:

cos9(2x) = e^_7 )x2 - 2 s in! , . !^) . (8)

Proof. The proof follows from the definitions of cosg(x) and sin9(x), and from the fact that
(eg)2 = e?£. w2 (see Lemma 2.1 in [1]).

Denote ^g(x) = cosg 2x — 1. It follows from Equation (8) that

*q(x) = (el[l-1
q)x2-l)-2Sm2

2q_i(x). (9)

Lemma 3.5 Let q > 1. T/ien we

oo.

Proof. It follows from (9) that ^q{x) < 0. Further, sinq(x) can be written in the form (see

[22]) sing(x) = pq(x) sin[(pq(x)], where pq{x) = (eq )1/2 and (pq(x) = arcta
1

nl1~g^x. This yields
^g(x) > — 2 if q > 1- Using the asymptotic relation (4), we get

e^1-"!9^2 ~ 1 = 2(1 - <Z)̂ 2 + o(x3), x->0. (10)

It follows from (7) that
- 2 s i n ^ a O = - 2 ^ 2 + o(x3),^ -> 0. (11)

The relations (9), (10) and (11) imply the second part of the statement.



4 g-Fourier transform for symmetric functions

The q-Fourier transform, based on the g-product, was introduced in [1] and played a central role in
establishing the g-analog of the standard central limit theorem. Formally the g-Fourier transform
for a given function f{x) is defined by the formula

oo

eq
x*®qf(x)dx. (12)

— oo

For discrete functions /&, k — 0, ± 1 , . . . , this definition takes the form

oo

k — — oo

In the future we use the same notation in both cases. We also call (12) or (13) the q-characteristic
function of a given random variable X with an associated density f(x), using the notations Fq{X)
or Fq(f) equivalently.

It should be noted that, if in the formal definition (12), / is compactly supported, then integra-
tion has to be taken over this support, although, in contrast with the usual analysis, the function
e%q^ ®q fix) under the integral does not vanish outside the support of / . This is an effect of the
g-product.

The following lemma establishes the relation of the g-Fourier transform without using the q-
product.

Lemma 4.1 The q-Fourier transform can be written in the form

(14)

Remark 4.2 Note that, if the q-Fourier transform of a given function f(x) defined by the formal
definition in (12) exists, then it coincides with the expression in (14)- The q-Fourier transform
determined by the formula (14) has an advantage when compared to the formal definition: it does
not use the q-product, which is, as we noticed above, restrictive in use. From now on we refer to
(14) when we speak about the q-Fourier transform.

Further to the properties of the q-Fourier transform established in [1], we note that, for sym-
metric densities, the assertion analogous to Lemma 4.1 is true with the q-cos.

Lemma 4.3 Let f(x) be a symmetric density. Then its q-Fourier transform can be written in the
form

roc
/ }^1)dx. (15)

roc .

— oo

Proof. Notice that, because of the symmetry of / ,

roc
f{x)dx= / e-ix*®qf(x)dx.

J —oo

Taking this into account, we have

\ f^ ( j * ®q f{x) + eq-
ia* ®q f(x)) dx .



Applying Lemma 4.1 we obtain

which coincides with (15).

Let us now refer to the three sets:

Qo =

1 9 - 1

.. er eq

1 9 - 1

3, 0 < a < 2, a<

-dx ,

2, - K Q < 0},

where Q = 2g — 1. Obviously Qo U Qi U Q2 gives the semi-strip

Q = {-1 < Q < 3 , 0 < a < 2}

which contains the top boundary. A ̂ -generalization of the central limit theorem for Q and a in the
set Q2 was studied in [1]. It is not hard to verify that any density corresponding to (Q, a) E Qi has
a, finite Q-variance. Hence, for Q\ also, the theorem obtained in [1] is applicable. For (Q,a) G Qo,
the Q-variance of densities considered in the following lemma is infinite. From now on, we focus
our studies on this case.

Lemma 4.4 Let /(.T), x £ R, be a symmetric probability density function of a given random vector.
Further, let either

(i) the (2q — 1)-variance

(n) f{x)~C(\x\-**£=V

) < oo, (associated with a = 2), or

oo, with C > 0 and (2q — 1, a) £ Q

Then, for the q-Fourier transform of f{x), the following asymptotic relation holds true:

FqlfKO = 1 - fJ.q,a\£\a + O( |£ | a ) ,£ - 0. (16)

w/iere
ifa =

(17)

withv2q-1(f)=f?Jf(x)]2«-1dx .

Remark 4.5 Stable distributions require fiq)Ot to be positive. We have seen (Lemma 3.5) that if
q > 1, then ^q(x) < 0 (not being identically zero), which yields /iq^a > 0 . If q = 0, we can check by
strightforward calculations that jiq,a = 0. We denote by QQ the subset of Qo, where \iq^ > 0.



Proof. First, assume a = 2. Evaluate Fq[f}(£). Using Lemma 4.1 we have

roc roo 'x?

FqifKO = / (e?C) ®9 /(*)<& = / f(x)e^x)]l-qdx. (18)
J—oo J—oo

Making use of the asymptotic expansion (4) we can rewrite the right hand side of (18) in the form

0,

from which the first part of Lemma follows.
Now, assume (2q — 1, a) G QQ . Apply Lemma 4.3 to obtain

roo

- 1 = / f(x)[casq(xt[f(x)]*-1) - l]dx =
J—oo

2 r2 / » , « „ + 2 /(I),f (^)ljB,
7o 2 JN 2

where iV is a sufficiently large finite number. In the first integral we use the asymptotic relation
*£(§) = —%x2 + o(x3), which follows from Lemma 3.5, and get

x2f2q-1{x)dx + o(£3), £ -» 0. (19)
o

In the second integral taking into account the hypothesis of the lemma with respect to f(x), we
have

o / f(x)y5f ( l )dx =
JN 2

We use the substitution

in the last integral, and obtain

N

Hence, the obtained asymptotic relations (19) and (20) complete the proof.



5 (g, a)=stable distributions

Two random variables X and Y are called to be ̂ -correlated if

Fq[X + Y)(0 = Fq\X](Z) ®q Fq\Y](O . (21)

In terms of densities, relation (21) can be rewritten as follows. Let fx and fy be densities of X
and Y respectively, and let fx+Y be the density of X + Y. Then

/ eft ®q fx+y(x)dx = Fq[fx](O ®q ^[ /y](0- (22)

Definition 5.1 A random variable X is said to have a (q, a)-stable distribution if its q-Fourier
transform is represented in the form beq , with some real constants b > 0 and (5 > 0. We denote
by Cq(a) the set of all (q, a)-stable distributions.

Denote Qq{a) = {beq
ma, b > 0, (5 > 0}. In other words X G Cq(a) if Fq[f] € Qq{a). We will

study limits of sums

ZN = T T ^ T ( * i + ••• + X N ) , N = l , 2 , . . .

where Dpj(q), N = 1,2,..., are some reals (scaling parameter), that belong to Cq(a), when TV —> oo.

Definition 5.2 A sequence of random variables Zj^ is said to be q-convergent to a (q, a)-stable
distribution, z/lim/v->oo ^ [ ^ A T K O £ ^(oO locally uniformly by £.

Theorem 1. Assume (2g — l,a) G QQ . Let X\,X2, ...,XN, ••• be symmetric random vari-
ables mutually q-correlated and all having the same probability density function f(x) satisfying the
conditions of Lemma 4-4-

Then Z^, with D^iq) = (^q,a^)a^2~q) > is q-convergent to a {q^ a)-stable distribution, as N —>•
oo.

Remark 5.3 By definition QQ excludes the value a = 2. The case a = 2, in accordance with the
first part of Lemma 4-4, coincides with Theorem 2 of [1]. Note in this case Cq(2) — Qq*(2), where

q = 9+1 "

Proof. Assume {Q,cx) € QQ • Let / be the density associated with X\. First we evaluate
Fq(Xi) = Fq(f(x)). Using Lemma 4.4 we have

Fq[.f](O = 1 - M 4 l a + o(|4|Q),C - 0. (23)

Denote y} = A^~Q Xj,j = 1, 2,.... Then ZN — Y\ + ... + Y/v- Further, it is readily seen that, for a
given random variable X and real a > 0, there holds i?

(?[aX](^) = FgfXKa2""9^). It follows from this
relation that Fq(Yj) — Fq[f]{- ^ , 1 / Q ) , j — 1,2,... Moreover, it follows from the g-correlation of

Y\, y2) ••• (which is an obvious consequence of the g-correlation of X\,X2,...) and the associativity
of the g-product that

Fq[ZN}{0 - Fq[f]({»qiaN)-±$2>q...®qFq[f}({pqtaN)-±$ (N factors). (24)



Hence, making use of the expansion (5) for the ^-logarithm, Eq, (24) implies

N)"O = N\nq(l - 1^- + O(^))

o(l), JV-+oc, (25)

locally uniformly by £.
Hence, locally uniformly by £,

lim Fq(ZN) = e-^a eGq(a). (26)
—>oo

Thus, ZN is ^-convergent to a (g, a)-stable distribution, asiV->oo. Q.E.D.
This theorem links the classic Levy distributions with their (^-Gaussian counterparts. Indeed,

in accordance with this theorem, a function / , for which

is in Cq(a), i.e. Fq[f](Q G Gq{ot). It is not hard to verify that there exists a ^-Gaussian, which is
asymptotically equivalent to / . Let us now find q%. Any g^-Gaussian behaves asymptotically like

= C/\x\2/(q«~l\ C = const, i.e. 77 = 2/(q% - 1). Hence, we reobtain the relation

(27)
1 + a(q - 1) q£ - 1

Solving this equation with respect to q^, we have

r=
 +CJa^ Q = 2q-l, (28)

Q + 1
linking three parameters: a, the parameter of the a-stable Levy distributions, q, the parameter of
correlation, and q%, the parameter of attractors in terms of c^-Gaussians (see Fig. 2). Equation
(28) identifies all (Q,a)-stable distributions with the same index of attractor GqL (See Fig. 1).

In the particular case Q = 1, we recover the known link between the classical Levy distributions
(g = Q — 1) and corresponding g^-Gaussians. Put Q = 1 in Eq. (28) to obtain

qL
n = 3T±^,0<a<2. (29)

When a increases between 0 and 2 (i.e. 0 < a < 2), q% decreases between 3 and 5/3 (i.e. 5/3 <
q% < 3): See Figs. 2 and 4(a).

It is useful to find the relationship between rj = z,
2_1, which corresponds to the asymptotic

behaviour of the attractor, and (a,Q). Using formula (28), we obtain (Fig. 3)

2(a + 1) . ,
" = 2 + a ( Q l ) - ( 3 0 )

If Q = 1 (classic Levy distributions), then 77 = a 4- 1, as well known.
Analogous relationships can be obtained for other values of Q. We call, for convenience, a

(Q,a)-stable distribution to be a Q-Cauchy distribution, if its parameter a — 1. We obtain the
classic Cauchy-Poisson distribution if Q = 1. The corresponding line can be obtained cutting the
surface in Fig. 3 along the line a = 1. For Q-Cauchy distributions we have

^ t= ^ - , (31)



3-e

Figure 1: All pairs of (Q,a) on the indicated curves are associated with the same g^-Gaussian. Two curves corresponding
to two different values of qj£ do not intersect. In this sense these curves represent the constant levels of q^ or 77 = 2/{q^ — 1).
The line 77 = 1 joins the points (Q, a) = (1, 0.0 - 0) and (3 - 0, 2); the line 77 = 2 joins the Cauchy distribution (noted C) with
itself at (Q, a) = (1, 1) and at (2, 2); the 77 = 3 line joins the points (Q, a) = (1, 2.0 - 0) and (5/3, 2) (by e we simply mean to
give an indication, and not that both infinitesimals coincide). The entire line at Q — 1 and 0 < a < 2 is mapped into the line
at a = 2 and 5/3 < q* < 3.

10



o=l(Q-Cauchy)

Figure 2: g£ = q* as function of (Q,a).

2 Q

0 "3

Figure 3: 77 as the function of (Q,a).
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respectively (sec Figs. 2 and 3).
The relationship between a and q^ for typical fixed values of Q are given in Fig. 4 (a). In this

figure we can also see, that a = 1 (Cauchy) corresponds to q[ — 2 (in the Q = 1 curve). In Fig. 4
(b) the relationships between Q (Q — 2q — 1) and q^ are represented for typical fixed values of Q.

FigUrG 4; Constant Q and constant a sections of Fig. 2.
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»—H Abstract

The classic and the Levy-Gnedenko central limit theorems play a key role in theory of
«̂«£ probabilities, and also in Boltzmann-Gibbs (BG) statistical mechanics. They both concern

^L the paradigmatic case of probabilistic independence of the random variables t ha t are being
\r> summed. A generalization of the BG theory, usually referred to as nonextensive statistical
(^) mechanics and characterized by the index q (q = 1 recovers the BG theory), introduces global
\ O correlations between the random variables, and recovers independence for q = 1. The classic
| O central limit theorem was recently ^-generalized by some of us. In the present paper we q-
*£ generalize the Levy-Gnedenko central limit theorem. In Part I we described the g-version of the
^ Q-stable Levy distributions. In Part II we study the (q*, q,q*)— triplet, for which the mapping
»— Fq* : Qq —> Qq^ holds. This fact allows to study the corresponding attractors and to obtain a

*7̂ 3 complete generalization of the g-central limit theorem for random variables with infinite (2q — 1)-
£ZS variance.
o
o
> 1 Introduction

K^ In the recent paper [1], and in Par t I [2] of t he current paper , we discussed a ^-generalization of

Cd the classic central limit theorem applicable to the nonextensive statist ical mechanics (see [3, 4, 5]

and references therein) , as well as a ^-generalization of the Levy-Gnedenko central limit theorem.

One of the impor t an t aspects of the obtained generalization is t h a t it works for globally correlated

random variables. In [1] we introduced a new Fourier t ransform, i.e. t he ^-Fourier t ransform l and

the function

to describe attractors of scaling limits of sums of g-correlated random variables with a finite (2q— 1)-
variance 2. This description was essentially based on the mapping

Fq : Qq -> Gz(q), (1)
xThe (/-Fourier transform formally is defined as Fq[f](£) = JRf <S>y e

l^dx and is a nonlinear operator if q ̂  1.
2We required there q < 2. Denoting Q = 2q — 1, it is easy to see that this condition is equivalent to the finitness

of the Q-variance with Q < 3.



where Qq is the set of g-Gaussians.
In the current paper (consisting of two parts) we study a g-analog of the a-stable Levy distri-

butions. In this sense the present paper is a conceptual continuation of [1]. For simplicity we are
dealing only with the standard symmetric one-dimensional case. Stable distributions with skew-
ness and multivariate stable distributions can be studied in the same way applying the known
classic techniques. Earlier studies devoted to the foundations of nonextensivity can be found in
[5, 6, 7, 8, 9, 10, 11, 12], limit theorems in nonextensive statistical mechanics in [4, 13, 14, 15, 16],
and various applications in [17, 18, 19, 20, 21, 22].

We study limits of sums of random variables with densities having the asymptotic behavior

/ ~ C\x\~ 1+a<-i-v , \x\ —+ oo, where 0 < a < 2, 0 < <? < 2, and C > 0. These random variables
have infinite Q-variance (Q = 2q - 1) for all 0 < a < 2 if 0 < Q < 3 and for all a < 2/(1 - Q), if
— 1 < Q < 0. The obtained limits represent a ^-generalization of the a-stable Levy distributions.
In Part I we have given one of the possible classifications of these distributions in terms of their
densities depending on the parameters Q and a) where 0 < a < 2. The classification was based on
the mapping

Fq : gqL{2] ^ gq[a}, (2)

where Qq[oi\ is the set of all densities {beq ' ' , b > 0, (5 > 0} and

L 3 + Qa _ o
Q = f * Q = 2 9 l

a + 1

Note that the values of parameters Q and a range in the set

Qo = { - K Q < 0, a < -} U {0 < Q < 3, 0 < a < 2},
i. — Q

i.e. the case a — 2, in the framework of this description, is peculiar.
We note also that, for the ^-generalization of the Levy-Gnedenko central limit theorem, the

following lemma proved in Part I plays an essential role.

Lemma 1.1 Let f(x), x G R, be a symmetric probability density function of a given random vector.
Further, let either

(i) the (2q — \)-vanance c ^ - i < °°> (associated with a — 2), or

(ii) f(x) ~ C(\x\ i+«(«7-i)); with C > 0 and 0 < a < 2, as \x\ —» oo.

Then for the q-Fourier transform of f(x) the following asymptotic relation holds true:

Fq[f}(£) ~ 1 ~ Mg.alCr + °(I^ |Q))C ~> 0, (3)

where
2 2 Y n.

(4)

where v2q-i{f) = IZo[f(x)}2q'1 dx> and

3 For the definition of q-cos see [1, 8].



In Part 2 we study a description of (q, a)-stable distributions differing from the description used
in Part I. In the frame of the new description the value a = 2 is no longer peculiar, but in this case
we require q ̂  I.4 More precisely, we expand the result of the paper [1] to the region

Q = {(Q,a) : -KQ <3,0<a< 2},

generalizing the mapping (1) in the form

F(a(q) • Gq[ot] - $ za(q)H 0 < <? < 2, 0 < Q < 2, (5)

where
a-2(l-q) aq+l-q

Ca(s) = and za(s) = — — ±
a a 4- 1 — q.

Note that if a = 2, then ^(tf) = q and Z2(q) = (1 -f- <?)/(3 - <?), recovering the mapping (1).

2 Description of the (g,a)-stable distributions based on the map-
ping (5)

In this section we establish the general theorem, representing a family of assertions depending on
the type of correlations. Note that the particular case, namely a = 2 was proved in [1], where the
mapping Fq : Gq[2] —> Gz(q){2], 1/2 < q < 2, was established. An importance of this mapping is its
exactness in the sense that it transforms a g-Gaussian into a z(g)-Gaussian. For a < 2, even in the
classic case (q = 1), there is no such exact mapping. Asymptotic representation of classic a-stable
Levy distributions were obtained in [23, 24, 25, 26]. Our further arguments are also based on the
asymptotic analysis.

Let 1 < q < 2, or equivalent ly, 1 < Q < 3, Q = 2q ~ 1. It follows from the definition of the q-
— a

exponential that any density function g 6 Gq[oi\ has the asymptotic behavior g ~ b \x\ i~l, b > 0, for
large |:r|. The set of all functions with this asymptotic we denote by Bq[a\. Obviously, Gq[oi\ C Bq[a\.
At the same time, for any density / 6 Bq[a], there exists a unique density g € Gq\®\-, such that
/ ~ g, \x\ —» co. In this sense the two sets Gq[o] and Bq[a] are asymptotically equivalent (or
asymptotically equal). Having this in mind we write (preferably) Gq[ct\ instead of Z39[a].

Lemma 2.1 Let 0 < a < 2 be fixed. For arbitrary q\ there exists #2 &nd a one-to-one mapping
Mqxm such that

Obviously, if a — 2, then q\ — 92 and Mqi>q2 is the identical operator. First we find the relationship
between the three indices q, q* and q* for which the mapping

771 /~T r 1 v / /** f 1 / (2 \

where —> means that the mapping is in the sense of the asymptotic equivalence explained above,
holds with a 6 (0,2]. The exact meaning of (6) is

In the case a = 2, as we mentioned above, ftAqi,q2 — I, and the relationships q* = q and q* = j ^
were found in [1], giving (1).

4q = Q = 1 leads to the exponential functions, unlike to q 7̂  1, which is connected asymptotically with power law
functions.



Lemma 2.2 Assume 0 < a < 2 and £/mi £/ie numbers q*. q* and q are connected with the rela-
tionships

a — 2 (1 — q) aq + I - q ,„.
5 : 1 L and ^ J i 1 (7)q and ^
a a + 1 — q.

Then the mapping (6) holds true.

Proof. Let / £ Gq(a), which means that asymptotically f(x) ~ b\x\~a^q~l\
x —> oo with some b > 0. Find the (?*-Gaussian with the same asymptotics at oo. For Gq* (/5; a:),
0), we have the asymptotic equality

oo.
g - 1

Hence

= a - 2 ( l - g ) = x _ 2(1 - g )

a a

Further, it follows from Corollary 2.10 of [1], that

where

Taking into account the asymptotic equality

|,TUi-i |x[ 9*-i

we obtain
a g + ( l - g ) a(l - q)

q* - —: = 1 — •
a+ 1 - q a + 1 — q

Thus, the mapping (6) holds with q* and g* in Equation (7).

Let us introduce now two functions that are important for our further analysis:

as + (1 — s) ail — s)
za(s) = -A 1 = l - \ \ 0 < a < 2, s < a + 1, 8

a: -f 1 — s a + l - s
and

CaW = a z 2 L z i ) = 1 _ 2 ( ^ i ) , o < Q < 2 . (9)
It can be easily verified that (^a(s) = s if a = 2.
The inverse, z~^(t), t G (1 — o:,oo), of the the first function reads

a W o ; ~ ( l - t ) a - l + t

T h e func t i on 2(5) p o s s e s s t h e p r o p e r t i e s : Zaij-j^;) ~ 7 a n d 2 Q ( ^ ) = _ i , ,- . If we d e n o t e qa^\ —

za{q) and qa,-i = z~l{q).: then

za{ ) = — and za{—) = . (11)
9a,l 9 9 9a,-1



Corollary 2.3 The following mapping

FCa{q) : £<?(«) ^ SZa{q){a), q<l + a,

holds.

Corollary 2.4 There exists the following inverse q-Fourier transform

Using the above mentioned properties of the function za(s) we can derive a number of useful
formulas for the g-Fourier transforms. For instance, we get the mappings

-

The analogous formulas hold for the inverse g-Fourier transforms as well.
Introduce the sequence qa,n = za,n{q) = z(za^n-\{q)),n = 1,2,..., with a given q = zo{q), q <

1 + a. We can extend the sequence qaji for negative integers n — — 1, —2,... as well putting qa,-n —
za,-n{<l) — z~l(zaji-n(q)),n — 1,2,.... It is not hard to verify that

f 9 ) a 9 + n ( 1 g ) 0 ,± l .±2 , - (12)9tt.n = l f , = . . . , n = 0,±l.±2,-
a + n(l — q) a + n(l — qj

q > 1 + g for n < 0, and 9 < 1 + ^ for n > 0. (See Fig. 1). Note that qChn is a function only
of (q,n/a), that qa,n = 1 for all n = 0,±l ,±2, . . . , if q = 1, and that limn^^oo za)Tl{q) = 1 for all
q ^= 1. Eq. (12) can be rewritten as follows:

Q Q , n = 0 ,±l ,±2 , . . . (13)
1 - qa,n 1 - q

This rewriting puts in evidence an interesting property. If we have a g-Gaussian in the variable
\x\a/2 (q > 1), i.e., a ^-exponential in the variable \x\a (whose asymptotic behavior is proportional

a

to |:c|1-'?), its successive derivatives and integrations with regard to \x\a precisely correspond to
a

gQ;n-exponentials in the same variable \x\a (whose asymptotic behavior is proportional to \x\ 1-qa<n )
5. Along a similar line, it is also interesting to remark that Eq. (13) coincides with Eq. (13) of
[27] (once we identify the present a with the quantity z therein defined), therein obtained through
a quite different approach (related to the renormalization of the index q emerging from summing a
specific expression over one degree of freedom).

Let us note also that the definition of the sequence qa>n (Eq. (12)) can be given through the
series of mappings

5A typical illustration is as follows. Consider at = 1, and a. normalized ^-exponential distribution f(x) which
.identically vanishes for x < 0, and equals A{q, 0) e^0x (1 < g < 2, A{g,0) > 0, 0 > 0) for x > 0. The accumulated
probability F(> x) = J°° f(x') dx decreases from unity to zero when x increases from zero to infinity. This probability,
frequently appearing in all kinds of applications, is given by F(> x) = i2-q)B [1 + (9 ~ l)0x\~^2~q)'{-q~l\ i.e., it is
proportional to a <ji,i-exponential with j ^ — = y ~ + 1.
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Definition 2.5

••• ~* Qa,-2 - > qa,-l - » qa,0 = q~+ Qa,l - > <?a,2 " ^ ••• (14)

Za1 Za1 Z~X Z~l 2 ~ l
 Z~l

••• * ~ < ? a , - 2 ^ < ? a , - l ^ " Q a , 0 = Q ^~ < ? a , l ^ " < ? a , 2 ^~ ••• ( 1 5 )

Further, let us introduce the sequence g*n = C(<?a,n)- It is easy to see that

2(1 -q) a + (n-2)(l - q)
Qa,n - 1 ~ ^ n ( 1 _ x = a + J_ , n = 0,±l,. . . . (16)

or, equivalentiy,
2 a

— \- n n — 0-1-1 (17\
1 ^ — -. -\- u , n — u , i cx , — {i- < )

It follows from Lemma 2.2 and definitions of sequences qa^n and g* n that

Lemma 2.6 For all n = 0, ±1, ±2,... t/iere /10M5 i/ie following relations

Qa,n-l "i ~ î ^ >̂ (19)
?2,n = 92,n- (20)

Proof. Notice that
1 _ , . 2 (1- , )

which implies (19) immediately. The relation (20) can be checked easily.

Remark 2.7 The property q^n^ Q2,n shows that the sequences (12) and (16) coincide if a = 2.
Hence, the mapping (18) takes the form Fq2n : Qq2tn(^) —> ^2 ,n+i(2), recovering Lemma 2.16 of
flj. Moreover, in this case the relation (19) holds for the sequence (12) as well. If a < 2 6 , then
the values of the sequence (16) are splitted from the values of qa,n- The shift can be measured as

_ , ( 2 - a ) ( l - g )
qa,n qa,n ~ a + n^ _ qy

vanishing for a = 2 , \/q, and for q = 1, Va.

Define for n — 0, ±1 , . . . , k = 1, 2,.... the operators

and

^ a , n —A: y a , n — 1 y a , n —fc 4 a , n —2 y a , n — 1

In addition, we assume that F^[/] = / , if k = 0 for any appropriate q.
Summarizing the above mentioned relationships, we obtain the following assertions.

6As is known in the classic theory (q = 1) this case describes anomalous diffusion processes. If g = 1, then
qafn = qa,n = 1- In the nonextensive systems, as we can see from (18), there exist two separate sequences, which
characterize the system under study. A physical confirmation of this theoretical result would be highly interesting.



Lemma 2.8 The following mappings hold:

1- FqLn: gqaJa)^gqa,n+l(a),n = O,±l,..-

2- F*:Gqa,M)^Qqa!k+n(a), k = 1, 2,..., n = 0, ±1,. . . .

3. \imk^±oo F*Qq{a) = G{a),n = 0, ±1, . . . ,

where Q(a) is the set of classic a-stable Levy densities.

Lemma 2.9 The series of mappings hold:
F* F* F * F *

9 9 9 9

p-i F""1 F""1 F"1 F~l

qa,-2 n , N
 9 Q , - I r> I \ 9 Q ' ° /^ / \ <7Q'1 /-> /• \ <?Q-2 / r » o \

••• ^ " ^ g a . - i W <~ ^ < ? ( a ) * ~ ^ , i ( f l ) " ~ ^ a , 2 ( a ) ^ ••• ( 2 2 )

Theorem 1. Assume 0 < a < 2 and a sequence {•••,qa,-2, Qa,-i, Qa,Q> 9a,i» 9a,2> •••} as given
in (14) with qo = q € (1/2,2). Let X i ,X2 , ...,XN, ••• be symmetric random variables mutually
qa^k~correlated for some k and all having the same probability density function f(x) satisfying the
conditions of Lemma 1.1.

Then ZN, with D^{qa^) = (nqa fc,a^r)Q(2~9a'fc) > ^s qa,k-conver9en^ to a (qa^-i, a)-stable distri-
bution, as N —> (X).

Proof. The case a = 2 coincides with Theorem 1 of [1]. For k = 0, the first part of Theorem
(^-convergence) is proved in Part I of the paper. The same method is applicable for k ^ 1. For
reading convenience we reproduce the proof for arbitrary k = 0, ±1, . . .

Assume 0 < a < 2. We evaluate Fqak{ZN). Denote Yj = DN(q)~l(Xj)J = 1, 2,.... Then ZN =
Yi -f ... + FJV- It is not hard to verify that, for a given random variable X and real a > 0, there holds
F,M:](£) = iv[X)(a2-^), for arbitrary q. It follows from that Fqtxk{Y{) = Fqak[f}( i r).

Moreover, it follows from the Q^-correlation of Y\,Y2,... (which is an obvious consequence of the
<7a,fc-correlation of X\. X2, •••) and the associativity of the g-product that

Fqatk[f](- ^-—r)®,a,fc...®ga,fcF9Qifc[/](- i—-) (TVfactors). (23)

Hence, making use of the properties of the g-logarithm, from (23) we obtain

K,,fc ^ , , [ ^ 1 ( 0 = N\nqatk Fqatk[f](- i—j) = 7Vln̂ fc(l - ^ + o(^)) =

- | ^ | a + O ( l ) , iV- ,oo , (24)

locally uniformly by ^.
Consequently, locally uniformly by £,

yv^oo Fg-fc ( Z y v ) = e d s a € ^ .* (Q) • (25)

Thus, Zjv is ga^-convergent.
To show the second part of Theorem we use Lemma 2.9. In accordance with this lemma there

exists a density f{x) £ GqaJc_1{a) that ^1<?;fc_1[/] = e^JJ: . Hence, Zyv is <2Qjfc-convergent to a
(5Q,)/c_i,a)-stable distribution, as N —> 00. Q.E.D.



3 Scaling rate analysis

In paper [1] we obtained the formula

3 — Qk — l
^ - (26)

for the Gaussian coefficient. It follows from this formula that the scaling rate in the case a = 2 is

6 =

where qk-\ is the q-index of the attractor. Moreover, if we insert the 'evolution parameter' t, then
the translation of a q-Gaussian to a density in Qq{cx) changes t to £2/Q. Hence, applying these two
facts to the general case, 0 < a < 2, and taking into account that the attractor index in our case
is q* h 1, we obtain the formula for the scaling rate

& = r77rAr* r- (28)

In accordance with Lemma 2.6 we have 2 - q£ A,_1 = 1/g* fc+1. Consequently,

g) , .
, ) ' ( 2 9 )

Finally, in terms of Q = 2q - 1 the formula (29) takes the form

2 2a + ( f c - l ) ( l - Q )

a2a + (/e + l ) ( l Q ) " l ;

In the paper [1] we noticed that the non-linear Fokker-Planck equation corresponds to the case
k = 1. Taking this fact into account we can conjecture that the fractional generalization of the
nonlinear Fokker-Planck equation is linked with the scaling rate 5 = 2/(a + 1 — Q), which is derived
from (30) putting k = 1. In the case a = 2 we get the known result 5 — 2/(3 — Q) obtained in [14].

4 About additive and multiplicative dualities

In the nonextensive statistical mechanical literature, there are two transformations that appear
quite frequently in various contexts. They are sometimes referred to as dualities. The multiplicative
duality is defined through

l / 9 , (31)

and the additive duality is defined through

u(q)=2-q. (32)

They satisfy /i2 = v2 — 1, where 1 represents the identity, i.e., l(q) = q,Vq. We also verify that

( H m M m = (^)m(/"/)m-= 1 (m = 0,1, 2,...) . (33)

Consistently, we define (//z/)-m s ( ^ ) m , and (vfi)~m =

9



Also, for m = 0 , ± l , ± 2 , . . . , and Vg,

/ \m / \ rri ~~ ym ~ •*•) q q ~̂~ ^ ( i ~ q) ioA-,
\LLV) iq) = = ; , ( 3 4 )

m + l — mq 1 + m(l — q)

m + 2- ( m + l ) g 2 - g + m ( l - g)
v{liv)m(q) = — = —— 7̂  r— , (3o)

m+l-mq l + m ( l —g)
and

i \m M - m + l + mg 1 - m(l - g)
( ^ ) M(<?) = „. , / . ..v = " — - 7 ; -r • (36)

We can easily verify, from Eqs. (12) and (34), that the sequences q2,n (n = 0, ±2,±4,...) and
qln (n = 0, ±1 , ±2,...) coincide with the sequence (/i^)m(gr) (m = 0, ±1 , ±, 2,...). This establishes
a remarkable connection between sequences which emerge naturally within the context of the q-
generalized central limit theorems, and the elementary dualities that we introduced above. However,
its physical interpretation is yet to be found. It might be especially interesting if we take into
account the fact that such a connection could be a crucial step (see footnote of page 15378 in [10])
for understanding the g-triplet that was observed by NASA using data received from the spacecraft
Voyager 1 . Indeed, the existence of a g-triplet, namely (qSen,QrehQstat), (related respectively to
sensitivity to the initial conditions, relaxation, and stationary state) was conjectured in [21], and
was indeed observed in the solar wind at the distant heliosphere [22].

5 Conclusion

The q-CLT formulated in [1] says that an appropriately scaled limit of sums of g^-correlated random
variables with a finite (2qii — l)-variance is a g^-Gaussian, which is the ^-Fourier image of a q^-
Gaussian. Here q^ and q*k are sequences defined as

_ 2g + fc(l-g)
qk~ 2 + fc(l-?)' ' ' • • • ' .

and
q% = qk-i, k = 0,±l,.. . .

Schematically this theorem can be described as (see Fig. 1 in [1])

{/ : <T2qk-iU) < oo} ^ Qqk{2) i i gql{2) (37)

where Qq{2) is the set of all g-Gaussians. We have noted that the processes described by the g-CLT
can be effectively described by the triplet (Patt, Peon Psd), where Patt, Poor and Psci are parameters
of attractor, correlation and scaling rate, respectively. We found that

{Patt,PCor,PSd) = {qk-\,qk,qk+i)- (38)

In Part 1 of this paper we have studied a g-generalization of symmetric a-stable Levy distribu-
tions. Schematically the corresponding theorem (Theorem 1 of [2]) is described as

C{q.a) A QJOL) ^L g L ( 2 ) , 0 < a < 2, (39)

10



where £(q, a) is the set of (q, a)-stable distributions, QqL (2) is the set of <7L-Gaussians asymptotically
equivalent to the densities / € £(q,a). The index qL is linked with q as follows

Note that the case a ~ 2 is peculiar and we agree to refer to the scheme (37) in this case.
In the present paper (Part 2, Theorem 1) we have studied a ^-generalization of the CLT to the

case when the (2q— 1)—variance of random variables is infinite. The theorem that we have obtained
generalizes the g-CLT, which corresponds to a = 2, to the full range 0 < a < 2. Schematically this
theorem can be described as

Fq
 F

q*

£{qa,k,a) - ^ Gqaik(a) <-̂ * &£ifc(2), 0 < a < 2, (40)

having the same meaning as the scheme (37). The sequences qa^ and q*a k in this case read

and

Note that the triplet (Patt, Pcor, Psci) mentioned above takes, in this case, the form

(Patt,-Pcor,Psd) = (?J,A-1» &*,*> (2/^)^a,A;+l)'

which coincides with (38) if a — 2.
Finally, unifying the schemes (39) and (40) we obtain the general picture for the description of

stable distributions:

k^) ^ gqa,k(a) FS$ Qqlk(2) (41)

where

In Fig. 2 the connection of {Q,a) G Q with qL and q*, (k = 0) is represented. If Q = 1 and
a = 2 (the blue box in figure), then the random variables are independent in the usual sense and
have finite variance. The standard CLT applies, and the attractors are classic Gaussians.

If Q belongs to the interval (-1,3) and a — 2 (the blue straight line on the top), the random
variables are not independent. If the random variables have a finite Q-variance, then the paper [1]
applies, and the attractors belong to the family of the <j*-Gaussians. The support of attractors is
compact if Q < 1 and infinite if Q > 1. Note that q* runs in (-1,1) and in (1,5/3) if - 1 < Q < 1
and 1 < Q < 3, respectively. Thus, in this case, attractors (q*-Gaussians) have finite classic
variance (i.e., 1-variance) in addition to finite g*-variance.

If Q = 1 and 0 < a < 2 (the vertical green line in the figure), we have the classic Levy dis-
tributions), hence the random variables are independent, and have infinite variance. The classic
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Figure 2: (Q.a)-regions (see the text).
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Levy-Gnedenko CLT applies, and the attractors belong to the family of the a-stable Levy distri-
butions.

If 0 < a < 2, and Q belong to the interval (-1,3) we observe the rich variety of situations that
we have described. Let us first consider 1 < Q < 3. Then the random variables are not independent,
have infinite variance and infinite Q-vanance. The rectangle {1 < Q < 3; 0 < a < 2}, at the right
of the classic Levy line, is covered by non-intersecting curves

CqL EE {(Q,a) : i ± ^ = gL], 5/3 < gL < 3.

Consistently with [l], these families of curves describe all (Q, a)-stable distributions based on the
mapping (39) with q-Fourier transform. The constant qL is the index of the gL-Gaussian attractor
corresponding to the points (Q, a) on the curve Cqi. For example, the green curve corresponding
to q — 2 describes all Q-Cauchy distributions, recovering the classic Cauchy-Poisson distribution
if a = 1 (the green box in the figure). Every point {Q,a) laying on the brown curve corresponds
to qL = 2.5.

At the same time, we have there another description of the (Q, a)-st&ble distributions, which is
based on the mapping (40) with g*-Fourier transform. Again the rectangle {1 < Q < 3; 0 < Q < 2 }

is covered by (straight) lines

) : ^ 3 1 = 3 - « • } , (42)

which are obtained from (16) replacing n = — 1 and 2q — 1 = Q. For instance, every (Q,a) on the
line F-I (the blue diagonal of the rectangle in the figure) identifies <?*-Gaussians with q* = 5/3.
This line is the frontier of points {Q,a) with finite and infinite classic variances. Namely, all
(Q,a) above the line F-I identify attractors with finite variance, and points on this line and below
identify attractors with infinite classic variance. Two bottom lines in Fig. 2 reflect the sets of q*
corresponding to lines {( — 1 < Q < 3; a = 2)} (the top boundary of the rectangle in the figure) and
{(1 < Q < 3; a = 0.6)} (the brown horizontal line in the figure).

Finally, we describe the rectangle {{Q,a) : - 1 < Q < 1; 0 < a < 2)}, at the left of the
classic Levy line, analizing the formulas by continuity. In this region we see three frontier lines,
F-II, F-III and F-IV. The line F-II splits the regions where the random variables have finite and
infinite Q-variances. More precisely, the random variables corresponding to (Q,a) on and above
the line F-II have a finite Q-variance, and, consequently, the paper [1] applies. Moreover, as seen in
the figure, the gL-attractors corresponding to the points on the line F-II are the classic Gaussians,
because qL =• 1 for these (Q,a). It follows from this fact, that gL-Gaussians corresponding to points
above F-II have compact support (the blue region in the figure), and gL-Gaussians coresponding
to points on this line and below have infinite support. The line F-III splits the points {Q,a) whose
gL-attractors have finite or infinite classic variances. More precisely, the points (Q,a) above this
line identify attractors (in terms of #L-Gaussians) with finite classic variance, and the points on
this line and below identify atttractors with infinite clasic variance. The frontier line F-IV with the
equation Q + 2a — 1 = 0 and joining the points (1, 0) and (—1,1) is related to attractors in terms
of t/*-Gaussians. It follows from (42) that for (Q,a) laying on the line F-IV, the index q* — — oo.
Thus the horizontal lines corresponding to a < 1 can be continued only up to the line F-IV with
q* £ (—oo, 3— Q + 2 ^ _ 1 ) (see the dashed horizontal brown line in the figure). If a —* 0, the Q-interval
becomes narrower, but g*-interval becomes larger tending to (—oo,3).

Let us stress that Fig. 2 corresponds to the case k = 0 in the description (41). The cases k ^ 0
can be analyzed in the same way. We also note that the method we used for the ^-generalization of
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the classic and the Levy-Gnedenko CLTs is applicable for 0 < q < 2 (or equivalent^ — 1 < Q < 3).
So, the description of (Q,a)-stable distributions corresponding to the region Q < — 1 (the white
rectangle and its left side in the figure) remains open at this point.
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