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Lecture 1: Computer Simulations of Classical
Systems Inspired from Tsallis Statistics

loan Andricioaei
University of Michigan



Theoretical Considerationsi
Two incarnations of the canonical ensemble based on generalization
of statistical mechanics of Tsallis

A generalization of the law of mass action —>> equilibrium constants.
Rate constants for barrier crossing from TST.

Monte Carlo and Molecular Dynamics algorithms to sample Tsallis
statistical distributions. Demonstrate that Tsallis MC and MD
algorithms enhance phase space sampling in complex systems.
Better optimization methods.



An introduction to Tsallis statisticsi
Generalization of Gibbs-Boltzmann statistical mechanics (Tsallis,
1988). Re-express Gibbs-Shannon entropy S = — k f p(T) Inp(T)dT
as

S = lim Sq = lim - * - / p , ( r ) ( l - ^ ( r ) ] ' " 1 ) ^ (1)lim Sq lim
q->l q^l q — 1

where dT = drNdpN is a phase space increment.

Inspired by "replica trick" identity lnx = limn^0

Tsallis studied properties of Sq, "generalized entropy." Structure of
Gibbs-Boltzmann statistics remained intact before the limit is
taken; that is, for Sq-L\.

This prompted use of generalized formalism (based on the
non-additive entropy Sq) to re-derive stat mech for non-extensive
systems (Tsallis, 1995).

For example, define probability to be at T = (rN, pN) by



extremizing Sq subject to constraints:

[Pq{T)dT = l and /'\pg(T)]« H(T)dT = Eq (2)

where H(T) is Hamiltonian.

The result is

where

plays role of (canonical) partition function. Using
rimn^0(l + an)1/71 = exp(a), in the limit q = 1, standard
Gibbs-Boltzmann

(3)

(4)

^ (5)

is recovered.



Surely you're joking, Mr. Tsallis I

Before limit is taken, properties are strange in five ways.

1. For q y^ 1 regime, certain points may have pq(T) negative or
imaginary. We set probability zero there. This may be even for
finite energy.

2. Equally foreign, when q ̂  1, relative probability of two points
depends on choice of zero of energy. By defining

probability at T takes familiar form:

P(T) =

3. However, for constant shift e, relative probability

(6)

(7)

*- newj - (i - g)/?(g(rnew) + e) 1-q

(8)



depends on e!

4. A way out is to rewrite ratio

Pq\*- new/

L 1 - (1 - q)0'H(Told) J
and absorb e in effective "temperature"

1-q

(9)

(10)

In q = 1 limit, effective temperature equals standard temperature.
Otherwise, adding potential shift = rescale temperature.

5. Equilibrium averages calculated using weighting by probability
pq(T) of Eq. (3) raised to the power of q (required by the
generalized statistical mechanics).

6. The so-called q-expectation value is written

...)q = J\pq(T)]«...dT. (11)

In general, (l)q ^ 1 for q ^ 1. Clearly, an odd "average!" Also
6



inconvenient: requires Zq.

7. Is "temperature" 1//3 related to the variance of momentum as in
classical equipartition theorem? No simple generalization of
equipartition theorem. For the 2N dimensional phase space
F = (x\ ... XN,PI, .. -PN) ensemble average of harmonic system is

{ }

For q = 1, standard result (p|) = 1/(3. In general, average
proportional to 1/(3 but not equal to it. Situation equally strange
for unnormalized "multifractal" average where

(pl)q = stuff x p+(1_q)N/2 (13)

but the "stuff" is a q-dependent constant that may be negative or
imaginary!

Distribution of momenta cannot be written as a product of single

7



particle distributions

(P2
k+pl)g^2(pl)q. (14)

No linear scaling of momentum variance with degrees of freedom.

8. When q = 1, can use extensivity of entropy to derive Boltzmann
entropy equation S = klnW (microcanonical ensemble). When
q 7̂  1, odd property that the generalization of the entropy Sq not
extensive leads to peculiar form of probability. Non-extensivity of
Sq has led to speculation that Tsallis statistics applicable to
gravitational systems where interaction length scales comparable to
the system size violate the assumptions underlying
Gibbs-Boltzmann statistics (Maddox, 1993)

8



Ideal systems I

Let's focus on the q > 1 regime for systems with a Hamiltonian of
the form

k

partition function:

dN

where A = yTz^S/^Trm thermal wavelength of fcth oscillator.

For an ideal gas (U = 0)

where L length of box with ideal gas. For q —>• 1 use asymptotic
9



approximation T(x + a)/T(x + b) — xa 6, (for large x) to show
recovery of standard partition function ideal gas.

dN

Now N 1-d harmonic oscillators with Hamiltonian
N

= £
k

pi + (19)

Canonical partition function:

Zq =
N I dpNdxN I dp (20)

Configuration integral can be evaluated and partition function is

Note no unique separation Zq = However, using result

10



for the ideal gas translational partition function

^q n
In the limit q —>• 1:

and Gibbs-Boltzann canonical partition function recovered.

11



For certain g's and harmonic potential, distribution pq(T) can have
infinite variance (Cauchy). This motivated use of ^-expectation
value to compute average as

(24)

To avoid (l)q ^ 1 and need to compute Zq to average, we employed
different generalization of canonical ensemble average

(25)

which is obviously normalized.

With new definition, integrate over momenta to get

f A(rN )[1-{1-q)/3U (r*)]T-
+ - ^

dN (26)

12



Useful: not necessary to evaluate the partition function to average.
(Difficult to compute partition function numerically by importance
sampling.) Will lead to feasible algorithms.

13



Monte Carlo methods for pure Tsallis statistics I

Configurational Monte Carlo algorithm based on uniform random
trial moves and acceptance probability

= mm 1 / Pq\rnew)
N

(27)

where pq(r) oc [1 — (1 — q)/3U(r)] 1~q, samples for Eq. (26). Such
Monte Carlo algorithm used to compute averages for Tsallis
statistical distribution.

In thermodynamic limit (large N) for g / 1 we find acceptance
probability = 1 for even the largest AU. Effectively, Monte Carlo
sampling reduces to random walk on U landscape. Can use this to
devise a sampling scheme to overcome broken ergodicity. Only
part-time acceptance in Eq. (27), rest spent sampling by standard
Metropolis criterion, (q-jumping)

Alternatively, use MC with uniform trial moves and acceptance
14



probability

new
p = mm (28)

to sample [^(F)]9. In thermodynamic limit, no peculiar behavior.
Moreover, an algorithm of this sort can be used to calculate
standard, Gibbs-Boltzmann (q = 1) equilibrium averages

A e-/3H(r) \ I e-/3H(r)
( A ) = '

- (1 - q)PH(T)] T=t/q \ [1 - (1 - q)PH(T)} T=

Proper q — 1 equilibrium calculated over trajectory sampling for
q 7̂  1 (with advantage of enhanced sampling for q > 1).

15



Chemical equilibrium I

Bistable system (reactant-product)

a ^ 7. (30)

Equilibrium constant

Keq = (31)
/[p,]«0a(r)dr

where Xa and X7 mole fractions of reactants and products,
Heaviside functions 9a(T) and 07(T)

If barrier >> &T, expand potential using a harmonic
approximation to the a and 7 potential wells. For the a state well

~ U(xa) +

Equilibrium constant low temperature equilibrium constant is

1 - (1 - q)0U(xa)

(32)

X
X

7 U)

a. UJ1
16

1-q

(33)



If q / 1, equilibrium distributions are more delocalized and low
temperature approximation may not be well justified.
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Transition state theory for rates of barrier crossing I

TST upper bound on rate of transition between states.
Assumption of theory: once reactant acquires energy to cross
barrier, it will cross the transition and deactivated as product.
What is TST rate constant in Tsallis statistics?

Need not know dynamics of p but only equilibrium.

For bistable potential with TS at x — x+, the TST rate for forward
reaction is

f
= ( 3 4 )

where pq(T) = pq(x,v) is generalized statistical distribution

(35)

18



with

i r°° r°° i
rz I 7 / j f i (~\ \ o TT ( W ~i /o/^ \/, I rl nr> I /7 7) I I I CI I / "1 r~l I T* 7 J I 1 — <7 I -thZJQ I LLJb I Ct/1/ I _L I ± L£lj^JJ.l V ' /J \ /

^ J —oo J —oo

and iJ(x, v) — mv /2 + C/(x) Hamiltonian.

TST rate constant

where

'a:*

[
—oo

- f3(l - q)U(x)]^ + ^ dx. (38)

Can approximate this fraction of states in the reactant well, by
expanding the potential in a harmonic approximation and assuming
that the temperature is low compared with the barrier height.

19



This leads to rate constant

kTST
2TT

1 - (1 - q)0U{x*)
l-(l-q)/3U(xa)\

1-q

As expected, limit q —>• 1 gives standard TST result

LJ
kTST(P;« = 1) = ^ exp[-/3(C/(xT) - U(xa))}

Z7T

(39)

(40)

20



Returning to the more general expression, in the low temperature
limit we find that the rate

OJ,

2TT

U(x*)
[U(xa)\

1-q

independent of the temperature (even when T=0)!

For the special case of q = 2 we find

'a
2?r _l+/3U(xt)_

(41)

(42)
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Temperature scaling in simulated annealing!

Using TST results, can derive scaling relation in simulated
annealing optimization protocol.

Suppose relevant energy scales of U(rN) bounded by AU = the
difference in energy between the ground and first excited state
minima, and U* = highest barrier accessed from global energy
minimum. Final temperature (maximum f3) reached in simulated
annealing run must be small enough so mole fraction in the global
energy minimum is significant. In other words, based on Eq. (33)

we demand that if ™ax = Keq (/3max;

Time trajectory must spend at /3max to ensure equilibrium
distribution sampled is at least rm^n, the time required to
surmount largest barrier separating the global from other minima.
Using Eq. (39), find

2TT
7m in —

UJ
a 22

77' AU

l-q

(43)



where

(44)

is maximum allowable equilibrium constant for ground and
first excited state populations at final and lowest temperature
reached in the annealing run, /3m a x . For most cases of interest,
rj « 1.

For limit q —> 1 of Gibbs-Boltzmann statistics, using

l im^ 0 [ l - a(l - bx)]^x = ba, find that

/2TT\ _ut_
Train = I ) V AU • (45)

\Wa J

Time for classical simulated annealing increases exponentially as a
function of the ratio U+/AU. However, for q > 1 the situation is
qualitatively different. As a result of the weak temperature
dependence in the barrier crossing times, the time increases only
weakly as a power law.

23



Maxwell-Tsallis statisticsi
We developed MC algorithms based on sampling Tsallisian
distributions. Using acceptance probability

p = mm 1,
,N

detailed balance

[pq(x)]qW(x -> xl) = \pq(x')]qW{x' -+ x)

is satisfied where W(x, x') transition matrix.

The walk generated by Eq. (28) samples the distribution

(46)

(47)

(48)

This probability can be found by extremizing generalization of

24



entropy Eq. (1) subject to the constraints

fpq(r
N)dvN = 1 and f[pq(v

N)}qU(rN)dvN = Uq (49)

25



Hybrid Monte Carlo algorithm

Implement a hybrid MD/MC method composed

1. Velocities are randomly chosen from a Maxwell distribution at a
given temperature.

2. The positions and velocities are updated for a time step At
according to Newton's equation of motion using the force deriving
from U.

3. The point (phase space point or configuration) is accepted or
rejected according to the criterion

p = min [1, exp[-/3(AK + At/)]] (50)

where AK is the change in standard classical kinetic energy and
AU is the change in the effective potential energy

^Tj) l n [!-(!- QW^)] . (51)

4. Return to 1.
26



When integrator reversible and symplectic, acceptance exactly
satisfies detailed balance and the walk samples equilibrium
distribution [pq(r

N)]q.

Similar algorithm used to sample the equilibrium distribution
[pq(r

N)]q in the conformational optimization. When q > 1,
conformational sampling greatly enhanced over standard
Metropolis MC. In this form, the velocity distribution can be
thought to be Maxwellian.

27



Molecular dynamics with an effective potential I

MC algorithm generates

Pq(r
N) = [1 — (1 — g)/3C/(rAr)]T39. (52)

Define effective potential Wq(v
N;(3)

Pq(r
N) = exp(—f3Wq(r

N]f3)) (53)

such that when q = 1, W ^ ; ^ ) = U(rN). For q / 1, the effective
potential will depend on temperature as well as the coordinates.

Given this effective potential, it is possible to define constant
temperature molecular dynamics algorithm such that the

trajectory samples the distribution Pq(r
N). The equation of

motion then takes on a simple and suggestive form

1 (54)

for particle of mass rrik and position r^ and U defined by Eq. (51).
28



Constant-temperature molecular dynamics algorithm generates

Effective force derived from the effective potential W(rN) has
interesting properties. Fq(r

N]f3) = —VVkU — Fi(vN)aq(r
N; /3)

where Fi(rN) is "exact" force for standard MD (q — 1) and

aq(r
N;f3) is a scaling function which is unity when q — 1 but can

otherwise have a strong effect on the dynamics.

In the regime q > 1, the scaling function aq(r
N, ft) is largest near

low lying minima of the potential. In barrier regions, where the

potential energy is large, aq(r
N,/3) small. It may surprise you that

for the function to be well defined, /3U must be greater than zero.

Use of the effective potential has the effect of reducing the
magnitude of the force in the barrier regions. Therefore, a particle
attempting to pass over a potential energy barrier will meet with
less resistance when q > 1 than when q = 1.

At equilibrium, this leads to more delocalized probability
distributions with an increased probability of sampling barrier

29



regions. This argument demonstrates that when q > 1 the
generalized molecular dynamics or Monte Carlo trajectories will
cross barriers more frequently.
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Rate and equilibrium constants I

Once again carry out integral in low T approximation

kTST\
UJ

a v q — 1 - (1 - q)0U(x*)

l-(l-q)pU(xa)_

q-1

(55)

Equilibrium constant is

UJa

X,
l-(l-q)0U(xa) 1-a + 2

(56)

In the limit q -)• 1, standard TST:

(7=1) = ^ exp[-l3(U(x*) - U(xa))] (57)

recovered.

Return to more general expression, in low temperature limit TST

31



estimate of rate is

UJa

2?r U(xa)_

1 - g

(58)

which scales as 1/vT? at low T for all q.

For special case of q — 2 find

UJrv

7T /3U(xi)_
(59)

For q = 1, normal TST rate independent of T at high T and varies
exponentially with T in the limit kT « U* as

&T5T ^ exp(—/3C/+). (60)

For g / 1, at high temperature the rate is independent of
temperature krsr = ua/7r which is a factor of two larger than the
result for q = 1. At low temperature

-1/2 (61)
32



independent of g! As q —»• 1 exponential (Arrhenius) T dependence

recovered. However, for larger values of q temperature scaling of

rate is weak inverse power law. At all temperatures, the TST rate

is significantly larger for q > 1 than for q = 1.
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Master equations and relaxation to equilibrium!

Fig. 1 The two-dimensional potential considered in the text has two
deep holes, seen in the front and left sides of the plot, and a less deeper
hole to the right.
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Relaxation of a system to equilibrium can be modeled using a
master equation

dt = Yt[LijP,(t)-i'jiPiV)]- (62)

Elements of the transition matrix from state j to state i can be
estimated in the transition state theory approximation

l-q
UJj_

2TT

where the total phase space probability of the jih state is
proportional to

2TT

(63)

(64)

The symmetric transmission coefficients are defined Bij = Lij Mi.
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The general solutions are of the form

Pi(t) = V an<f>\n) exp(-Xnt) (65)
n

in terms of the eigenfunctions (jy^ and eigenvalues An of the
transmission matrix L.

Calculate eigenvalues for a two-dimensional model system
described by a potential function consisting of three holes, two
deeper holes of equal depth, and a more shallow hole.

The barrier between the deeper holes is higher than the other two
barriers, which have equal height.

One of the three eigenvalues is zero, for any q, for reasons of
conservation of probability.

Plot the other two as a function of g, together with their ratio.
There is to be observed, for a thermal energy of a tenth of the well
depth, the quick increase in the magnitude of the eigenvalues for

36



This implies fast relaxation to equilibrium even at low
temperatures, due to the delocalized character of the Tsallisian
distributions.
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0

Fig. 2 The dependence on q of the non-zero eigenvalues of the
two-dimesional, three-hole model described in the text shows the rapid
onset of escape from wells as soon as q exceeds unity and the
saturation at higher values of q. Also shown is the logarithm of the
ratio of the two non-zero eigenvalues.
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Do we expect this model to be accurate for a dynamics dictated by
Tsallis statistics?

A jump diffusion process that randomly samples the equilibrium
canonical Tsallis distribution shown to lead to anomalous diffusion
and Levy flights in the 5/3 < q < 3 regime (Tsallis, 1995)

Due to delocalized nature of equilibrium distributions, might find
that microstates of master equation are not well defined. Even at
low T, it may be difficult to identify distinct microstates.

Same delocalization can lead to large transition probabilities for
states not adjacent in configuration space. This would violate
assumption of the transition state theory - that once the system
crosses the transition state from the reactant microstate it will be
deactivated and equilibrated in the product state.

However: Concerted transitions between spatially far-separated
states may be common. This would lead to a highly connected
master equation where each state is connected to a significant
fraction of all other microstates of the system. (Zwanzig 1995)

39


