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Plan of the lectures

Part 1

> Dynamics and Thermodynamics of the Hamiltonian Mean Field (HMF) model: a simple
model of fully-coupled particles on the unitary ring or classical spins, whose behavior seems
to be paradigmatic for a large class of nonextensive systems: Equilibrium case

Part 2

> Dynamical anomalies in the out-equilibrium regime and the role of initial conditions:
a Quasi-Stationary States & Negative specific heat
a Chaos suppression & slow dynamics
a Anomalous diffusion & Levy walks

a Non Gaussian velocity PDF, power law relaxation, aging
Generalized HMF model: the a-XY model

Links to Tsallis generalized statistics

Importance of initial conditions

Interpretation of the QSS regime in terms of a glassy phase

Part 3

> Non Hamiltonian systems:

> a) The Kuramoto model

> b) Coupled map lattices with noise

> c) Soc models for earthquakes dynamics
> Conclusions
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4 Motivation

Why one should study long-range interacting systems...

sLong-range interactions are important for phase transitions
in finite size systems, for example: fragmenting nuclei
and atomic clusters

*For understanding how one can treat statistically self-
gravitating objects and plasmas.

‘Long-range correlations are also frequently observed in
out-of-equilibrium and complex systems

In general long-range interactions pose fundamental
problems to standard statistical mechanics, so one needs
new statistical tools to treat them properly
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5  The HMF model

The Hamiltonian Mean Field (HMF) model

[1-cos($ —4)]

=1

Antoni and Ruffo PRE 52 (1995) 2361

*The system has an infinite range force

It is a useful paradigmatic model to study Hamiltonian long-range
interacting (nonextensive) systems as for example astrophysical systems,
but also fragmenting nuclei and atomic clusters
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6 Phase transition at equilibrium

The model can be seen as N classical interacting spins or particles moving on the unit
circle. One can define the total magnetization M as an order parameter

where the single spin is

m =(cos4,sin3)

The model shows a second-order phase transition,
passing from a clustered phase to a homogeneous one as
a function of energy

M=1 M=0
clustered phase for U<U, homogeneous phase for U>U,
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Equilibrium solution

By using the saddle point method, one gets for the free energy F

— BF =%Iog(%{j—§+ mzyalx(_zg + |09(27T|o(>’))j

1

where = T and k=1 is the Boltzmann constant
B
I

Then one gets the consistency equation L I—l =0 @
0

p

|
where M =|—1 and |; is the modified Bessel function of ith order.
0

Solving eq.(1) one gets the exact canonical equilibrium expression

y_E_apF)_1 1(1—|v|2)

— 4+ —
N 88 28 2

Caloric curve
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Critical behavior of the model

The model has a second order phase transition.
The critical point is at

and

Close to the critical point one gets for g—4

M~— E_E Uzi[l_dﬂ_z)}_}
p\2 B 28 B 2

Hence M vanishes with the classical critical mean field exponent 1/2

On the other hand, the specific heat |C, =¥

IS

5 1
C@)=7 and G =21 for T>T,

Close to the critical point |C, = (Tc —T )_a with
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9 Dynamics vs Thermodynamics

eThe model can be studied also dynamically by means of
microcanonical numerical simulations.

eOne can compare dynamical aspects with thermodynamical
ones.

eOne can study finite size effects.

eOne can also study how the system relax to equilibrium
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10 Dynamics

The equations of motion are:

=—-M, sing, + M cosé,

The potential is connected to the magnetization M as

Vv :%[1—(M5+M5)J:N7(1—M2)

The equations are solved numerically by using a fourth order simplectic
algorithm (Yoshida , Physica A 150 (1990) 262).

Energy is conserved with an error smaller than — =10 for a number
of timesteps =~ 108
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1 1 Critical behavior of the model for finite sizes

Microcanonical simulations follow the canonical prediction, even
for N=100

|e|=IT—T.

A. RAPISARDA ICTP 2006



12 Equilibrium

Good agreement between exact canonical solution and numerical
microcanonical simulations at equilibrium for various sizes N of the system

5 Order
| parameter

- (a)

0.4
|
Calaric curve

blll

(B)

| 1 1 1 | 1 1 1 |
0.4 0.8 1.2

U

Latora, Rapisarda and Ruffo PRL 80 (1998) 692,
Physica D 131 (1999) 38

o TTTTTTTTTTT T

o
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13 Dynamics at Equilibrium

One finds a maximum of the
largest Lyapunov exponent (LLE)
in connection to the critical point,
where both the fluctuations in
kinetic energy and temperature
and the specific heat present a
peak

Latora, Rapisarda and Ruffo
Physica D 131 (1999) 38

! 1 ! 1 1 1 1
oD 02 04 0B OB 10 12 14
U
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14 Dynamics at Equilibrium: scaling of the LLE
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15 Lyapunov spectra at Equilibrium

In Hamiltonian systems with N degrees of freedom

Lyapunov spectra vs. U Z

i _ZzN—i+1

At low energy only a few
degrees of freedom are
active.

T 03
[ 0.1 \
ESAY-

mLﬂmﬁﬁﬂﬂ&ai

:%MML\E&@& %%&ﬁ%&g pii ; s ifar s ade ST4 L

(positive part only)
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16 Lyapunov spectra at Equilibrium

No significant change in the shape of the spectra across the critical point is observed

Lyapunov spectra below and above the critical point

< N=100 U=D.7
4 N=100U=15
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17 Kolmogorov Sinai entropy

with

o0 —————————7————+ 7+ T T T T T
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1 8 Scaling laws fot the Kolmogorov Sinai entropy

[ N=1DD
& N=5D
+ N-2D
4+ N=1D
—== fit O3 xUF

———- i 03N
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1 9 Antiferromagnetic behavior of HMF

The HMF model can have also an antiferromagnetic behavior if one

considers
H=K-V

The general canonical solution for +\/ is

a
v

Ferromagnetic case : Antifarromagnetic case
' e
T [ ! (a)
——— Theoyfce) —— Theay fce)
* N=100 ! * =
W W=1000 H 7 W 000
I
I .,/
1
o

A
_‘#49'. 1
o
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20 Dynamics at Equilibrium

One has a different behavior of the Largest Lyapunov exponent and the
KS entropy in the ferromagnetic and antiferromagnetic case

N=100 N=100

* :}LL

] :-_]LL

=S, /N
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21

LLE in the thermodynamical limit

In the thermodynamic limit, the LLE goes to zero for the whole energy range in
the antiferromagnetic case, while it remains finite, for energies smaller than the
critical one (Uc=0.75), in the ferromagnetic one. In the latter case it goes to

zero for overcritical energies as A oc N3
10° —— e —————
I ferromagnetic case [ anikferromagnetic case
. (a) = U=05 | (D) % l=—g.a
! — 1 =04 O U=0.05
rU=2.0 =02
& =03
' + U=0.5
e e ‘;_' ® =20
i e———— QN |
= 100 | -
| M
*
*
; - p N—'I.'.!
N""'; \T *
N N
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22 LLE inthe antiferromagnetic case

Both the LLE and the KS entropy go to zero as |4 « Ju”
in the antiferromagnetic case

with U =U +%

Antiferromagnetic case

N=100

107 |

2
U —
" ———
k!
!
i
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23 Equilibrium PDFs for the HMF model

In the continuum limit, considering the one-body distribution oF 5 oF oV oF
function F, the evolution of the HMF model is described by the + - —
Yot " o9 09 éop

Vlasov equation

Supposing a factorization of the distribution function  |F = f(p)g(9,t)

One gets the stationary equilibrium solution

1 —p7 Mcos(9—¢y
f = f, ——¢ dl _ T
° A2xT g — goe

1
where % =o 7Ty . ¢ Isthe phase of M

and 1, isthe Bessel function

In the overcritical region

In the low energy region

Latora, Rapisarda and Ruffo Physica D 131 (1999) 38




24 Comparison with numerical pdfs

At low energy
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25 Comparison with numerical pdfs at equilibrium
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20 Anomalous dynamics

HMF model in the
out-of-equilibrium case




2/ OUT-OF-EQUILIBRIUM CASE

When the system is started with initial conditions very

far from equilibrium.....

we observe many dynamical anomalies,

In particular in an energy range below the critical point.
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28  Negative specific heat

In a region before the critical
point the specific heat
becomes negative:

the temperature decreases, by
increasing the energy density.

e This phenomenon has been
— Canonical equilibrium . ] ]
. observed in multlfragmentathn
o N=10000 time=1200 nuclear reactions and atomic
clusters, but also in self-
gravitating stellar objects, i.e.
for nonextensive systems.

See for example:
=Thirring, Zeit. Physik 235 (1970) 339
sLynden-Bell, Physica A 263 (1999) 293

*D.H.E.Gross, Microcanonical
Thermodynamics: Phase transitions in
Small systems, World Scientific (2001).

=*M. D’Agostino et al, Phys. Lett. B 473
(2000) 279

=Schmidt et al, Phys. Rev. Lett. 86 (2001)
1191
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Quasi Stationary States

U=0.69

uilibrium

The system lives for a very long
time in a metastable quasi
stationary state (QSS), whose
temperature defined as

_ 2<K>
T_ N

is smaller than the equilibrium one.

»The larger N, the longer the
QSS lifetime.
»The temperature T tends to

0.38 for N — oo
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30 QSS: initial evolution

QSS regime is reached almost immediately I

Time evolution from WBIC --> QSS

U=0.69 WBIC
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31 QSS and numerical accuracy

QSS do not depend on the accuracy of the integration I

U=0.69 N=500

WBIC -0

— time step = 0.05 AE/E=10"
o time step = 0.2 AE/E=10"
— time step = 0.4  AE/E=10"
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32 QSS lifetime and Temperature

The QSS lifetime diverges with
the size N

The QSS temperature goes to
T =0.38 (for U=0.69) as N —w0

inf

o]
_E
&
3
o
&
=

Notice that being

M?=T+1-2U =T -0.38

one has

MZ oc N—1/3I

Latora, Rapisarda and Tsallis PRE 64 (2001) 056134
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15 The energy density U=0.69

— Canonical equilibrium
B N=100000 time=1200
& N=10000 time=1200

The majority of the results
refer to the case U=0.69,
where anomalies are most
evident
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34 Force in the QSS regime

U=0.69 In the QSS regime the force
N=10000 (average over several events) |:i_ on the I_th spin 9095 to zero
05 B with the size N being
- T 0—0-006@
. &} P=——0—0-0000TI0—0=0=0-CO0M0——0— OO 0000 O O= O O D= R
| F =—M,sind +M, cosj
03
02
QSS regime > :
0.1 ¢ M2 Thus the QSS dynamics
o —0-00umE 0000000000 ooumm—o0oo® | IS slower and  slower by
increasing N.
0.1 For N-—o the system
02l | | | | | remains frozen in the QSS
10’ 10° 10° 10" 10° 10° regime
time-t
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35

Vanishing Lyapunov exponents

U=0.69 N=500

In the QSS regime
the largest Lyapunov
exponent tends to
zero as the size of
the system tends to
infinity

This scaling can be obtained considering that

Latora, Rapisarda, Tsallis

Physica A 305 (2002) 129

A. RAPISARDA ICTP 2006
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36 Importance of the order in the limits

Simulations show that, going towards the
thermodynamic limit, it is very crucial the time
order of the size limit and time limit to infinity

In general, the two limits do not commute:

N—o>wt—>0o # t—>0oN >

Boltzmahn-Gibbs

equilibrium
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Anomalous diffusion in the QSS regime

In general one has for
the mean square
displacement

o’ (t) c t*

o =1| Normal diffusion

a #1| Anomalous diffusion

In our case we get
superdiffusion with an
. exponent  o=1.38 in
time correspondence of the

QSS regime.
Latora, Rapisarda and Ruffo, PRL 83 (1999) 2104 I

A. RAPISARDA ICTP 2006




38 Anomalous diffusion: typical dynamics

‘ Phase space dynamics of a typical particle (spin) I

QSS Equilibrium

as T T T 5580
Levy walks I L Nesoo u-os  (3) A (c) Normal random walks
25 T 5588 ]

out—of-eguilibrium equilibrium
I . i regime
B 15 regime e 5588 | ]
[ ]
-
=] 55g7I'l.‘Iinllii"l'ri‘ﬁ\ilﬂn-!

5586

IR TN N I N TN S S T TN T A S Y | 5585 1 1 1 1 1 1 1 1 1 1 1
3200 3400 3800 3800 4000 100000 101000 102000 103000

o

_2 1 11 | I T | I TR | L1 _2 1 1 1 1 1 L 1 1 1 L 1
3200 3400 .'_3500 3800 4000 100000 101000_ 102000 103000
time time
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39 Anomalous diffusion

The cross-over times, from anomalous to normal diffusion,
coincide with the relaxation times

Equilibrium

Temperature
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40 Lévy walks: walking and trapping time PDFs

For a one dimensional system which shows sticking and flying particles with
constant velocity, one finds:

In our case we find
—/,l N . - =
I:)Walk(t) OCt U=0.6 N=500 (a)

-V v=1.34
Brap (1) oct

with when
a=2+v—u 2<pu<3
V<2

=193

E.walking times
[ + trapping times (x10)

Prob. distr. function

o=2+v—{1=1.36

See Klafter and Zumofen
PRE 49 (1994) 4873

2

10

time
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4 1 Time evolution of velocity PDFs

U=0.69 N=1000

ey )
)

3

— Gaussian
o t=1200
o {=8000

QSS regime '

3

Probability Distribution Function

i

=500000 |

Equilibrium regime
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Non-Gaussian velocity PDF

Probability Distribution Function

U=0.69

=1200

A. RAPISARDA ICTP 2006

Velocity PDFs
in the QSS
regime for
different sizes
N of the
system




43 Role of initial conditions for QSS

We have recently studied the nature of the

anomalous QSS regime by starting from different
initial magnetizations with <\ <1

(considering in all cases a uniform distribution in
momenta: water bag).

Dynamical anomalies depend on the initial conditions.
The most interesting are those observed for initial
magnetization \ -1
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44 QSS for different initial conditions: M1 vs. MO

U=0.69 1000 events

1 1 ||||||| | 1 ||||||| | 1 ||||||| | | ||||||| 1 1 |||||||
10" 10° 10° 10* 10°
time
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Dependence of QSS on the initial magnetization

U=0.69 N=1000

(average over 100 events)

o
¥
©
_
@
a
E
@
l_

o
e
o]

‘ .

il
M=0.4ic

1 1 I'Illlll L 1 1I1III‘ 1 1 |||r||| 1 I'IIIIII

10" 107 10"

time

Pluchino, Latora, Rapisarda Physica A 338 (2004) 60
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406 Correlations in phase space for different IC

# high vel.
* low vel.

time=()

time=5()

time=100

time=500

time=()

time=50

time=100

time=500

time=1000

Structures in phase-
space appear, in
the QSS regime for
M1IC, but not for
MOIC
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Dynamical evolution for different initial conditions

velocity

@ high vel.
@ low vel.
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Dynamical evolution for different initial conditions

@ high vel.
@ low vel.

TIME=:20 TIME = 30
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Dynamical evolution for different initial conditions

velocity

TIME =40

@ high vel.
@ low vel.

TIME = 40

b

velocity

33&;.'.“""
vgb‘:’g‘.’f%. 3
Fhgtdehil

-.l 0 : ik
theta position

M1 IC

e L g SUNR R R g s
S R L A s w,?ﬁ yd A
N B \933; ‘“’(3”’.;«

W age g

e ttowe s

b v )
LAt iﬁ’
it

A. RAPISARDA ICTP 2006

-.l 0 : 1
theta position

MO IC




Dynamical evolution for different initial conditions

@ high vel.
@ low vel.

TIME = 50 TIME = 50
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Dynamical evolution for different initial conditions

velocity
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@ low vel.
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Dynamical evolution for different initial conditions

velocity

@ high vel.
@ low vel.
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Dynamical evolution for different initial conditions

@ high vel.
@ low vel.
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Dynamical evolution for different initial conditions

@ high vel.
@ low vel.

TIME = 400 TIME = 400
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Dynamical evolution for different initial conditions

@ high vel.
@ low vel.
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Dynamical evolution for different initial conditions

@ high vel.
@ low vel.

TIME = 800 TIME = 800

velocity
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Dynamical evolution for different initial conditions

@ high vel.
@ low vel.
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Dependence of u-space structures on the i.c.
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66 Entropy and free energy for QSS

Free energy

S —
U=0.69 N=1000 (1000 events)

— M1IC
== MOIC

U=0.69 N=1000 (1000 events)

Also the entropy and the free energy show a different dynamical
evolution for the two initial conditions M1IC and MOIC
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Relaxation to equilibrium

[
One can study the process of
relaxation to equilibrium by
T T T T T T II| T T T T T 1T I| T T T . .
-069 N=1000 (500 events s MOIC means of velocity correlation
4 MIIC functions,

_ <P)P0) >—<P(t) <P(0) >
o(t)o(0)

where  p(t)=(p,, p,,...py)

" is the velocity vector, the
brackets indicate an average
over the events, and

. . a%t)
is the standard deviatioh” at
time t.
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68 Aging and strong memory effects

w' tw)

C (t+t

o

U=0.69 N=1000 M1 IC

| For M1 IC, the system, in going
towards equilibrium, shows strong
memory effects and aging, i.e. the
correlation functions depend on t
and on the waiting time t,,

<P+t )P(t,)>—<P{t+t,)><P(t,)>

Atot)= oft+1,)o(t)

Montemurro, Tamarit and Anteneodo PRE 67 (2003) 031106
Pluchino, Latora and Rapisarda, Physica D 193 (2004) 315
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69 Dynamical frustration

Pdf
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M=1 initial conditions:

- Each

cluster

tries to
maximum number of particles in order to
reach the final equilibrium configuration:

- Competition between clusters of rotating
particles in the QSS regime

capture the

15 T
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os |
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05 |
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This competition
leads to a
DYNAMICAL
FRUSTRATION in
the QSS regime!

M=0 initial conditions:

present

No competition and

no frustration are
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At equilibrium only one big rotating
cluster is present for both the IC



“Critical” cluster size distribution

L-SPACE PDF
t=0 | t=50 | t=500

Cumulative Number of Clusters

]_05:||||1

' ' T T TTT
N=10000 U=0.69

M1tic (average over 20 realizations)

o t=200
o t=350
s  t=500

The cumulative cluster
size distribution is a
power law for the QSS
regime, which is robust
for the entire plateau

Cumulative Number of Clusters

Cluster Size
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Cluster size distribution vs initial conditions

N=10000 U=0.69 (3

Sums over 20 realizations
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Cluster formation vs initial conditions
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Cluster formation vs initial conditions
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75  The generalized HMF model

The HMF model has been also generalized to
< : study the dynamic and thermodynamic behavior
(X-Xy mOdel as a function of the range of the interaction

1-cos@ —Qj)J

H=3 B LS

1+

*Anteneodo and Tsallis, PRL 80 (1998) 5313

Campa, Giansanti and Moroni, PRE 62 (2000) 303
*Tamarit and Anteneodo, PRL 84 (2000) 208

Campa, Giansanti and Moroni, J. Phys. A 36 (2003) 6897.

o <d| thisgeneralized model reduces to HMF.

a —> 0 one has interaction only among nearest neighbour spins.
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O-XY model and nonextensive effects

Anomalies depend in a
crucial way on the
range of the interaction

The lifetime t of the QSS does
not diverge for all a...

see A. Campa et al. Physica A 305 (2002) 137

Decreasing the range of the interaction, i.e. diminishing nonextensivity (¢ > 0)
this anomalous behaviour disappears:

Relaxation is very fast (7 oce™)

No negative specific heat is observed

A. RAPISARDA ICTP 2006



Long-range Lennard-Jones potential

Another example which support the long-range nature of the interaction as

the origin of negative specific heat is the
2-d Lennard-Jones gas with attractive potential

Vocr

Borges and Tsallis Physica A 305 (2002)148

Again decreasing the range of the interaction, i.e.

diminishing non extensivity

this anomalous specific heat disappears.

In correspondence they also find non-Boltzmann
velocity distributions

Further similar examples have been found in
self-gravitating systems, see

Sota et al PRE 64 (2001) 056133

1.2
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More precisely the potential energy Is

%2—05
cazg( b j IN(12 - )

a

a

o Is the diameter of the particles, b is a constant
and ¢ Is the energy scale.

For a=6 one gets the usual Lennard-Jones
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79

Interpretration of QSS regime

The anomalous QSS regime is the effect of non
extensivity or, in other words, of the long-range
character of the interaction.

These anomalies seems be connected to Tsallis
thermostatistics

Very recently a link with a glassy phase has also
been found

A. RAPISARDA ICTP 2006



30 Tsallis generalized thermostatistics

In the last decade a lot of effort has been devoted to understand if
thermodynamics can be generalized to nonequilibrium complex systems

In particular one of these attempts is that one started by Constantino Tsallis
with his seminal paper J. Stat. Phys. 52 (1988) 479

For recent reviews see for example:

» C. Tsallis, Nonextensive Statistical Mechanics and Thermodynamics , Lecture Notes
in Physics, eds. S. Abe and Y. Okamoto, Springer, Berlin, (2001);

* Proceedings of NEXT2001, special issue of Physica A 305 (2002) eds. G. Kaniadakis, M.
Lissia and A Rapisarda;

» C. Tsallis, A. Rapisarda, V. Latora and F. Baldovin in "Dynamics and Thermodynamics of
Systems with Long-Range Interactions"”, T. Dauxois, S. Ruffo,E. Arimondo, M. Wilkens
eds., Lecture Notes in Physics Vol. 602, Springer (2002) 140;

*'Nonextensive Entropy - Interdisciplinary Applications", C. Tsallis and M. Gell-Mann eds.,
Oxford University Press (2003).

* A. Cho, Science 297 (2002) 1268; S. Abe and A.K. Rajagopal, Science 300, (2003)249;
A. Plastino, Science 300 (2003) 250; V. Latora, A. Rapisarda and A. Robledo, Science
300 (2003) 250.

For a regularly updated bibliografy: http://tsallis.cat.cbpf.br/biblio.htm
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Tsallis conjecture for nonextensive systems

C.Tsallis, Braz. Jour. of Phys. 29 (1999) 1

EXTENSIVE SYSTEMS (a>d)

P(t.N.E)
P e Tl P o B

\ v (a=1)

o« giE)exp( BE)
N ok needed!

t

NOMNMEXTENSIVE SYSTEMS (Ogax<d)
p{t.N,E) lim  lim
{—t——m N—oo
pqé 1y
s lm iy
N—0 t—a0
| uco(Em-n-qur"’““';\ Eﬂ'”
1

cc giE) exp( B E)

H i _IN® neaded)
- TN t

Nl-:n:i -1
with #m TYN) =co and N®
N—on = 1 - oid

Figure 4. Central conjecture of the present work. assuming
a Hamiltonian system which includes two-body {attractive)
interactions which. at long distances., decay as r—%. The
crossover at ¥ = 7 is expected to be slower than indicated

in the figure (for space reasons).

A. RAPISARDA ICTP 2006



32 Generalized velocity pdfs

U=0.69 | Scaling to the theoretical PDF

t=1200

N=1000 | aman L
N=10000
N=100000
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83 g-exponential decay of C(t,0)

The decay of the  velocity
correlation function can be

. | T . — : — reproduced very well by means
U=0.69 N=1000 (500 events) s MOIC of the generalized g-exponential

i — = g-exp:g=1.12 =170 A=l 1
A MIIC

s — gexp:q=1.55 1=245 A=072 Aeq (X) = A[l+ (1— q)X]ﬁ

In our case x=-t/t . Within a
generalized Fokker-Plank
equation  which  generates
Tsallis g-exponential pdfs [1],
one can extract the following
relation between the exponent
7of the anomalous diffusion and

g 2

VZQ

1000 1500
Al . . In our case 7 =1.38-1.4, thus

102 we expect q=1.55-1.6, which is

time confirmed by the fit in the figure

for M11C. On the other hand, for

MOIC the decay is almost
[1] Tsallis and Buckman PRE 54 (1996) R2197 exponential.
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62 g-exponential decay also for different i.c.

T +l||rrl| T I|11IIFq
U=0.69 N=1000

{average over 500 events)

T T
[r1|||||
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85 g-exponential decay for aging

C(t+t,.t,)

T
el e, U=0.89 N=1000 (100 events)

1 g=1.65 =60 A=07

A. RAPISARDA ICTP 2006

Also for the aging
behavior, the power law
decay of the correlation
functions, after a proper
rescaling, can be
reproduced with a (-
exponential function.

In this case we get
g=1.65.




64 q vs initial Magnetization
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average behavior
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63 Anomalous diffusion for differenti.c.

| I'|II'II|

N=2000 U=0.69

(average over 30 events)
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65 Correlation decay vs range «

(N=1000, E=0.69, transiente=100, 30 Ev., M1 i.c.)

alfa=0; g=1.65
alfa=0.2; g=1.52
alfa=0.5; q=1.49
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alfa=1; q=1.39
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66 Summary of most recent results regarding

HMF model and g-statistics

Anomalous diffusion vs g-exponential decay

W o-XY-model

1.6 B N=5000 «=0 M=0ic.
15-U=0.69 & N=2000 =0 butdifferentic.
1,4 [ © N=1000 « inside [0,1], M=1 i.c.
T 131
2/(3-q) 12F M=0ic._ M=02ic M=04ic M=1 ic.

| S R e R o
1,’n—_*_ﬂ77¢‘_—{1$+:“m___

0,0 s ecaidiiiiiniiociiaiia f ——————————————
0,8

0.7 M=0.8 i.c

0,6 -

gl 2 d ¢ 0w B 5 F 39 [ g
1,0 g 1,2 1,3 1,4 1.5 1,6

Anomalous diffusion exponent Y

Rapisarda and Pluchino,

Europhysics News 36 (2005) 202 A. RAPISARDA ICTP 2006



90 Most recent results

Some unpublished results on
recent criticism

>
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Recent criticism

A few comments on recent criticism
regarding anomalous diffusion in the
HMF model and g-statistics



It seems that velocity pdfs can be described using Lynden-
Bell entropy within a Vlasov approach.. There are however

several discrepancies..... due to dynamical effects and initial
conditions
— R e N T B S e S T
Antoniazzi et al [, 1 [ ;" “.k <«
cond-mat/0601518 wg 1 / Y 3
7 ] [ 1]
-~ F 1 s ]
\E;ilfs' T e T‘j il :I.j
>| RN I e I
[ DO I T T A
wg ? LS I S v
o RERRE '3
g A eEF - &
n ]|:I Il I-E:jl IIII IIIIIjI Il llj u:Ld;I I] I-IZ:SI IIII IIIIISI Il I:']lh;
p

FIG. 20 Velocity distribution functions. Symbols refer to
numerical simulations, while dashed solid lines stand for the
theoretical profile ([@]). Panels a), b) and ¢) present the three
cases Mo = 0.3, Mo = 0.5 and Mp = 0.7 in lin-log scale,
while panel d) shows the case My = 0.3 in lin-lin scale. The

numerical curves are computed from one single realization
with N = 107 at time ¢ = 100. Here e = H/N = 0.69.
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It seems that velocity pdfs can be described using Lynden-
Bell entropy within a Vlasov approach.. There are however

several discrepancies due to dynamical effects and initial
conditions

Antoniazzi et al
cond-mat/0601518
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Latora, Rapisarda Tsallis

PRE 2001

o N=1000

< N=10000

® N=7100000

— Gaussian T, =0.476

- — Tsallis pdf g=7 T=0.38 with cut-off
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Anomalous diffusion is a finite size effect?

Antoniazzi et al
cond-mat/0601518

FIG. 3: The exponent v = dlog(c?)/dlog(t) is plotted as
a function of the rescaled time 7 = {/N. Starting from the
initial ballistic value 2, it converges to the normal diffusion

exponent 1. Simulations refer to My = 0.3, and Mo = 0.9,
Here N = 10° and e = H/N = 0.69.
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Moyano and Anteneodo

Anomalous diffusion is a finite size effect?

cond-mat/0601518

518 v3 25 Jan 2006

On the diffusive anomalies in a long-range Hamiltonian system

Luis G. Moyano
Centro Brasileiro de Pesguizas Fizicas - Rua Xawer Sigaud 150, 22200-180, Rio de Janeire, Brazil

Celia. Anteneodo
Departamento de Fisica, Pontificia Universidade Catdlica do Rio de Janeiro, COF 38071, 22452-970, Rio de Janeiro, Brazil

We scrutinize the anomalies in diffusion observed in an extended long-range system of classical
rotors, the HMFEF model. Under suitable preparation, the system falls into long-lived quasi-stationary
states presenting snper-diffusion of rotor phases. We investigate the diffusive motion of phases by
monitoring the evolution of their probability density funection for large svstom sizes. These densities
are shown to be of the g-Gaussian form, P(r) = {1+ (g — 1)[z/8]")"' -9, with parameter g
increasing with time before reaching a steady value g ~ 3/2. From this perspective, we also discuss
the relaxation to equilibrium and show that diffusive motion in quasi-stationary trajectories strongly

depends on system size.

PACS numbers: 05.20.-y, 06.60.Cd, 05.90.4m

I. INTRODUCTION

Systems with long-range interactions constitute a very
appealing subject of research as they display a wvariety
of dynamic and thermodynamic features very different
from those of short-range systems treated in the text-
books (see [1] for a review on the subject). Moreover, in
recent years, the study of long-range models have raised

at energies close helow £_[5]. In a QS state, the temper-
ature (twice the specific mean kinetic energy) is almost
constant in time and lower than the canonical value to
which it eventually relaxes. However, the duration of )5
states increases with the system size N, indicating that
these states are indeed relevant in the (N — oo} thermo-
dynamical limit (TL).

Several other peculiar features have been found for

A. RAPISARDA ICTP 2006




Moyano and Anteneodo

cond-mat/0601518

FIG. 1: Histograms of rotor phases at different instants of
the dynamics (symbols). Simulations for N = 1000 were per-
formed starting from regular water-bag initial conditions at
£ = 0.69 (conditions leading to QS states). Countings were
accumulated over 100 realizations, at times t, = 2%, with
k= 6,8, .14, growing in the direction of the arrow up to
t = 16384. Solid lines correspond to g-Gaussian fittings. His-
tograms were shifted for visnalization. Inset: log-log repre-
sentation of the fitted data.
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Moyano and Anteneodo
cond-mat/0601518

Anomalous diffusion is a finite size effect?

FIG. 2: Averaged time series of (o) temperature T, (b)) de
viation o, (o} diffusion e:ponent v and (d) parameter g, for
£ = 0.89 and different values of N [N = 500 = Z¥, with
kb =0...,9). Bcld lines correspond to N = 500, as refer-
ence, and N increases in the direction of the arrows up to
N = 258000. Averages wers taken owver 2.58 = 10°% /N real-
iations, starting from a waterbag configuration at ¢ = 0. In
panel (d}, the fitting error is approcc. 003, Dotted lines are
drmwn ms references. In (a), they correspond to temperatures
at equilibrium (Teg = 0.478) and at QS states in the TL

e = 0.838% In (k). to ballistic metion (v = 2 and normal
-E.rngu.nm [y II= 15 ® l: '

sponds o normal diffusion, v < 1 to sub-diffusion and
supser-diffilsion coours for o = 1. The evolution of o is
shown in Figs. 2b and b, for water-bag and equilibrinm
initial preparations, raspectively. In order to detact dif-
ferent. regimes, it is useful to obtain an instantanscus
axponsnt <y a3 a function of time by taking the logarithm
in both sides of Eq. (6] and differentiating with respect
tio Imi:

A. RAPISARDA ICTP 2006

FIG. 3: Aweraged time series of (a) temperatare T, (b)) 1o
cal expoment and parameter ¢ (symbols), as a function of
#/NYT Data are the same pressnted in Fig. 2.

i

aF(8)

im

FIG. 4: Histograms of rotor phases at different instants of the
dynamics {(symbals]. Simulations were performed for & = 500
and £ = 0,89, starting fom an equilibrated initial condition.
Countings were sccumtlated over 200 realizations, at times
fp = 0.1 = 4% &k = 5,4,..10, growing in the direction of the
arrow up to # == 1.05 = 10%). The g-Gaussian function with
g = 1.53 was plotted for comparison (solid line). Histograms
were shifted for visualzation.



It is not completely clear if anomalous diffusion disappears at large

N at the moment. However Initial conditions are extremely important

even forlarge N

[B]

Tsallis, Rapisarda, Pluchino

in preparation
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Single realizations can have a very different dynamics.
S0 a good statistics is needed even for large N.

251-1=0.69, N=50000, M‘I|c S B IR

Tsallis, Rapisarda, Pluchino

in preparation

10 0’ 0’ time  10° 10 10

N

||||| 1 | 1 | ||||||| | 1 |||||||
10 10 102 10’ time ~ 10° 10 10
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Tsallis, Rapisarda, Pluchino

in preparation
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A few notes on recent criticisms regarding
anomalous diffusion in the HMF model and
g-statistics

Recently a dynamical transition as a function of the initial magnetization was claimed by Chavanis

Lynden-Bell and Tsallis distributions for the HMF model

P.H. Chavanis

" Laboratoire de Phy=ique Théorique, Université Paul Sabatier, 118 route de Narbonne 31062 Toulouse, France
e-mail: chavanis@irsame .ups-tlss.fr

To be meluded later

Abstract. Systems with long-range mnteractions can reach a Cluasi Stationary State (55) as a result of
a violent collisionless relaxation. If the system mixes well (ergodicity), the QSS can be predicted by the
atatistical theory of Lynden-Bell (1967) based on the Vlasow equation. When the initial distribution takes
only two values, the Lynden-Bell distribution i= stmilar to the Fermi-Dirac statistics. Such distributions
have recently been cheerved in direet numerical simulations of the HMF model [{Antoniszzi et al. 2006). In
this paper, we determine the calorie curve corresponding to the Lynden- Bell statistics in relation with the
HMF model and analyvze the dynamical and thermodynamical stability of spatially homogeneous solutions
by using two general criteria previously introduced in the literature. We express the critical energy and
the critical temperature as a funetion of a degeneracy parameter fixed by the initial condition, Below these
critical values, the homogeneons Lynden-Bell distribution is not a maximum entropy state but an unstable
saddle point. Known stability criteria corresponding to the Maxwellian distribution and the water-hag
distribution are recovered as particular limits of cur study. In addition, we find a eritical point below
which the homogeneous Lynden-Bell distribution is always stable. We apply these results to the situation
considered by Antoniszzi et al. For o given energy. we find a eritical initial magnetization above which the
homogeneous Lynden-Bell distribution ceases to be a maximum entropy state, contrary to the claim of
these authors, For an energy U7 = 0,69, this transition ocours above an mmitial magnetzation M. = 0897,
In that case, the system should reach an inhomogeneous Lynden-Bell distribution (mest miced) or an
incompletely mixed state (possibly fitted by a Tsallis distribution). Thus, our theoretical study proves
that the dynamics is different for small and large initial magnetizations, in agreement with nuwmerical
results of Pluchine et al. (2004). This new dynamical phase transition may reconcile the two communities.

=
=
|
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o,
<
o)

cond-mat/0604234 v1

PACS. (5.45.-a MNonlinear dynamics and nonlinesr dvnamical systeims

Xiv
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A few notes on recent criticisms regarding
anomalous diffusion in the HMF model and
g-statistics

Recently a dynamical transition as a function of the initial magnetization was claimed by Chavanis

See Chavanis
e=0.76

cond-mat/0604234 (U=0.69)

For an initial magnetization

M>0.897 (if U=0.69)
i STABLE UMSTABLE
The homogeneous Linden-

Bell distribution becomes
unstable and the system can be
trapped into an incomplete
mixed state, where Tsallis
statistics is a possible 8 0.668 0868 1.068 1268 1.468
explanation W

Fig. 10. Initial magnetization b = M. as a function of the
degeneracy parameter p for a given value of the energy. There

exists a critical magnetization, corresponding to ficric(€), above
which the homogeneous Lynden-Bell distribution is unstable.

Hoyl€)
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A few notes on recent criticisms regarding
anomalous diffusion in the HMF model and
g-statistics

Recently a dynamical transition as a function of the initial magnetization was claimed by Chavanis

H )
See Chavanis unstable
cond-mat/0604234

0.3

For an initial magnetization
M>0.897 (if U=0.69)

The homogeneous Linden-Bell
distribution becomes unstable
and the system can be trapped
into an incomplete mixed state,
where Tsallis statistics is a
possible explanation

07 08
M,

Antoniazzi etal cond-mat/0601518
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A few notes on recent criticisms regarding
anomalous diffusion in the HMF model and
g-statistics

Several numerical simulations confirm this transition, but further investigation is needed

U=0.69 N=100000

t=5000

M, =0.897

~— M1IC ]
— - y=100e+05 * x"-2.9| ]
— MO098 IC
— M096 IC
«— M092 IC
«— MO088 IC
«— MOIC

cumulative number of clusters

cluster size
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Also Morita and Kaneko recently found anomalous collective
dynamics which cannot be explained with Vlasov states

PRL 96, 050602 (2006)

FPHYSICAL REVIEW LETTERS

week endin
10 FEBRUARY 2006

Collective Oscillation in a Hamiltonian System

Hidetoshi Morita'** and Kunihiko Kaneko™
YFaculry of Science and Engineering, Waseda Universiry, Shinjuku-ku, Tokyo 169-8353, Japan
2.‘Depar:rr-jn,fJ".l.r of Basic Science, The University of Tokyo, Komaba, Meguro-ku, Tokyo 153-8902, Japan
TERATO Complex Systems Biology Project, JST, Meguro-ku, Tokyo 153-8902, Japan
(Received 11 June 2005; published 9 February 2006)

Oscillation of macroscopic variables is discovered in a metastable state of the Hamiltonian system of
the mean-field XY model. The duration of the oscillation is divergent with the system size. This long-
lasting periodic or quasiperiodic collective motion appears through Hopf bifurcation, which is a typical
route in low-dimensional dissipative dynamical systems. The origin of the oscillation is explained, with a
self-consistent analysis of the distribution function, as the self-organization of a self-excited swing state
through the mean field. The universality of the phenomena is discussed.

DOL: 10.1103/PhysRevLett. 96.050602

Dissipative systems often show periodic, quasiperiodic,
and chaotic motion at a macroscopic level, when they are
far away from equilibrium. The motion is described as low-
dimensional dynamics, and its discovery has marked an
epoch of nonlinear dynamics studies in physics. Recalling
that the microscopic degrees of freedom involved are large,
such macroscopic behavior is a result of collective motion
that emerges out of high-dimensional microscopic dynam-
ics. The collective motion, indeed, has been intensively and

PACS numbers: 05.70Ln, 05435 —a, 87.10.+e

Letter, the essence of this discovery is briefly reported,
especially in the mean-field XY model [8].

We adopt the Hamiltonian system of the mean-field XV
model, or globally coupled pendula [5,9,10],

N N
[1 —cos(d; — 6;)] (1)

N p-z
o=yt
i-1

i=1j=

All the N pendula interact with each other through phase
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PRL 96, 050602 (2006)

PHYSICAL REVIEW LETTERS

week ending
10 FEBRUARY 2006

‘ 1 My
o0 My) = Zo000) cxp[nq(Mn) casf):l, (3

where Zy(My) 1s the normalization. Next, the distribution
Here we note that another metastable state in this model

has been intensively investigated for a decade, especially
by taking a rectangular (watfer bag) mmitial momentum
distribution [5,6]. This metastable state exists only in the
region just below the critical energy of the phase transition,
and there Mr) and T'(1) take smaller values than those in
equilibrium. leading to a branch of negative specific heat.
This state 1s regarded as a reflection of a stable stationary
solution of the corresponding Vlasov equation. On the
other hand. the metastable state that we have discovered
takes larger values of Mr) and 7(r) than those in equilib-

105 | T
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— o 103 E-.-'.i'..'l(.- ....l“h!-l.". L 3
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0.4
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FIG. 1 (color). A time series of M(z). The abscissa axis is a log
scale. The dotted line i1s the equilibrium walue. Inset: The
duration of the platean Tpjypeq, against N. U = 0L69 [6] and M, =
1.

rium and exists over a much broader region than the
negative specific heat branch. Thus the present metastable
state is not explained by the above stationary solution of

the Vlasov equation and is a novel one.
creasing total energy. the temporal pattern of the macro-
scopic variable changes as stationary — periodic —
quasiperiodic. This is regarded as a “*bifurcation™ of the
collective motion. Here we note the similarity to the typical
bifurcation route in low-dimensional dissipative dvnamical
systems, fixed point — limit cycle — torus. through Hopf
bifurcations. Hence it is suggested that the present bifur-
cation of the collective motion is described as that of low-
dimensional dynamical systems. in particular. by Hopf
bifurcations.

We next investigate the bifurcation in more detail. The
mean amplitude of M{r) against U/ in the vicinity of the

0.69 -

T T T
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FIG. 2 (color). (a) A time series of M(r) in the metastable state.
(b) The decay rate v of the amplitude of the oscillaton., where
Miyp (1) = My (1) — ¥ log(e/g). U = 0.5 and My = 0.9.
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Microscopic dynamics can be very different according to the initial
conditions (as for other fully-coupled systems, for example the Kuramoto

model) and different theoretical approaches can be applied

Most probably the Vlasov equation cannot explain all the anomalies found, which on the
other hand, are found also in other models with long-range interactions

Anomalies have a clear dynamical origin.

g-statistics provides a coherent scenario and at the same time does not excludes other

interpretations
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109 Glassy phase in HMF

Ferromagnetic Phase: Paramagnetic Phase: Glassy Phase:

f | FRUSTRATION
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!

!

DISORDER
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110 The polarization p

One can introduce the “elementary polarization”:

i.e. the temporal average, over a time interval {, of the
successive positions of each elementary spin vector.

The modulus of the “elementary polarization” has to be
furtherly averaged over the quenched disorder of the N
spin configurations, to finally obtain the “polarization” p :

A. RAPISARDA ICTP 2006



92

Ferromagnetic Phase: Paramagnetic Phase:

Polarization & Glassy phase

Glassy Phase:
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112  Polarization and QSS

In the HMF model we can use the bbb e

polarization p in order to IS R L A i g
characterize the QSS regime as

o
@
T T

a Glassy Phase, related with the 5
dynamical frustration between §0,7 I" e ! || JIELE ”.H,, ||‘|.' ,||,JI.L Iy 1 ‘I nﬁ
clusters: go,e MJ ‘l ‘ W‘ \Lﬂq“\ H '\J!M ,Il””ﬂ
PHASE D M gfw_ :
Ferromagnetic | =0 =0 '30’4__ ]
Paramagnetic | =0 =0 i
Glassy phase | #0 =0 |
0

! In.l. At R I.I L PTHRLE l A lr-nllll. ity f R B ER Y
be ~  PEOOA-A=0
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Pihb,},n o, Latora, Rapisarda, Phys.Rev. E 69 (2004) 056113 spin index i
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113 pand M in the QSS regime vs N

In the QSS regime
the magnetization
goes to zero with the
system size as
1
Mo N ©
while the polarization
remains constant

A polarization p .
O magnetization M p~0.24
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1 14 Dependence of p on the integration time

The polarization p does not depend on the integration time interval inside the
QSS regime

o)
]
=
©
£
o
o
£
)
|_

=
=

=
3

= t
T

polarization p

| | | | | | | |
4000 6000 8000
integration time T
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115 p and M at equilibrium

N=10000

Equilibrium regime

ki |
‘{‘ ; The polarization p and

the magnetization M
coincide at equilibrium

A polarization p
- —-- magnetization M
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102 Polarization vs Initial conditions

Polarization is very
robust as a function of
N and time (within the
QSS regime).

0.5
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103 Polarization vs Initial conditions
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68 Monte Carlo simulations

A. Pluchino,G.Andronico, A. Rapisarda, Physica A 349 (2005) 143
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105 Glassy thermodynamics for the QSS regime

A. Pluchino PhD thesis (2005) and cond-mat/0506665 Physica A (2006) in press

Let us start from the following effective spin-glass Hamiltonian

1 & L — ,
H :_E-le”s' s, (1) with |S; = (cos 3,sin 3)
L= (343)°

Using the following distribution o\l 20
probability for the interaction J;; : p(‘]ij)_( 2ro,) e

with average and variance 'Jij =Jy =1/N , Jijz — Jij = O'J2 =1/N

This distribution implies a random coupling among spins with a probability on
average J,=1/N which simulates a glassy behavior similar to what we observe in

the QSS regime.
In the thermodynamic limit we have no interaction and the system remains frozen

for ever.
In the thermodynamic limit the Hamiltonian (1) General HMF Hamiltonian :
reduces to the potential part of the HMF Hamiltonian.
One can treat the kinetic part considering a heat bath N 2 1 N
with T=2K/N —H=K+V=Z pi+ Z‘] §.%§
[t J
A. RAPISARDA ICTP iz 2 2N, =1




/5  Comparison with numerical data

By applying the replica method,
after some standard calculations
one can extract from the
Hamiltonian (1), the following self-
consistent equation for the spin-
glass order parameter

Dy :1_\/:§IbrlTr2 drexp( I’ZJ |1|:,Br p/2:|

2 )1,| prpi2]|

Which can be compared with
numerical molecular dynamics
calculation of the polarization in the
thermodynamic limit of the QSS
regime considering

T=TN,) = Tqss

| | === Spin-glass order parameter q 0.6 - — Eaquil Caloric Curve
05| © MD simulations (QSS regime for N=1000) [t 08s

045 0.5
L 37
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005 = | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | 1 | P
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Temperature T

[

The comparison is good and gives further
support to the connection between glassy
systems and the QSS regime of the HMF
model
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Schematic summary

3 Violent Non-homogeneous QSS:
fnitial relaxation Power-law decay of correlations

conditions Anomalous diffusion Slow relaxation
- fractal-like structures
0<M£1 g-statistics

Aging and glassy behaviour

Boltzmann-Gibbs
equilibrium

time

- NO Violent
Initiaf relaxation Homogeneous QSS

conditions Al .
M=0 ‘ Ylasov stable states Fast relaxation
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Summary for the HMF model

® Summarizing, the Hmf model represents a paradigmatic model for nonextensive (long
range interacting or finite ) systems, as for example self-gravitating objects, nuclear and
atomic systems.

» Several dynamical metastable anomalies are present: negative specific heat, very slow
dynamics, anomalous diffusion, power-law relaxation, fractal-like structures, vanishing of
lyapunov exponents, ergodicity breaking and aging

* This metastable anomalous behavior can become stable if the infinite size limitis
performed before the infinite time limit: the two limits do not commute.

* There are links to Tsallis generalized statistics.

* It is possible to treat the QSS regime in terms of a glassy phase.

*But one can find similarities with other non Hamiltonian systems....
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124 Non Hamiltonian systems

* The Kuramoto Model

* Coupled Logistic maps with
noise

* Soc models for earthquakes
dynamics
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125 Non Hamiltonian systems

The Kuramoto

model




The Kuramoto Model

(Kuramoto 1975)

Egs. for the N coupled oscillators Order parameter

. KXN . 1 M.
6;(t) =wi+NZsin(9j —6) i=1,...,N rei? — ﬁzetﬂj
Jj=1 ‘
g=1

mean field equation 0,(t) = w; + Krsin(¥ — 6,)

Phase transition

Kuramoto model

N=10000 Global
i synchronization

| Incoherent phase
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112 Metastability in the Kuramoto Model

T T T T T I T T T T T T T I
KURAMOTO MODEL - N=10000, MQic, 10 events averages

FEFEE
mnnmn

SRTETSES
&
o

1]

A. Pluchino, A. Rapisarda, Physica A 365 (2006) 184
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113 Metastability in the Kuramoto Model

Also for the
Kuramoto model
metastability seems
to diverge with the
system size

KURAMOTO -10 eventi

O—0 N=10000
+—* N=4000
~— N=3000
~— N=2000

KURAMOTO -10 eventi - K=2.575
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Coupled maps

on a lattice




102 Coupled Maps on a lattice

We consider a model of Coupled Logistic Maps on a lattice,
I.e.

f(x) = sign(9 - mod 2[ar g (%) + t-@) ], T (1)

% 1= T () +g[f (X (+D) =21 M)+ T(x (-1)] (2

g, =1— ux’

Here w is a white noise term controlled by the parameter (¥ & [O, 1]

See the poster by S. RIZZO
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Phase diagram of CML

FRP= frozen random patterns

o
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BD brownian motion of defect

DT defect turbulence
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K. Kaneko, Simulating Physics with Coupled Map Lattices,
World Scientific (1990)
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103 Coupled Maps on a lattice

We fix the control parameter at the edge of
chaos 1.8322<y <1.8323

1
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02§

Dn_

024
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08
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1 03 Dynamics of Coupled Maps on a lattice

1D Coupled Map Lattice for p=1.8322; £=0.7; o=

Time evolution -
with no noise |
(a=1)

u=1.8322

£=0.7
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1 04 Dynamics of Coupled Maps on a lattice

1D Coupled Map Lattice for n=1.8322; £=0.7;, a=0.73

Time evolutior
with moderate
noise
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1 05 Dynamics of Coupled Maps on a lattice

1D Coupled Map Lattice for n=1.8322; e=0.7; o= 0.3

Time evolutior 5F=
with strong
noise

(a=3)
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1 05 Autocorrelation for Coupled Maps on a lattice

Space autocorrelation for p=1.8322; 100 lattice sites, after 300 iterations

—C(3, a=1)
—C(3, a=0.73)

—C(3, «=0.30)
-t10

—-———
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1 06 Fluctuations of Coupled Maps on a lattice

One can consider the difference between two maps and study the fluctuations
of this new variable.
We considered for example

u(t) = x(45)— x(55)  * @

The time behavior of u(t) can be
very intermittent and one can
apply a superstatistic approach

(more details in the poster by

S. RIZZO)

L L L L L L L L L L L
27 2705 271 2715 272 2725 273 2735 274 2745 275
t x 10°
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106 Coupled Maps on a lattice

w
=]

u(®). B

[N)
=]

1 1 1 1 1 1 1
2.705 271 2.7115 5 2.735 2.74 2.745 2.75
t x10*
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107 Pdfs of Coupled Maps on a lattice

With no noise one
gets pdfs very similar !
to the HMF case I O CLNL (0=0.73)
(black dots). i —— Gaussian

g-Gaussian
g=1.22

Adding some noise s o CLNL (0=1.0)
one gets g-gaussians 7 & -4 -CLNL (¢=0.3)
which can be :
explained by applying
the superstatistics
approach  proposed
by Beck and Cohen

U=(u-<u>)/o)
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The pdf of B, the

inverse variance of
u(t), obeys a Log-
normal distribution.

But a Gamma
distribution is very
close to it and
represents a good
approximation

P(B)

10 -

10 ¢

O CLNL data

o 2u
X
—— "Lognormal"

oo
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SOC model with

long-range interactions

for earthquakes

dynamics
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Conclusions

Summarizing, long-range interacting
systems present several dynamical
anomalies which pose severe problems

to standard statistical mechanics and
which can find a natural description in
term of g-statistics
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“ALL THE TRUTHS PASS THROUGH THREE STAGES:

FIRST, THEY ARE CONSIDERED RIDICULOUS,

SECOND, THEY ARE VIOLENTLY ADVERSED,

THIRD, THEY ARE ACCEPTED AND CONSIDERED SELF~-
EVIDENT.”

A. SCHOPENHAUER
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