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3 Plan of the lectures
Part 1 

Dynamics and Thermodynamics of the Hamiltonian Mean Field (HMF) model: a simple 
model of fully-coupled  particles on the unitary  ring or classical spins, whose behavior seems 
to be paradigmatic for a large class of nonextensive systems:  Equilibrium case

Part  2 
Dynamical anomalies  in the out-equilibrium regime and the role of initial conditions:

Quasi-Stationary States  & Negative specific heat
Chaos suppression &  slow  dynamics
Anomalous diffusion & Lèvy walks

Non Gaussian velocity PDF,  power law relaxation, aging

Generalized HMF model:   the   α-XY model
Links   to Tsallis generalized statistics
Importance of initial conditions
Interpretation of the QSS regime in terms of a  glassy phase 

Part  3 
Non Hamiltonian systems: 

a) The  Kuramoto model                                                        
b) Coupled  map lattices  with noise
c) Soc models for earthquakes dynamics

Conclusions

1st

lecture

2nd

lecture
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4 Motivation
Why one should study long-range interacting systems...

•Long-range interactions are important for phase transitions
in finite size systems, for example:  fragmenting nuclei 
and  atomic clusters

•For understanding how one can treat statistically self-
gravitating objects and plasmas.  

•Long-range correlations are also frequently observed in   
out-of-equilibrium and complex systems

In general long-range interactions pose fundamental
problems to standard statistical mechanics, so one needs
new statistical tools to treat them properly
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5 The HMF model

Antoni and Ruffo PRE 52 (1995) 2361

2

1 , 1

1 [1 co s( )]
2 2

i
N N

i j
i i j

pH
N

ϑ ϑ
= =

= + − −∑ ∑

The Hamiltonian Mean Field (HMF) model

•The system has an infinite range force

•It is a useful paradigmatic model to study Hamiltonian  long-range 
interacting (nonextensive) systems  as for example astrophysical  systems,  
but also fragmenting nuclei and  atomic clusters
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6 Phase transition at equilibrium

The model can be seen as   N  classical interacting spins or particles moving on the unit 
circle. One can define the total magnetization M as an order parameter

where the single spin is

The model can be seen as   N  classical interacting spins or particles moving on the unit 
circle. One can define the total magnetization M as an order parameter

where the single spin is

M=1

clustered phase for U<Uc

M=1

clustered phase for U<Uc

M=0 

homogeneous phase for U>Uc

M=0 

homogeneous phase for U>Uc

1

1 N

i
i

M m
N =

= ∑ (cos ,sin )i i im ϑ ϑ=

The model shows a second-order phase transition, 
passing from a clustered phase to a homogeneous one as
a function of energy

The model shows a second-order phase transition, 
passing from a clustered phase to a homogeneous one as
a function of energy



A. RAPISARDA  ICTP 2006

7 Equilibrium solution
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By using the saddle point method, one gets  for  the free energy F

TkB

1
=β

Then one gets the consistency equation

is the modified Bessel function of ith order.
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Solving eq.(1) one gets the exact canonical equilibrium expression
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8 Critical behavior of the model 

The model  has a second order phase transition. 
The critical point is at

4
3

=cU

Close to the critical point

2
1

=cT

Hence M vanishes with the classical critical mean field exponent 1/2

+→ cββ

ββ
1

2
14
−≈M

Close to the critical point one gets for

On the other hand, the specific heat is
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9 Dynamics vs Thermodynamics

The  model can be studied also dynamically by means of 
microcanonical numerical simulations.

One can compare dynamical aspects with thermodynamical
ones.

One can study finite size effects.

One can also study how the system relax to equilibrium
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10 Dynamics

i
i p

t
=

∂
∂θ

sin cosi
x i y i

p M M
t

θ θ∂
= − +

∂

The equations of motion are:

( ) ( )2 2 21 1
2 2x y
N NV M M M⎡ ⎤= − + = −⎣ ⎦

The equations are solved numerically by using a fourth order simplectic
algorithm (Yoshida , Physica A 150 (1990) 262).
Energy is conserved with an error smaller than for a number
of   time steps

510−=
∆
E
E

610≈

The potential is connected to the magnetization M as
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11 Critical behavior of the model for finite sizes

Microcanonical simulations follow the canonical prediction,  even
for N=100

1/ 2ε∼
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12 Equilibrium

Good agreement between exact canonical solution and numerical
microcanonical simulations at equilibrium for various sizes N of the system

Latora, Rapisarda and Ruffo PRL  80 (1998) 692,
Physica D 131 (1999) 38
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13 Dynamics at Equilibrium

One finds a maximum of the 
largest Lyapunov exponent (LLE) 
in connection to the critical point,  
where both the  fluctuations in 
kinetic energy and temperature
and the specific heat present a 
peak

Latora, Rapisarda and Ruffo 
Physica D 131 (1999) 38
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14 Dynamics at Equilibrium: scaling of the LLE

for

for

cUU >

cUU <<
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15 Lyapunov spectra at Equilibrium

In Hamiltonian systems with N degrees of freedom

12 +−−= iNi λλ

(positive part only)

At low energy only a few 
degrees of freedom are 
active.
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16 Lyapunov spectra at Equilibrium

No significant change in the shape of the spectra across the critical point is observed
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17 Kolmogorov Sinai entropy

0>iλwith∑
=

=
N

i
iKSS

1

λ

A peak close to the critical point is found also for
KSS
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18 Scaling laws fot the  Kolmogorov Sinai entropy

4
3

US KS ∝ cUU <<

5
1−

∝ NS KS cUU >
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19 Antiferromagnetic behavior of HMF

( )21
22

1 MU −+=
ε

β

1±=εwith

The HMF model can have also an antiferromagnetic behavior if one 
considers

VKH −=
The general canonical solution for isV±
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20 Dynamics at  Equilibrium

One has a different behavior of the Largest Lyapunov exponent and the 
KS entropy in the ferromagnetic and antiferromagnetic case



A. RAPISARDA  ICTP 2006

21 LLE in the  thermodynamical limit

In the thermodynamic limit, the LLE goes to zero for the whole energy range in 
the antiferromagnetic case, while it remains finite, for energies smaller than the 
critical one (Uc=0.75), in the ferromagnetic one. In the latter case it goes to
zero for overcritical energies as 3/1

1
−∝ Nλ
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22 LLE in the  antiferromagnetic case

Both the LLE and the KS entropy go to zero as
in the antiferromagnetic case

*
1 U∝λ

2
1* +=UUwith
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23 Equilibrium PDFs for the HMF model 

In the continuum limit, considering the one-body distribution
function F,  the evolution of the HMF model is described by the
Vlasov equation
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is the Bessel function

is the phase of  Mwhere ,

Latora, Rapisarda and Ruffo Physica D 131 (1999) 38
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24 Comparison with numerical pdfs

At  low energy
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25 Comparison with numerical pdfs at equilibrium

At the
critical point
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26 Anomalous dynamics

HMF model  in the 
out-of-equilibrium case

HMF model  in the 
out-of-equilibrium case
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27 OUT-OF-EQUILIBRIUM   CASE

When the system is started with initial conditions very

far from equilibrium…..

…… we  observe many dynamical anomalies,

in particular in an energy range below the critical point.
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28 Negative specific heat

In a region before the critical
point the specific heat
becomes negative:
the temperature decreases, by
increasing the energy density. 

This phenomenon has been
observed in multifragmentation
nuclear reactions and atomic
clusters, but also in self-
gravitating stellar objects, i.e. 
for nonextensive systems. 

See for example:
Thirring, Zeit. Physik 235 (1970) 339

Lynden-Bell, Physica A 263  (1999) 293

D.H.E.Gross, Microcanonical  
Thermodynamics: Phase transitions in 
Small systems, World Scientific (2001).

M. D’Agostino et al, Phys. Lett. B 473 
(2000) 279

Schmidt et al, Phys. Rev. Lett. 86 (2001) 
1191

1

0V
V

TC
U

−∂⎛ ⎞= <⎜ ⎟∂⎝ ⎠
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29 Quasi Stationary States

QSS regime

Equilibrium

The system lives for a very long 
time in a metastable quasi 
stationary state (QSS), whose
temperature defined as

is smaller than the equilibrium one. 

The larger N,  the longer the  

QSS lifetime. 

The temperature T tends to

0.38 for

2 K
NT < >=

N → ∞

U=0.69
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30 QSS: initial evolution

QSS regime is reached almost immediatelyQSS regime is reached almost immediately
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31 QSS and numerical accuracy

QSS do not depend on the accuracy of the integrationQSS do not depend on the accuracy of the integration
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32 QSS lifetime and Temperature

3/12 −∝ NM

38.0212 −=−+= TUTM

Notice that being

one has

The QSS lifetime diverges with
the size N

The QSS  temperature goes to 
Tinf=0.38 (for U=0.69) as N→∞

Latora, Rapisarda and Tsallis PRE  64 (2001) 056134Latora, Rapisarda and Tsallis PRE  64 (2001) 056134
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The majority  of the results
refer to the case U=0.69,
where anomalies are most
evident

The majority  of the results
refer to the case U=0.69,
where anomalies are most
evident

15   The energy density U=0.69
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34 Force in the QSS regime

In the QSS regime the force
Fi on the ith spin goes to zero
with the size N being

iyixi MMF θθ cossin +−=

Thus the QSS   dynamics
is slower   and   slower  by
increasing N.
For the system 
remains frozen in the QSS 
regime

N →∞
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35 Vanishing Lyapunov exponents

( )1/ 32 / 3 1/ 3 1/ 9M N Nλ − −∝ ∝ =

1 / 9
Q S S Nλ −∼

This scaling can be obtained considering that

Latora, Rapisarda, Tsallis Physica A 305 (2002) 129

In the QSS regime 
the largest Lyapunov
exponent tends to
zero as the size of 
the system tends to
infinity
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36 Importance of the order in  the limits

Simulations show that, going   towards   the  
thermodynamic limit, it is very  crucial the time 
order  of the size limit  and time limit to infinity

In general, the two limits do not commute:

∞→∞→≠∞→∞→ NttN
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37 Anomalous diffusion in the QSS regime

Latora, Rapisarda and Ruffo,  PRL 83 (1999) 2104Latora, Rapisarda and Ruffo,  PRL 83 (1999) 2104

2 ( )t tασ ∝

1α = Normal diffusion

1α ≠ Anomalous diffusion

In general one has for
the mean square
displacement

In our case we get
superdiffusion with an
exponent α=1.38 in 
correspondence of the  
QSS regime.
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38 Anomalous diffusion: typical dynamics

Phase space dynamics of a typical particle (spin)Phase space dynamics of a typical particle (spin)

Lèvy walksLèvy walks Normal random walksNormal random walks
QSS Equilibrium
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39 Anomalous diffusion
The cross-over times, from anomalous to normal diffusion, 
coincide with the relaxation times

The cross-over times, from anomalous to normal diffusion, 
coincide with the relaxation times

QSS Equilibrium
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40 Lévy walks: walking and trapping time PDFs

For a one dimensional system which shows sticking and flying particles with
constant velocity, one finds:

See Klafter and Zumofen

PRE 49  (1994) 4873

In our case we find
µ−∝ttPwalk )(
ν−∝ ttPtrap )(

2 3
2
µ

ν
< <
<

2α ν µ= + −
whenwith
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41 Time evolution of  velocity PDFs

QSS regimeQSS regime

Equilibrium regimeEquilibrium regime
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42 Non-Gaussian velocity PDF

Velocity PDFs
in the QSS 
regime for
different sizes
N of the 
system
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43 Role of  initial conditions for QSS

We have recently studied the nature  of    the 
anomalous QSS  regime    by starting from different
initial magnetizations with

(considering in all cases a uniform distribution in 
momenta: water bag).

Dynamical anomalies depend on the initial conditions. 
The most interesting are those observed for initial
magnetization

0 1M≤ ≤

1M ∼
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44 QSS for different initial conditions: M1 vs. M0
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Dependence of  QSS on the initial magnetization

Pluchino, Latora, Rapisarda Physica A 338 (2004) 60
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46 Correlations in phase space for different IC

M1 IC M0 IC

Structures in phase-
space appear,  in 
the QSS regime for
M1IC, but not for
M0IC

Structures in phase-
space appear,  in 
the QSS regime for
M1IC, but not for
M0IC
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47 Dynamical evolution for different initial conditions

M1 IC M0 IC
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions



A. RAPISARDA  ICTP 2006

M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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M1 IC M0 IC

Dynamical evolution for different initial conditions
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Dependence of   µ-space structures on the i.c.
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66 Entropy and free energy for QSS

Entropy Free energy

Also the entropy and the free energy show  a different dynamical
evolution for the two initial conditions M1IC   and    M0IC
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67 Relaxation to equilibrium

One can study the process of 
relaxation to equilibrium by
means of velocity correlation
functions,

where

is the velocity vector, the 
brackets indicate an average
over the events, and

is the standard deviation at 
time t.

Correlations show a power 
law decay for M1IC and an
exponential decay for M0IC

( ) (0) ( ) (0)( ,0)
( ) (0)

t tC t
tσ σ

< >−< >< >
=

P P P P

1 2( ) ( , ,... )Nt p p p=P

( )tσ

Power-law decay

Exponential decay
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68 Aging and strong memory effects

For M1 IC, the system, in going
towards equilibrium, shows strong 
memory effects and aging, i.e. the 
correlation functions depend on t 
and on the  waiting time tw

( ) ( ) ( ) ( )( , )
( ) ( )

w w w w
w w

w w

t t t t t tC t t t
t t tσ σ

< + >−< + >< >
+ =

+
P P P P

Montemurro, Tamarit and Anteneodo PRE 67 (2003) 031106

Pluchino, Latora and Rapisarda, Physica D 193 (2004) 315

Montemurro, Tamarit and Anteneodo PRE 67 (2003) 031106

Pluchino, Latora and Rapisarda, Physica D 193 (2004) 315
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69 Dynamical frustration

M1IC M0IC M=1 initial conditions:

- Competition between clusters of rotating 
particles in the QSS regime

- Each cluster tries to capture the 
maximum number of particles in order to
reach the final equilibrium configuration:

M=1 initial conditions:

- Competition between clusters of rotating 
particles in the QSS regime

- Each cluster tries to capture the 
maximum number of particles in order to
reach the final equilibrium configuration:

This competition
leads to a 
DYNAMICAL 
FRUSTRATION in 
the QSS regime!

M=0 initial conditions:

No competition and no frustration are 
present

M=0 initial conditions:

No competition and no frustration are 
present

Equilibrium

At equilibrium only one big rotating
cluster is present for both the IC

At equilibrium only one big rotating
cluster is present for both the IC
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“Critical” cluster size distribution

t=0t=0 t=50t=50 t=500t=500
µ-SPACE PDF

Cumulative Cumulative NumberNumber of of ClustersClusters

The cumulative cluster
size distribution is a 
power law for the QSS 
regime, which is robust
for the entire plateau
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Cluster size distribution vs initial conditions

x-1.6 x-1.6
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M1 icM1 ic M0 icM0 ic
t=200t=200

Cluster formation vs initial conditions
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M095 ic M08 ic

Cluster formation vs initial conditions
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The HMF model has been also  generalized   to
study the dynamic and thermodynamic behavior 

as a   function of the range   of   the    interaction

For this generalized  model  reduces to HMF.

For one has interaction only among nearest  neighbour spins.

d≤α

•Anteneodo and Tsallis,  PRL 80 (1998) 5313
•Campa, Giansanti and Moroni, PRE 62 (2000) 303
•Tamarit and Anteneodo,  PRL 84 (2000) 208
•Campa, Giansanti and Moroni, J. Phys. A 36 (2003) 6897.

α-XY modelαα--XY modelXY model

[ ]
∑∑
≠=

−−
+=

N

ji ij

ji
N

i

i

rN
pH α

θθ )cos(1
2
1

21

2

∞→α

75 The generalized HMF  model
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α-XY model and nonextensive effects

The lifetime τ of the QSS does      
not diverge for all α…
see A. Campa et al.  Physica A 305 (2002) 137

Decreasing  the range of the interaction, i.e. diminishing nonextensivity
this anomalous behaviour disappears:
• Relaxation is very fast 
• No negative specific heat is observed

)0( >α

)( ατ −∝ e

Anomalies depend in a 
crucial way on the 
range of the interaction
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Long-range Lennard-Jones potential

Another example which support the long-range nature of the interaction as
the origin of negative  specific heat is the
2-d Lennard-Jones gas with  attractive potential 

Borges and Tsallis Physica A 305 (2002)148

Again decreasing  the range of the interaction, i.e.
diminishing non extensivity
this anomalous specific heat disappears.
In correspondence they also find non-Boltzmann
velocity distributions

Further similar examples have been found in
self-gravitating  systems,  see

Sota et al PRE 64 (2001) 056133

α−∝ rV
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More precisely the potential energy is

( )α
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ε
α

αα −⎟
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⎜
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⎛=

−

12/
12

1

NbC

σ is the diameter of  the particles, b is a constant
and ε is the energy scale.

For α=6 one gets the usual Lennard-Jones
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79 Interpretration of QSS regime

The anomalous QSS regime is the effect of non 
extensivity or, in other words, of the long-range
character of the  interaction.  

These anomalies seems be connected to Tsallis
thermostatistics

Very recently a link with a glassy phase has also
been found
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80 Tsallis generalized thermostatistics

In the last decade a lot of effort has been devoted to understand if
thermodynamics can be generalized to nonequilibrium complex systems

In particular one of these attempts is that one started by Constantino Tsallis
with his seminal paper J. Stat. Phys. 52 (1988) 479 

For   recent  reviews see  for example:
• C. Tsallis,   Nonextensive Statistical Mechanics and Thermodynamics , Lecture Notes

in Physics, eds. S. Abe and Y. Okamoto, Springer, Berlin, (2001);
• Proceedings of NEXT2001, special issue of Physica A 305 (2002) eds. G. Kaniadakis, M. 

Lissia and A Rapisarda;
• C. Tsallis, A. Rapisarda, V. Latora and F. Baldovin in "Dynamics and Thermodynamics of  

Systems with Long-Range Interactions", T. Dauxois, S. Ruffo,E. Arimondo, M. Wilkens
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82 Generalized velocity pdfs
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83 q-exponential decay of  C(t,0)

The decay of the  velocity
correlation function can be
reproduced very well by means
of the generalized q-exponential

In our case  x=-t/τ .  Within a 
generalized Fokker-Plank
equation which generates
Tsallis q-exponential pdfs [1], 
one can extract the following
relation between the exponent
of the anomalous diffusion and 
q

In our case       =1.38-1.4, thus
we expect q=1.55-1.6, which is
confirmed by the fit in the figure 
for M1IC. On the other hand, for
M0IC the decay is almost
exponential.

The decay of the  velocity
correlation function can be
reproduced very well by means
of the generalized q-exponential

In our case  x=-t/τ .  Within a 
generalized Fokker-Plank
equation which generates
Tsallis q-exponential pdfs [1], 
one can extract the following
relation between the exponent
of the anomalous diffusion and 
q

In our case       =1.38-1.4, thus
we expect q=1.55-1.6, which is
confirmed by the fit in the figure 
for M1IC. On the other hand, for
M0IC the decay is almost
exponential.

1
1( ) [1 (1 ) ] q

qAe x A q x −= + −

2
3 q

γ =
−

[1] Tsallis and Buckman PRE 54  (1996) R2197[1] Tsallis and Buckman PRE 54  (1996) R2197

γ

γ
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62    q-exponential decay also for different i.c.
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85 q-exponential decay for aging

Also for the aging
behavior,   the power law
decay of the correlation
functions, after a proper
rescaling, can be
reproduced with a q-
exponential function.

In this case  we get
q=1.65.
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64     q vs initial Magnetization
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63   Anomalous diffusion for different i.c.

γ

γ
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65    Correlation decay vs range α
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66 Summary of most recent results regarding
HMF model and q-statistics

Anomalous diffusion vs q-exponential decay

Rapisarda and Pluchino,

Europhysics News 36 (2005) 202

Rapisarda and Pluchino,

Europhysics News 36 (2005) 202
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90 Most recent results

Some unpublished results on 
recent criticism



Recent criticism

A few comments on recent criticism
regarding anomalous diffusion in the 
HMF model and  q-statistics
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It seems that velocity pdfs can be described using Lynden-
Bell entropy within a Vlasov approach.. There are however
several discrepancies…..due to dynamical effects and initial
conditions

Antoniazzi et al

cond-mat/0601518
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Latora, Rapisarda Tsallis

PRE 2001
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Anomalous diffusion is a finite size effect? 

Antoniazzi et al

cond-mat/0601518
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Anomalous diffusion is a finite size effect? 

Moyano and Anteneodo

cond-mat/0601518
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Anomalous diffusion is a finite size effect?

Moyano and Anteneodo

cond-mat/0601518
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It is not completely clear if anomalous diffusion disappears at large
N at the moment. However initial conditions are extremely important
even for large N

Tsallis, Rapisarda, Pluchino

in preparation
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Single  realizations can have a very different dynamics.
So a good statistics is needed even for large N.  

Tsallis, Rapisarda, Pluchino

in preparation
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Tsallis, Rapisarda, Pluchino

in preparation
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A few notes on recent criticisms regarding
anomalous diffusion in the HMF model and 
q-statistics

Recently a dynamical transition as a function of the initial magnetization was claimed by Chavanis
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A few notes on recent criticisms regarding
anomalous diffusion in the HMF model and 
q-statistics

Recently a dynamical transition as a function of the initial magnetization was claimed by Chavanis

See Chavanis

cond-mat/0604234

For an initial magnetization
M>0.897 (if U=0.69)

The homogeneous Linden-
Bell distribution becomes
unstable and the system can be
trapped into an incomplete 
mixed state, where Tsallis
statistics is a possible
explanation
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A few notes on recent criticisms regarding
anomalous diffusion in the HMF model and 
q-statistics

Recently a dynamical transition as a function of the initial magnetization was claimed by Chavanis

See Chavanis

cond-mat/0604234

For an initial magnetization
M>0.897 (if U=0.69)

The homogeneous Linden-Bell
distribution becomes unstable
and the system can be trapped
into an incomplete mixed state, 
where Tsallis statistics is a 
possible explanation

stable

unstable

Antoniazzi et al   cond-mat/0601518
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A few notes on recent criticisms regarding
anomalous diffusion in the HMF model and 
q-statistics

Several numerical simulations confirm this transition,   but further investigation is needed

U=0.69 N=100000      
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Also Morita and Kaneko recently found anomalous collective
dynamics which cannot be explained with Vlasov states
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Microscopic dynamics can  be very different according to the initial
conditions (as for other fully-coupled systems, for example the Kuramoto
model) and different theoretical approaches can be applied

Most probably the  Vlasov equation cannot explain all the anomalies found, which on the 
other hand, are found also in other models with long-range interactions

Anomalies have a clear dynamical origin. 

q-statistics provides a coherent scenario and at the same time does not excludes other
interpretations
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109 Glassy phase in HMF

Ferromagnetic Phase: Paramagnetic Phase: Glassy Phase:

FRUSTRATION

&

QUENCHED 

DISORDER

1

1 N

i
i

M s
N =

= ∑

0M ≠ 0M ≅ 0M ≅
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110 The polarization p

1

1 ( )i is s t dt
τ

τ
< > = ∫

One can  introduce the “elementary polarization”:

i.e. the temporal average, over a time interval t, of the 
successive positions of each elementary spin vector.

1

1 N

i
i

p s
N =

= < >∑

The modulus of the “elementary polarization” has to be
furtherly averaged over the quenched disorder of the N 
spin configurations, to finally obtain the “polarization” p :
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92    Polarization & Glassy phase

Ferromagnetic Phase: Paramagnetic Phase: Glassy Phase:

One can consider
the polarization p
as a new order
parameter in 
order to measure
the freezing of the 
spins

0 0M p≠ ≠ 0 0M p≅ ≅ 0 0M p≅ ≠
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112 Polarization and QSS

00Ferromagnetic

00Glassy phase

00Paramagnetic

MpPHASE

In the HMF model we can use the 
polarization p in order to
characterize the QSS regime as
a Glassy Phase, related with the 
dynamical frustration between
clusters:

Pluchino, Latora,  Rapisarda, Phys. Rev. E 69 (2004) 056113 

≠

≠

≠

≅ ≅

≠ ≅
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113 p and M in the QSS regime vs N

In the QSS regime 
the magnetization
goes to zero with the 
system size as

while the polarization
remains constant

1
6M N

−
∝

0.24p ∼
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114 Dependence of p on the integration time

The polarization p does not depend on the integration time interval inside the 
QSS regime 

The polarization p does not depend on the integration time interval inside the 
QSS regime 
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115 p and M at equilibrium

N=10000

The polarization p and 
the magnetization M
coincide at equilibrium

The polarization p and 
the magnetization M
coincide at equilibrium
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102  Polarization vs initial conditions

Polarization is very
robust as a function of 
N and time (within the 
QSS regime).
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103  Polarization vs initial conditions

Polarization is very
sensitive  to the initial
conditions: it goes
rapidly to zero when the 
initial magnetization is
less than 1.
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68  Monte Carlo simulations
A. Pluchino,G.Andronico, A. Rapisarda, Physica A 349 (2005) 143 
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Let us start from the following effective spin-glass Hamiltonian

, 1

1 (1 )
2

N

ij i j
i j

H J s s
=

= − ⋅∑ (cos ,sin )i i is ϑ ϑ=with

Using the following distribution
probability for the interaction  Jij :

2
0
2

( )
21( ) ( 2 ) e
ij

J

J J

ij Jp J σπσ
−

−
−=

with average and variance
22 2

0 1 / , 1 /ij ij ij JJ J N J J Nσ= = − = =

105 Glassy thermodynamics for the QSS regime

This distribution implies a random coupling among spins with a  probability on 
average J0=1/N which simulates a glassy behavior similar to what we observe in  
the QSS regime.

In the thermodynamic limit we have no interaction and the system remains frozen
for ever.

2

1 , 1

1
2 2

i
N N

ij i j
i i j

pH K V J s s
N= =

= + = + ⋅∑ ∑

In the thermodynamic limit the  Hamiltonian (1) 
reduces to the potential part of the HMF Hamiltonian.  
One can treat the kinetic part considering a heat bath
with T=2K/N

General HMF Hamiltonian :

A. Pluchino PhD thesis (2005) and cond-mat/0506665 Physica A (2006) in pressA. Pluchino PhD thesis (2005) and cond-mat/0506665 Physica A (2006) in press
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75     Comparison with numerical data

The comparison is good and gives further
support to the connection between glassy
systems and the QSS regime of the HMF 
model

By applying the replica method, 
after some standard calculations
one can extract from the 
Hamiltonian (1), the  following self-
consistent equation for the spin-
glass order parameter

Which can be compared with
numerical molecular dynamics
calculation of the polarization in the 
thermodynamic limit of the QSS 
regime considering

T = T(N∞) = TQSS

2
11 2

0 0

/221 exp
2 /2

SG

I r prp r dr
p I r p

β
β

β

∞
−

⎡ ⎤⎛ ⎞ ⎣ ⎦= − −⎜ ⎟ ⎡ ⎤⎝ ⎠ ⎣ ⎦
∫
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Schematic summary
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Summary for the HMF model 

• Summarizing, the Hmf model represents a     paradigmatic model for nonextensive (long   
range interacting or finite ) systems, as for example self-gravitating objects, nuclear and 
atomic systems.

• Several dynamical metastable anomalies are present:   negative specific heat,  very   slow     
dynamics, anomalous diffusion, power-law relaxation, fractal-like structures, vanishing of  
lyapunov exponents, ergodicity breaking and  aging

• This metastable anomalous behavior can  become stable if the infinite  size limit is
performed before the infinite time limit:   the     two limits    do   not commute.

• There are  links to Tsallis generalized statistics.

• It is possible to treat the QSS regime in terms of  a  glassy  phase.

•But one can find similarities with other non Hamiltonian systems….
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124 Non Hamiltonian systems

• The Kuramoto Model   

• Coupled Logistic maps with
noise

• Soc models for earthquakes
dynamics
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125 Non Hamiltonian systems

The The KuramotoKuramoto
modelmodel
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The Kuramoto Model

OrderOrder parameterparameter

meanmean fieldfield equationequation

EqsEqs. . forfor the N the N coupledcoupled oscillatorsoscillators

(Kuramoto 1975)

PhasePhase transitiontransition

GlobalGlobal
synchronizationsynchronization

IncoherentIncoherent phasephase
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112  Metastability in the Kuramoto Model

A. Pluchino, A. Rapisarda, Physica A 365 (2006) 184
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113  Metastability in the Kuramoto Model

Also for the 
Kuramoto model 
metastability seems
to diverge with the 
system size
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CoupledCoupled mapsmaps

on a lattice on a lattice 
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102  Coupled Maps on a lattice

( )  ( ) · mod {2 [  · ( )  (1 - ) · ] ,  1}    (1)f x sign x g x wµα α= +

( ( )) [  ( ( 1)) 2 ( ( )) ( ( 1))]          (2)1 2
ε

= + + − + −+x f x i f x i f x i f x it t t t t

We consider a model of Coupled Logistic Maps on a lattice, 
i.e.

[0,1]α ∈

21g xµ µ= −
Here w is a white noise term controlled by the parameter

See the poster by S. RIZZO
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Phase diagram of CML

ε

µ

FRP= frozen random patterns

BD  =  brownian motion of defect

DT  =  defect turbulence

PCI= pattern competition
intermittency

FDT= fully developed turbulence

K. Kaneko,  Simulating Physics with Coupled Map Lattices,

World Scientific (1990)
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103  Coupled Maps on a lattice

We fix the  control parameter at the edge of 
chaos 1.8322<µ <1.8323
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103  Dynamics of Coupled Maps on a lattice

Time evolution
with no noise
(α=1)

µ=1.8322

ε=0.7
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104 Dynamics of Coupled Maps on a lattice

Time evolution
with moderate 
noise
(α=0.73)
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105 Dynamics of Coupled Maps on a lattice

Time evolution
with strong
noise
(α=3)
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105 Autocorrelation for Coupled Maps on a lattice
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106  Fluctuations of Coupled Maps on a lattice

One can consider the difference between two maps and study the fluctuations
of this new variable.
We considered for example

( ) (45) (55)u t x x= −

The time behavior of u(t) can be
very intermittent and   one   can 
apply a superstatistic approach

(more details in the poster by

S. RIZZO)
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106  Coupled Maps on a lattice

And w is a white noise term regulated by the parameter
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107  Pdfs of Coupled Maps on a lattice

With no noise one 
gets pdfs very similar
to the HMF case 
(black dots).

Adding some noise
one gets q-gaussians
which can be
explained by applying
the superstatistics
approach proposed
by Beck and Cohen
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108  Coupled Maps on a lattice

The pdf of  β, the 
inverse variance of 
u(t), obeys a Log-
normal distribution.

But a Gamma 
distribution is very
close to it and 
represents a good
approximation
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SOC model SOC model withwith

longlong--rangerange interactionsinteractions

forfor earthquakesearthquakes
dynamicsdynamics
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Conclusions

Summarizing, long-range interacting
systems present several dynamical
anomalies which pose severe problems
to standard  statistical mechanics and 
which can  find a natural description in 
term of q-statistics
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“ALL THE TRUTHS PASS THROUGH THREE STAGES:

FIRST, THEY ARE CONSIDERED RIDICULOUS,

SECOND, THEY ARE VIOLENTLY ADVERSED,

THIRD, THEY ARE ACCEPTED AND CONSIDERED SELF-
EVIDENT.”

A. SCHOPENHAUER

“ALL THE TRUTHS PASS THROUGH THREE STAGES:

FIRST, THEY ARE CONSIDERED RIDICULOUS,

SECOND, THEY ARE VIOLENTLY ADVERSED,

THIRD, THEY ARE ACCEPTED AND CONSIDERED SELF-
EVIDENT.”

A. SCHOPENHAUER




