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geﬂ-organized criticality

b Self-organized criticality (SOC) can describe emergent complex behavior in physical systems
B SOC is a out-of-equilibrium mechanism that drives a system towards a critical state

Self-organized criticality (SOC) ...

# is manifested by temporal and spatial scale invariance (power laws)
# is driven by intermittent evolutions with bursts/avalanches that extend over a wide range of magnitudes

Some examples:

Earthquakes dynamics

Sand-pile models (Bak et al. 1987)
Evolution (Bak and Sneppen 1993)
Solar flares
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Eartquake and Gutenberg-Richter Law

#» [t is generally believed that earthquakes result from a stick-slip dynamics involving
the Earth’s crust sliding along faults.

3

# San-Andreas Fault marks the contact between the Pacific and North American Plates

San-Andreas fault, where the great 1906 San Francisco earthquake occurred

10* Gutenberg-Richter Law

Q-

N(M>m) [earthquakes/year]

o 1 2 3 4 5 6 7 8
Magnitude m = log,,(S)

There are more small earthquakes than large ones. But there is no apparent cut-off in the possible size
of an earthquake; earthquakes of all sizes are possible.
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A simple computer model of the earthquake fault is composed of one elastic plate and one rigid plate,
for simplicity's sake.

Top Plate (Rigid

) v .
Burridge-Knopoff Model (1967) § ; ; ; ; ;
WA

Bottom Plate (ngld)

Olami-Feder-Christensen (OFC) Model of earthquakes

fixed claf Z. Olami, H. J. S. Feder, and K. Christensen,
ARSELEL S Phys. Rev. Lett. 68, 1244 (1992)

The blocks interact with the rigid plate through friction.
The system 1s driven through slow uniform movement ...
Whenever the spring force exceeds a critical value, the block slides and the spring force is reduced.

The force lost by the block is transferred to its neighbours; this may causes one or more of its
neighbours to slide, and so on .... an earthquake is generated.

¥ The size of the earthquake in the model is defined as the number of blocks that have slided during
the earthquake.
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Ulami-Feder—Christensen Model

#  System: discrete system of blocks on a square lattice, each
carrying a force, a real variable, F. in the range (0, F,;).

#  Slow Driving: all the forces are increased uniformly until one
of them reaches the threshold value F,, and becomes unstable
(Fi > Fth).

# Earthquake: the uniform driving is then stopped and an
“earthquake” (or avalanche) starts:

Fy—0
Fon — Fop + ak;
where “nn” denotes the set of nearest-neighbor sites of i.

The earthquake is over when there are no more unstable sites in
the system (F, < F,). The number of topplings during an
earthquake defines its size, s.

Fz‘EFth:>{

# Parameters: o controls the level of conservation of the
dynamics and, in the case of a graph with fixed connectivity q, p siress F
) ] th
it takes values between 0 and 1/q (=1/q corresponding to the
conservative case).

# Data: to collect the earthquake statistics, we need to skip some
initial number of earthquakes (transient behaviour — critical
state).

#  Simulations on a lattice of L=32, 64, 128 (NN OFC model)
after 1E+09 avalanches with OPEN boundary conditions.
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Random Graph, Lattice and Small World

nodes

The small-world behavior is =S
characterized by the fact that

the distance between any two
vertices 1s of the order of that \
for a random network and, at links

the same time, the concept of
neighbourhood is preserved,
as for regular lattices. For
this reason, we will expect to
obtain SOC in a small world.

1998 - Watts and Strogatz (USA)

Aegular

Increasing randomness
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Constructing the network ...
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Eonstructing the network ...
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log10(P(s})
.

[
log10(P(L.s)*L"B)
3

[

— 0_

log10(s) log10(s/L"D)

In order to characterize the critical behavior of the model, a finite size scaling (FSS) ansatz is used:
P,(s)=N"7.f(s/N°)

where f is a suitable scaling function and  and D are critical exponents describing the scaling of the
distribution function.
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I—
... and for random graph

Dissipative OFC Model on a Random Graph with o=0.15 Finite-size scaling for OFC on a Random Graph with o=0.15
The critical exponents are D=1 and ff=1.65
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In a random regular graph all sites have exactly the same number of nearest neighbours q.

In this case, it’s verified that (both for g=4 and q=6) the system organizes into a subcritical state.
In order to observe scaling in the avalanche distribution, one has to introduce some
inhomogeneities. For the OFC model on a (quenched) random graph, it’s found that it suffices
to consider just two sites in the system with coordination g-1.

S. Lise and M. Paczuski, Phys. Rev. Lett. 88, 228301 (2002)
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I —
... W topology?
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Is it sufficient to consider a small world graph, obtained by randomizing a fraction p of the links
of the regular nearest neighbour lattice, in order to obtain FSS?
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1.*|1n1te-size scaling ...

Finite-size scaling for Dissipative OFC model on a Small World topology (¢=0.21)
The critical exponents are D=2 and [}=3.6
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Turbulence-like analysis in OFC models

The possibility of establishing a close analogy between 2D BTW
sandpile dynamics and fully developed turbulent scaling has just
been showed by Stella and De Menech 1n 2001.

A. L. Stella, M. De Menech, Physica A 295, 101-107 (2001)

Is 1t possible to find a similar connection in OFC models
on a small world topology?
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Turbulence-like analysis

We consider the difference between
two avalanches, i.e. X=S(t+0)—S(t)

being S(t+0) and S(t) two successive
avalanches with a time difference §

40

The time series of x is very
intermittent and the pdfs are
non Gaussian at criticality,
l.e. when long range
correlation and finite size
scaling exist

s(t+1)-s(t)

Caruso et al. cond-mat/0606118
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Fat q-gaussian tails at criticality ...
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We considered S~exp(M),
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M being the earthquake magnitude

World Catalog: 689000 events in the period 2001-2006

o World Catalog 2001-2006
-- Gaussian
= g-Gaussian g=1.75
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Xnalysis of real data: Northern California

Northern California: 400000 events in the period 1966-2006

©  Northern California 1966-2006

10° 10
S=exp(M)
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\ simple model

Assuming no correlation in two stochastic variables with a power law

distribution and taking their difference, we get for the pdf of the difference
x=S1(t+A)-S2(t) the formula

P(x)—jdsjds (S,S,)76(5,-S,—X) =

= KZFI(T,ZT 1;27;— s |j
E
This P(x), which can be approximated by a g-Gaussian, is able to

reproduce both the numerical and the experimental data once 7 is given
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