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SelfSelf--organized criticalityorganized criticality

Self-organized criticality (SOC) can  describe emergent complex behavior in physical systems 
SOC is a out-of-equilibrium mechanism that drives a system towards   a critical state

Self-organized criticality (SOC) …

is manifested by temporal and spatial scale invariance (power laws)
is driven by intermittent evolutions with bursts/avalanches that extend over a wide range of magnitudes

Some examples:

Earthquakes dynamics
Sand-pile models  (Bak et al. 1987)
Evolution (Bak and Sneppen 1993)
Solar flares
…etc.
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Eartquake and GutenbergEartquake and Gutenberg--Richter LawRichter Law
It is generally believed that earthquakes result from a stick-slip dynamics involving 
the Earth’s crust sliding along faults.
San-Andreas Fault marks the contact between the Pacific and North American Plates

San-Andreas fault, where the great 1906 San Francisco earthquake occurred

There are more small earthquakes than large ones. But there is no apparent cut-off in the possible size 
of an earthquake; earthquakes of all sizes are possible. 

Gutenberg-Richter Law
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SpringSpring--Block Model of EarthquakesBlock Model of Earthquakes

Burridge-Knopoff Model (1967)

Olami-Feder-Christensen (OFC) Model of earthquakes

A simple computer model of the earthquake fault is composed of one elastic plate and one rigid plate, 
for simplicity's sake.

The blocks interact with the rigid plate through friction.

The system is driven through slow uniform movement …

Whenever the spring force exceeds a critical value, the block slides and the spring force is reduced.

The force lost by the block is transferred to its neighbours; this may causes one or more of its 
neighbours to slide, and so on …. an earthquake is generated.

The size of the earthquake in the model is defined as the number of blocks that have slided during 
the earthquake.

Z. Olami, H. J. S. Feder, and K. Christensen, 
Phys. Rev. Lett. 68, 1244 (1992)
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OlamiOlami--FederFeder--Christensen ModelChristensen Model
System: discrete system of blocks on a square lattice, each 
carrying a force, a real variable, Fi in the range (0, Fth).

Slow Driving: all the forces are increased uniformly until one 
of them reaches the threshold value Fth and becomes unstable 
(Fi > Fth).

Earthquake: the uniform driving is then stopped and an 
“earthquake” (or avalanche) starts:

where “nn” denotes the set of nearest-neighbor sites of i. 
The earthquake is over when there are no more unstable sites in 
the system (Fi < Fth). The number of topplings during an 
earthquake defines its size, s.

Parameters: α controls the level of conservation of the 
dynamics and, in the case of a graph with fixed connectivity q, 
it takes values between 0 and 1/q (=1/q corresponding to the 
conservative case). 

Data: to collect the earthquake statistics, we need to skip some 
initial number of earthquakes (transient behaviour → critical 
state).

Simulations on a lattice of L=32, 64, 128 (NN OFC model) 
after 1E+09 avalanches with OPEN boundary conditions.

Fth
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Random Graph, Lattice and Small WorldRandom Graph, Lattice and Small World

nodes

links

1998 - Watts and Strogatz (USA)

The small-world behavior is 
characterized by the fact that 
the distance between any two 
vertices is of the order of that 
for a random network and, at 
the same time, the concept of 
neighbourhood is preserved, 
as for regular lattices. For 
this reason, we will expect to 
obtain SOC in a small world.
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Constructing the network Constructing the network ……
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Constructing the network Constructing the network ……
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To date To date …… for dissipative NN OFC modelfor dissipative NN OFC model

In order to characterize the critical behavior of the model, a finite size scaling (FSS) ansatz is used:

where f is a suitable scaling function and β and D are critical exponents describing the scaling of the 
distribution function.

( ) ( / )D
NP s N f s Nβ− ⋅

No FSS
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…… and and forfor randomrandom graphgraph

In a random regular graph all sites have exactly the same number of nearest neighbours q. 
In this case, it’s verified that (both for q=4 and q=6) the system organizes into a subcritical state. 
In order to observe scaling in the avalanche distribution, one has to introduce some 
inhomogeneities. For the OFC model on a (quenched) random graph, it’s found that it suffices 
to consider just two sites in the system with coordination q-1.

S. Lise and M. Paczuski, Phys. Rev. Lett. 88, 228301 (2002)
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…… SW topology?SW topology?

Is it sufficient to consider a small world graph, obtained by randomizing a fraction p of the links 
of the regular nearest neighbour lattice, in order to obtain FSS?
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FiniteFinite--size scaling size scaling ……
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TurbulenceTurbulence--like analysis in OFC modelslike analysis in OFC models

A. L. Stella, M. De Menech, Physica A 295, 101-107 (2001)

The possibility of establishing a close analogy between 2D BTW 
sandpile dynamics and fully developed turbulent scaling has just 
been showed by Stella and De Menech in 2001.

Is it possible to find a similar  connection in OFC models 
on a small world topology?
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TurbulenceTurbulence--like analysis like analysis 

We consider the  difference between

two avalanches, i.e. ( ) ( )x S t S tδ= + −
being S(t+δ) and S(t) two successive 
avalanches with a time difference δ

The time series of x is very
intermittent and the pdfs are  
non Gaussian at criticality, 
i.e. when long range
correlation and finite size
scaling exist

Caruso et al. cond-mat/0606118
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Fat Fat qq--gaussiangaussian tails at criticality tails at criticality ……

Critical case
Non critical case 
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Fat Fat qq--gaussiangaussian tails at criticality tails at criticality ……

No dependence on the time interval
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Analysis  of real data: World  Catalog Analysis  of real data: World  Catalog 

World Catalog: 689000 events in the period 2001-2006  

We considered S~exp(M),    M being the earthquake magnitude
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Analysis  of real data: Northern  California Analysis  of real data: Northern  California 
Northern California: 400000 events in the period 1966-2006  
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A simple model   A simple model   
Assuming no correlation in  two stochastic variables with a power law
distribution and taking their difference,  we get for the pdf of  the difference
x=S1(t+∆)-S2(t) the  formula

This P(x), which can be approximated by a q-Gaussian,   is able to
reproduce both the numerical and the  experimental data once        is given
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