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1 Short reminder: What is superstatistics?

Consider driven nonequilibrium situation with local fluctuations of the environment.

Starting point is the following formula∫ ∞
0

dβf(β)e−βE =
1

(1 + (q − 1)β0E)1/(q−1)

where

f(β) =
1

Γ
(

1
q−1

) {
1

(q − 1)β0

} 1
q−1

β
1

q−1−1 exp

{
− β

(q − 1)β0

}

is the χ2 distribution.
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1 Short reminder: What is superstatistics?

Consider driven nonequilibrium situation with local fluctuations of the environment.

Starting point is the following formula∫ ∞
0

dβf(β)e−βE =
1

(1 + (q − 1)β0E)1/(q−1)

where

f(β) =
1

Γ
(

1
q−1

) {
1

(q − 1)β0

} 1
q−1

β
1

q−1−1 exp

{
− β

(q − 1)β0

}

is the χ2 distribution.

(ordinary Boltzmann factor (with fluctuating β)←→ generalized Boltzmann factor)

Physical interpretation: Tsallis’ type of statistical mechanics relevant for nonequilibrium systems with

temperature fluctuations.
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Can construct dynamical realization in terms of Langevin equation

v̇ = −γv + σL(t)

with fluctuating parameters γ, σ (C.B., Phys. Rev. Lett., 2001).

Consider a Brownian particle that moves through spatial ’cells’ with different local β := γ/(2σ2) in each

cell (a nonequilibrium situation)

Assume probability distribution of β in the various cells is χ2-distribution of degree n

f(β) ∼ βn/2−1e
− nβ

2β0

(e.g. β =
∑n

i=1 X2
i )

Conditional prob. p(v|β)) ∼ e−
1
2βv2

Joint prob. p(v, β) = f(β)p(v|β)

Marginal prob. p(v) =
∫∞
0 f(β)p(v|β)dβ

Integration yields

p(v) ∼ 1

(1 + 1
2
β̃(q − 1)v2)1/(q−1)

(power-law Boltzmann factors with q = 1 + 2
n+1

, β̃ = 2β0/(3− q), and E = 1
2
v2)

β0 =
∫

f(β)βdβ = average of β

Very broad interpretation—β need not be inverse temperature but can be any system parameter entering

the Langevin dynamics. Similarly, v need not be a velocity. Nonlinear Langevin eq. with nontrival potential

V (v) also possible.
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Can generalize the above example to general probability densities f(β) and general Hamiltonians E.

Superposition of two different statistics: that of β and that of ordinary stat. mech. Short name:

Superstatistics (C.B. and E.G.D Cohen, Physica A (2003))

Consider nonequilibrium system with spatio-temporal fluctuations of an intensive parameter (e.g. inverse

temperature) on a long time scale TS.

Think, e.g., of a Brownian particle moving through different spatial cells with different temperature.

Relaxation time γ−1 << TS.

In the long-term run system is decribed by a mixture of different Boltzmann factors.

Define effective Boltzmann factor B(E) by

B(E) =

∫ ∞
0

f(β)e−βEdβ

f(β): probability distribution of β.

Many results can be proved for general f(β).
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Can generalize the above example to general probability densities f(β) and general Hamiltonians E.

Superposition of two different statistics: that of β and that of ordinary stat. mech. Short name:

Superstatistics (C.B. and E.G.D Cohen, Physica A (2003))

Consider nonequilibrium system with spatio-temporal fluctuations of an intensive parameter (e.g. inverse

temperature) on a long time scale TS.

Think, e.g., of a Brownian particle moving through different spatial cells with different temperature.

Relaxation time γ−1 << TS.

In the long-term run system is decribed by a mixture of different Boltzmann factors.

Define effective Boltzmann factor B(E) by

B(E) =

∫ ∞
0

f(β)e−βEdβ

f(β): probability distribution of β.

Many results can be proved for general f(β).

• For sharply peaked f(β) all superstatistics approach Tsallis statistics in a universal way.

•
q =
〈β2〉
〈β〉2

(no fluctuations: ⇒ q → 1).

• β: can quite generally be some intensive variable or some system parameter describing environment

5



• Can prove superstatistical generalization of fluctuation theorems (C.B. and E.G.D. Cohen, Physica A

(2004))

• Can develop variational principle for large-energy asymptotics of general superstatistics (H. Touchette

and C.B., Phys. Rev. E (2005))

(depending on f(β), one can get not only power laws for large E but e.g. also stretched exponentials)

• Can formally define generalized entropies for general superstatistics (Tsallis and Souza, Phys. Rev. E

(2003))

• Can study various theoretical extensions of the superstatistics concept (Chavanis (2005), Vignat, Plastino

(2005), Grigolini et al. (2005))

• Can apply superstatistical methods to analyse statistics of 3d hydrodynamic turbulence (C.B., PRL 2001,

A. Reynolds, PRL 2003, C.B., Europhysics Lett. 2003, E. Bodenschatz 2004, C.B., E.G.D. Cohen and

H.L. Swinney, Phys. Rev. E 2005, ...)

• Can apply it to atmospheric turbulence (wind velocity fluctuations at Florence airport, Rizzo, Rapisarda

(2004))

• Can apply superstatistical methods to finance (Bouchard 2003, Ausloos 2003), solar flares (Baiesi, Stella,

Paczuski 2004), networks (Abe 2005), random matrix theory (Abul-Magd 2006), ...

6
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2 Physically relevant superstatistical universality classes

Basically, there are 3 physically relevant universality classes:

• (a) χ2-superstatistics (= Tsallis statistics)

• (b) inverse χ2-superstatistics

• (c) lognormal superstatistics
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2 Physically relevant superstatistical universality classes

Basically, there are 3 physically relevant universality classes:

• (a) χ2-superstatistics (= Tsallis statistics)

• (b) inverse χ2-superstatistics

• (c) lognormal superstatistics

Why? Consider, e.g., case (a). Assume there are many microscopic RV ξj, j = 1, . . . , J , contributing

to β in an additive way. For large J , sum 1√
J

∑J
j=1 ξj will approach a Gaussian random variable X1 due

to the Central Limit Theorem.

There can be n Gaussian random variables X1, . . . , Xn due to various relevant degrees of freedom in

the system.

β positive⇒ β =
∑n

i=1 X2
i is χ2-distributed with degree n,

f(β) =
1

Γ(n
2
)

(
n

2β0

)n/2

βn/2−1e
− nβ

2β0 , (1)

where β0 is the average of β.
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2 Physically relevant superstatistical universality classes

Basically, there are 3 physically relevant universality classes:

• (a) χ2-superstatistics (= Tsallis statistics)

• (b) inverse χ2-superstatistics

• (c) lognormal superstatistics

Why? Consider, e.g., case (a). Assume there are many microscopic RV ξj, j = 1, . . . , J , contributing

to β in an additive way. For large J , sum 1√
J

∑J
j=1 ξj will approach a Gaussian random variable X1 due

to the Central Limit Theorem.

There can be n Gaussian random variables X1, . . . , Xn due to various relevant degrees of freedom in

the system.

β positive⇒ β =
∑n

i=1 X2
i is χ2-distributed with degree n,

f(β) =
1

Γ(n
2
)

(
n

2β0

)n/2

βn/2−1e
− nβ

2β0 , (1)

where β0 is the average of β.

⇒ Tsallis statistics is a universal limit dynamics, i.e., the details of the microscopic random variables ξj

are irrelevant.
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(b) Same considerations can be applied if the ’temperature’ β−1 rather than β itself is the sum of several

squared Gaussian random variables arising out of many microscopic degrees of freedom ξj. Resulting f(β)

is the inverse χ2-distribution:

f(β) =
β0

Γ(n
2
)

(
nβ0

2

)n/2

β−n/2−2e−
nβ0
2β . (2)

It generates superstatistical distributions p(E) ∼ ∫
f(β)e−βE that that decay as e−β̃

√
E for large E.
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(b) Same considerations can be applied if the ’temperature’ β−1 rather than β itself is the sum of several

squared Gaussian random variables arising out of many microscopic degrees of freedom ξj. Resulting f(β)

is the inverse χ2-distribution:

f(β) =
β0

Γ(n
2
)

(
nβ0

2

)n/2

β−n/2−2e−
nβ0
2β . (2)

It generates superstatistical distributions p(E) ∼ ∫
f(β)e−βE that that decay as e−β̃

√
E for large E.

Again this superstatistics is universal: details of the ξj are irrelevant.

(c) β may be generated by multiplicative random processes. Local cascade random variable X1 =∏J
j=1 ξj, where J is the number of cascade steps and the ξj are positive microscopic random variables. By

the Central Limit Theorem, for large J the RV 1√
J

log X1 = 1√
J

∑J
j=1 log ξj becomes Gaussian for large

J . Hence X1 is log-normally distributed. In general there may be n such product contributions to β, i.e.,

β =
∏n

i=1 Xi. Then log β =
∑n

i=1 log Xi is a sum of Gaussian random variables; hence it is Gaussian

as well. Thus β is log-normally distributed, i.e.,

f(β) =
1√

2πsβ
exp

{−(ln β
µ
)2

2s2

}
, (3)
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√
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(c) β may be generated by multiplicative random processes. Local cascade random variable X1 =∏J
j=1 ξj, where J is the number of cascade steps and the ξj are positive microscopic random variables. By

the Central Limit Theorem, for large J the RV 1√
J

log X1 = 1√
J

∑J
j=1 log ξj becomes Gaussian for large

J . Hence X1 is log-normally distributed. In general there may be n such product contributions to β, i.e.,

β =
∏n

i=1 Xi. Then log β =
∑n

i=1 log Xi is a sum of Gaussian random variables; hence it is Gaussian

as well. Thus β is log-normally distributed, i.e.,

f(β) =
1√

2πsβ
exp

{−(ln β
µ
)2

2s2

}
, (3)

Again this is a universal result, details of the ξj are irrelevant.
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3 Application to Lagrangian turbulence

Navier-Stokes equation: v̇ = −(v∇)v − 1
2
σ2∆v + F

Turbulence = spatio-temporal chaotic state of the Navier-Stokes equation.
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3 Application to Lagrangian turbulence

Navier-Stokes equation: v̇ = −(v∇)v − 1
2
σ2∆v + F

Turbulence = spatio-temporal chaotic state of the Navier-Stokes equation.

Bodenschatz et al., Nature (2001)

Measurements of acceleration a of single tracer particle in turbulent flow.
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3 Application to Lagrangian turbulence

Navier-Stokes equation: v̇ = −(v∇)v − 1
2
σ2∆v + F

Turbulence = spatio-temporal chaotic state of the Navier-Stokes equation.

Bodenschatz et al., Nature (2001)

Measurements of acceleration a of single tracer particle in turbulent flow.

colour code:

blue.......green...yellow

a = 0..................16000 m/s2
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Measured probability distribution of acceleration:
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Measured probability distribution of acceleration:
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strongly non-Gaussian

Prediction of superstatistical Lagrangian turbulence model (generalized Sawford model):

p(a) =
1

2πs

∫ ∞
0

dββ−1/2 exp

{
−(log(β/µ))2

2s2

}
e−

1
2βa2

C.B., Phys. Rev. Lett. (2001), Europhys. Lett. (2003)

A. Reynolds, Phys. Rev. Lett. (2003)

(based on lognormal superstatistics (s2 = 3.0). β corresponds to fluctuating energy dissipation.)
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Sawford model (1991): joint stochastic process (a(t), v(t), x(t)) of acceleration, velocity and position

of a Lagrangian test particle obeys

ȧ = −(T−1
L + t−1

η )a− T−1
L t−1

η v

+
√

2σ2
v(T

−1
L + t−1

η )T−1
L t−1

η L(t) (4)

v̇ = a (5)

ẋ = v, (6)

L(t): Gaussian white noise

TL and tη: two time scales, with TL >> tη.

TL = 2σ2
v/(C0ε̄)

tη = 2a0ν
1/2/(C0ε̄

1/2)

ε̄: average energy dissipation

C0, a0: are Lagrangian structure function constants

σ2
v is the variance of the velocity distribution.

Taylor scale Reynolds number is Rλ =
√

15σ2
v/
√

νε̄
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Sawford model (1991): joint stochastic process (a(t), v(t), x(t)) of acceleration, velocity and position

of a Lagrangian test particle obeys

ȧ = −(T−1
L + t−1

η )a− T−1
L t−1

η v

+
√

2σ2
v(T

−1
L + t−1

η )T−1
L t−1

η L(t) (4)

v̇ = a (5)

ẋ = v, (6)

L(t): Gaussian white noise

TL and tη: two time scales, with TL >> tη.

TL = 2σ2
v/(C0ε̄)

tη = 2a0ν
1/2/(C0ε̄

1/2)

ε̄: average energy dissipation

C0, a0: are Lagrangian structure function constants

σ2
v is the variance of the velocity distribution.

Taylor scale Reynolds number is Rλ =
√

15σ2
v/
√

νε̄

Sawford model predicts Gaussian stationary distributions for a and v, and is thus at variance with the

recent measurements.
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Idea: generalize Sawford model with constant parameters to a superstatistical Sawford model with fluctu-

ating parameters

Simplification for TL → ∞ (reasonable approximation for large Reynolds numbers). In that limit the

model reduces to

ȧ = −γa + σL(t) (7)

with

γ =
C0

2a0

ν−1/2ε̄1/2 (8)

σ =
C

3/2
0

2a0

ν−1/2ε̄ (9)

To construct superstatistical extension of Sawford model, replace constant energy dissipation ε̄ by a fluctuating

one (e.g. log-normally distributed). One gets

β =
γ

σ2
=

2a0

C2
0

ν1/2ε−3/2, (10)

and for a0 defined by

〈a2〉 =: a0〈ε〉3/2ν−1/2 (11)

one obtains a0 = 1√
2
C0e

1
12s2

and

p(a) =
1

2πs

∫ ∞
0

dββ−1/2 exp

{
−(log(β/µ))2

2s2

}
e−

1
2βa2

(12)

All this in good agreement with experimental data.
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Can also calculate the Lagrangian scaling exponents ζj.

Let δu denote the velocity difference of the Lagrangian particle on a time scale δt

〈(δu)j〉 ∼ δtζj (13)
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Can also calculate the Lagrangian scaling exponents ζj.

Let δu denote the velocity difference of the Lagrangian particle on a time scale δt

〈(δu)j〉 ∼ δtζj (13)
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Data points: Measurements of Bodenschatz et al. (PRL 2006)

Solid line: Theoretical prediction of superstatistical model (C.B., cond-mat/0606655)

Dashed lines: Some other competing models (Biferale et al.)
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Superstatistical Lagrangian model for 3-dim acceleration vectora = (ax, ay, az) (C.B., cond-mat/0606655)

̇a = −γa + Bn× a + σL(t). (14)

Induces correlations between components: Study R := p(ax, ay)/(p(ax)p(ay)).

For independent acceleration components this ratio would always be given by R = 1. However, 3-d

superstatistical model yields prediction

R =

∫∞
0 βf(β)e−

1
2βτ2(a2

x+a2
y)dβ∫∞

0 β1/2f(β)e−
1
2βτ2a2

xdβ
∫∞
0 β1/2f(β)e−

1
2βτ2a2

ydβ
(15)
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Superstatistical Lagrangian model for 3-dim acceleration vectora = (ax, ay, az) (C.B., cond-mat/0606655)

̇a = −γa + Bn× a + σL(t). (14)

Induces correlations between components: Study R := p(ax, ay)/(p(ax)p(ay)).

For independent acceleration components this ratio would always be given by R = 1. However, 3-d

superstatistical model yields prediction

R =

∫∞
0 βf(β)e−

1
2βτ2(a2

x+a2
y)dβ∫∞

0 β1/2f(β)e−
1
2βτ2a2

xdβ
∫∞
0 β1/2f(β)e−

1
2βτ2a2

ydβ
(15)

Plotted below for the example of the lognormal distribution f(β).
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Bodenschatz measures correlations of similar shape (New Journal Physics 2005)
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4 Application to pattern forming systems (defect turbulence)

Raleigh-Benard experiment:

Heat liquid from below, cool from above.

⇒ Convection rolls

Recent experiment by Daniels and Bodenschatz (Cornell):

Tilted Raleigh-Benard (inclined layer convection)

There are two parameters:

1. temperature difference ε

2. angle of tilt θ

15
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Interested in defects:
ŷ

x̂

Defects are created and annihilated in pairs. They move around in a chaotic way.

Black: positive defect. White: negative defect.
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Beach near St. Andrews

Similar defect patterns can be seen in sand!
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Measured velocity distributions of defects:
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K. Daniels, C.B. , E. Bodenschatz, Physica D (2004)

Theoretical model based on superstatistics.
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K. Daniels, C.B. , E. Bodenschatz, Physica D (2004)

Theoretical model based on superstatistics.

All data for the defects (probability densities, correlation functions, anomalous diffusion exponents) well

described by superstatistical Langevin model with χ2-distributed fluctuating effective friction γ.

• power-law generalized Boltzmann factors (Tsallis statistics)

p(v) ∼ (1 + (q − 1)β̃v2)−1/(q−1) (q ≈ 1.5)

• power law-decay of velocity correlations

• anomalous diffusion 〈x2(t)〉 ∼ tα, α ≈ 1.3
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K. Daniels, C.B. , E. Bodenschatz, Physica D (2004)

Theoretical model based on superstatistics.

All data for the defects (probability densities, correlation functions, anomalous diffusion exponents) well

described by superstatistical Langevin model with χ2-distributed fluctuating effective friction γ.

• power-law generalized Boltzmann factors (Tsallis statistics)

p(v) ∼ (1 + (q − 1)β̃v2)−1/(q−1) (q ≈ 1.5)

• power law-decay of velocity correlations

• anomalous diffusion 〈x2(t)〉 ∼ tα, α ≈ 1.3

Note that for ordinary Brownian particles of size d

γ = 6πνρd
m

= const (Stokes’ law)

But defects are no ordinary particles!
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Measured average of squared position of defects versus time:

10
0

10
1

10
2

10
−1

10
0

10
1

10
2

10
3

<
x 

 >
 −

 <
x>

,
2 

 
2 

 
2 

 
<

y 
 >

 −
 <

y>
2

   
(d

  )2

t (τ
v
)

ε = 0.08

x
y
α = 1.33
α = 1

10
0

10
1

10
2

10
−2

10
−1

10
0

10
1

10
2

t (τ
v
)

ε = 0.17

(a) (b)

19
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Superstatistical Langevin model predicts a relation between α and q:

α =
7q − 9

2q − 2
(16)

q = 1.45⇒ α = 1.3
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Derivation: Consider linear superstatistical Langevin equation

v̇ = −γv + σL(t) (17)

where σ is constant, whereas γ fluctuates and β = 2γ
σ2 is χ2-distributed with degree n.

Velocity correlation function C(t− t′) = 〈v(t)v(t′)〉. Can easily derive that asymptotically

C(t− t′) ∼ |t− t′|−η, (18)

where η = n
2
− 1 and 1

q−1
= n

2
+ 1

2

Now proceed to the position

x(t) =

∫ t

0

v(t′)dt′ (19)

of the test particle. One has

〈x2(t)〉 =

∫ t

0

∫ t

0

〈v(t′)v(t′′)〉dt′dt′′. (20)

Asymptotic power-law velocity correlations with an exponent η < 1 imply asymptotically anomalous diffusion

of the form

〈x2(t)〉 ∼ tα (21)

with

α = 2− η = 2− 5− 3q

2q − 2
=

7q − 9

2q − 2
(22)
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It is interesting to compare our model with other dynamical models generating Tsallis statistics. E.g.

Plastino and Plastino (Physica A, 1995) and Tsallis and Bukmann (PRE, 1996) study a generalized Fokker-

Planck equation of the form

∂P (x, t)

∂t
= − ∂

∂x
(F (x)P (x, t)) + D

∂2

∂x2
P (x, t)ν (23)

with a linear force F (x) = k1 − k2x and ν �= 1. Basically this model means that the diffusion

constant becomes dependent on the probability density. The probability densities generated by eq. (23) are

q-exponentials with the exponent

q = 2− ν. (24)

The model generates anomalous diffusion with

α̂ = 2/(3− q) (25)

whereas the superstatistical Langevin model yields

α =
7q − 9

2q − 2
(26)

Interesting enough, there is a distinguished q-value where both models yield the same answer:

q = 1.453⇒ α = α̂ = 1.292 (27)

These values of q and α correspond to the experimentally observed numbers in defect turbulence.
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Superstatistics: Further applications 1 2 3 4 5 6

5 From time series to superstatistics (Beck, Cohen, Swinney, PRE 72, 056133 (2005))

Suppose some experimental time series u(t) is given.

Goal: test the hypothesis that it is due to a superstatistics and if so, to extract the two basic time scales

τ and T as well as f(β).

22



Superstatistics: Further applications 1 2 3 4 5 6

5 From time series to superstatistics (Beck, Cohen, Swinney, PRE 72, 056133 (2005))

Suppose some experimental time series u(t) is given.

Goal: test the hypothesis that it is due to a superstatistics and if so, to extract the two basic time scales

τ and T as well as f(β).

Divide time series into equal time intervals of size ∆t. Define a function κ(∆t) by

κ(∆t) =

∫ tmax−∆t

0

dt0

〈(u− ū)4〉t0,∆t

〈(u− ū)2〉2t0,∆t

(28)

Here 〈· · · 〉t0,∆t = 1
∆t

∫ t0+∆t

t0
· · · dt denotes an integration over an interval of length ∆t starting at t0,

and ū is the average of u(t)
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5 From time series to superstatistics (Beck, Cohen, Swinney, PRE 72, 056133 (2005))

Suppose some experimental time series u(t) is given.

Goal: test the hypothesis that it is due to a superstatistics and if so, to extract the two basic time scales

τ and T as well as f(β).

Divide time series into equal time intervals of size ∆t. Define a function κ(∆t) by

κ(∆t) =

∫ tmax−∆t

0

dt0

〈(u− ū)4〉t0,∆t

〈(u− ū)2〉2t0,∆t

(28)

Here 〈· · · 〉t0,∆t = 1
∆t

∫ t0+∆t

t0
· · · dt denotes an integration over an interval of length ∆t starting at t0,

and ū is the average of u(t)

Extract the (large) superstatistical time scale T by the condition

κ(T ) = 3 (29)

Extract the (small) relaxation time scale τ of signal from the short-term exponential decay of correlation

function Cu(t− t′) = 〈u(t)u(t′)〉:
Cu(τ ) = 1

e
Cu(0).

Can then check whether T/τ is large (necessary consistency condition for superstatistics approach)
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Once T is given, we can extract process β(t) from

β(t) =
1

〈u2〉t,T − 〈u〉2t,T
. (30)

and make histograms, calculate correlation functions of the β-process etc.
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Once T is given, we can extract process β(t) from

β(t) =
1

〈u2〉t,T − 〈u〉2t,T
. (30)

and make histograms, calculate correlation functions of the β-process etc.

Typical picture:
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Fig.1: Turbulent velocity signal u(t) evolving on time scale τ (solid line) and the corresponding inverse

local variance β(t) evolving on time scale T (dashed line).
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Main example: Turbulent time series from a Taylor-Couette flow experiment

In turbulence: signal is longitudinal velocity difference u(t) = v(t + δ)− v(t) for a given time scale δ,

β is related to local energy dissipation in the flow.

Can now evaluate function

κ(∆t) =

∫ tmax−∆t

0

dt0

〈(u− ū)4〉t0,∆t

〈(u− ū)2〉2t0,∆t

(31)

for the measured turbulent time series u(t) for each δ.
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Main example: Turbulent time series from a Taylor-Couette flow experiment

In turbulence: signal is longitudinal velocity difference u(t) = v(t + δ)− v(t) for a given time scale δ,

β is related to local energy dissipation in the flow.

Can now evaluate function

κ(∆t) =

∫ tmax−∆t

0

dt0

〈(u− ū)4〉t0,∆t

〈(u− ū)2〉2t0,∆t

(31)

for the measured turbulent time series u(t) for each δ.
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Fig.2: Determination of the long time scale T from the flatness function κ(∆t), for δ = 2j, j =

0, 1, 2, . . . , 7 (from top to bottom). The intersections with the line κ = 3 yield T = 39, 42, 58, 100,

184, 320, 600, 948, respectively.
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Similarly, can determine the short time scales τ for each δ:
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Fig.3: Determination of the short time scale τ from the decay of the correlation function Cu(t) of the

velocity difference. Defining τ by Cu(τ ) = e−1Cu(0), we obtain for δ = 2j, j = 0, 1, 2, · · · , 7,

τ = 2.1, 2.3, 2.8, 4.3, 7.2, 12.1, 19.9, 29.5, respectively.
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The time scale ratios T/τ for the Taylor-Couette data are large:
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Fig.4: Time scale ratio T/τ as a function of Reynolds number Re for δ = 8, 4, 2, 1 (from top to

bottom).

T/τ increases with increasing Re, making the superstatistical approach more and more exact for increasing

Re.

C.B., E.G.D. Cohen, H.L. Swinney, PRE (2005)
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Our measured turbulent time series falls into the universality class of lognormal superstatistics:
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Fig.5: Probability density f(β) extracted from the turbulent time series (δ = 16), and compared with

log-normal, χ2, and inverse χ2 distributions, on (a) linear-linear and (b) log-log plots. All distributions have

the same mean and variance as the experimental data.
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One can check for our data the validity of the superstatistical formula

p(u) =

∫ ∞
0

f(β)p(u|β)dβ, (32)

which in our case reads

p(u) =
1

2πs

∫ ∞
0

dββ−1/2 exp

{−(ln(β/µ))2

2s2

}
e−

1
2βu2

. (33)
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Fig.6 Comparison of the measured (fluctuating lines) and predicted (dashed lines) probability distribution

p(u) for velocity differences on (a) semi-log plot, which emphasizes the tails, and (b) linear-linear plot, which

emphasizes the peak.
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Also, we may extract the parameter q from the data. For any superstatistics one can formally define a

parameter q by

q :=
〈β2〉
〈β〉2 . (34)

q measures in a quantitative way the deviation from Gaussian statistics. No fluctuations in β at all correspond

to f(β) = δ(β − β0) and q = 1, i.e., ordinary equilibrium statistical mechanics.

q = qTsallis for χ2-superstatistics.

For lognormal superstatistics one can prove that

q = es2
=

1

3
F, (35)

(F : flatness of the distribution p(u)). All these relations can be checked for our data.
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Fig.7: The parameter q as a function of δ, as evaluated from q = 〈β2〉/〈β〉2 (q-fluctuations) and from

q = 1
3
F (q-flatness).
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Observed for our Taylor-Couette data: Both the correlation function of u(t) as well as that of β(t) decay

with a power for very large times:
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Fig.8: Correlation functions Cβ(t) (top) and |Cu(t)| (bottom) for δ = 1. The straight lines represent

power laws with exponents -0.9 and -1.8.

Consistent with superstatistical model where γ fluctuates.
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Superstatistics: Further applications 1 2 3 4 5 6

6 Application to scattering processes in high energy physics
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Summary:

• Superstatistics (a ’statistics of a statistics’) provides a physical reason why more general
types of Boltzmann factors ( e.g. q-exponentials) are relevant for nonequilibrium systems
with suitable fluctuations of an intensive parameter.

• There is evidence for three major physically relevant universality classes: χ2-superstatistics
= Tsallis statistics, inverse χ2-superstatistics, and lognormal superstatistics. These
arise as universal limit statistics for many different systems.

• An necessary condition for superstatistics to be a good model is a clear time scale
separation: T >> τ . This is indeed observed for turbulent Taylor-Couette flow.

• A general method was described how to proceed from a given experimental time series
to a superstatistical description.

• Hydrodynamic turbulence well described by lognormal superstatistics (Lagrangian tur-
bulence, Taylor-Couette flow, atmospheric turbulence).

• Defect turbulence (tilted Raleigh Benard flow) well described by χ2-superstatistics.

• Scattering processes in particle physics seem to be correctly described by χ2-superstatistics
(power laws).
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