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Lecture 2: Computer Methods for Quantum
Themodynamics Inspired from Tsallis Statistics

loan Andricioaei
University of Michigan



Summary

Path integral simulations for quantum thermodynamics:
Quantum-classical isomorphism

A generalized ensemble path integral method based on the Tsallis
statistics introduced.

Will show that algorithm with the Tsallis ensemble replacing the
canonical ensemble converges to the quantum mechanical result
with a smaller number of beads in the isomorphic chain.

Examples: harmonic oscillator, double-well systems, double-well
system immersed in adiabatic solvent.



Introduction

Considerable interest in using discretized path integral simulations
to calculate thermodynamical averages using quantum statistical
mechanics for many-body systems.

Theory based on Feynman path integral representation:
isomorphism between the equilibrium canonical ensemble of a
quantum particle = a classical system of ring polymers of beads.



Figure 1:

Classical system of ring polymers can be simulated with either
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Monte Carlo (MC) or molecular dynamics methods (see Lecture 1).

Examples of applications: quantum mechanical contributions to
structure of water (Rossky et al.), the electron localization in water
clusters (Berne et al.), and the reaction rates for intramolecular
proton transfer in acetylacetone (Roux et al.).

Hamiltonian operator H = K + V = -(h2/2m)\72 + V{x)

Coordinate-representation elements, p(x,xf]/3) = (x\e~^H\xf), of
the density matrix operator in canonical ensemble evolve in
"imaginary" time /3, according to the Bloch equation, dp/dp — Hp,
and satisfy

/ p(xi,xi]/3)dxi = (1)

For large P, fi/P small, and is possible to find good short time
approximation to p. This done by employing Trotter product



formula for exponentials of noncommuting operators K and V

— urn i e e i . [Z)

In the so-called primitive representation of the discretized path
integral approach (Feynman), the canonical partition function for
finite P has the form

mP ^ P/2

QP(/3) = / p(x,x;/3)dx = (3)

...dxp

Eq. 4 gives exact quantum partition function for P —> oo. For finite
P, Qp(fi) is the canonical partition function of a classical system
composed of ring polymers. Each quantum particle corresponds to
a ring polymer of P beads, in which neighboring beads are
connected by harmonic springs with force constant mP/2h2f32 and
each bead is acted on by the interaction potential V/P.

By simulating the classical system of ring polymers for a large
6



enough value of P, meaningful convergence to the quantum
mechanical result can been achieved.

Quantum thermodynamic averages can be calculated using
appropriate estimators. For instance, the estimator Up for the
internal energy, U — (Up) (the average is over the canonical
distribution), can be found using the thermodynamic relation,
U = -<91nQ/<9/?, by substituting QP(P) for Q,

p p
P m P 1

Up = ^ { f20 W¥ ^{Xl Xl+lf + P

For systems exhibiting sizeable quantum effects, a large value of P
is needed. However, in addition to increasing the number of degrees
of freedom for the polymer rings, this causes a slowing of the
relaxation of the springs connecting the pseudo-particles.

Thus, methods to either reduce the number of beads or improve
the sampling efficiency for a finite value of P are highly desirable.
Several techniques have been devised for better convergence as a
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function of P.

We present here a method which generalizes the distribution of the
classical ring polymers. On one hand, the method shows better
convergence, and on the other hand it can be used as a framework
for all the other techniques that improve standard primitive
algorithm.

Idea: Use Tsallis generalization of the canonical ensemble. Will
show that this has faster convergence with P.
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Theory of the method I

In Tsallis generalization of the canonical ensemble, the probability
density to be at position x is

'1-*, (6)

which has the property that
limg_>i (1 - (1 - q)pV(x))in~q = exp(-0V(x))] i.e., Boltzmann
statistics is recovered in the limit of q = 1.

For values of q > 1, the generalized probability distributions pq(x)
are more delocalized than the Boltzmann distribution (see Fig. 2).
Mimicking quantum delocalization.

9
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In Lecture 1, we used delocalization as main ingredient for
enhanced the configurational sampling of classical systems suffering
from broken ergodicity.

Here, we present the application of this approach to quantum
systems simulated via the discretized path integral representation.

If we put P — l/(q — 1), the Tsallis probability density becomes

and the sequence P — 1,2, 3, . . . ,00 is equivalent to
a - 2 ^ ^ 1

Instead of a small imaginary time step for the standard density
matrix operator, e~$Hlp ~ e-P

K/p
e~Pv/p

? w e Write

which is exact up to order (1/P)
li



By defining

the generalized algorithm can be cast in a familiar form, in which
the canonical partition function of the isomorphic classical system
becomes

where

(11)

As with standard path-integral algorithm, it is possible to use any
Monte Carlo and molecular dynamics method to calculate
thermodynamical averages of quantum many-body systems by
sampling the configuration space of the isomorphic classical rings
according to exp(—/3Wp).
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Note that sequence limit P —>• oo needed for convergence to
quantum mechanics of the standard primitive algorithm (Eq. 4)
yields also the correct quantum mechanics for the generalized
primitive algorithm which makes use of the propagator in Eq. 8.

However, there exists a possible advantage in using the generalized
kernel since it corresponds to a more delocalized distribution. In
this regard, it is important to note that, for the case of a harmonic
oscillator, the classical treatment in the standard primitive
representation for all finite P underestimates the delocalization of
the particle.

Using the generalized algorithm, we show in applications to several
model problems that faster convergence (with lower values of P) is
obtained because of the fact that the pq, for q > 1, are more
delocalized functions than the Boltzmann distribution.
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Harmonic oscillator in thermal equilibrium I

To test convergence properties of generalized algorithm, consider
system of linear harmonic oscillators at T.

Each harmonic oscillator is a point particle of mass m moving in
the potential V\(x) — muj2x2/2 with the classical frequency UJ (see
inset in Fig. 2).

One can calculate the thermodynamic properties of this system
from the exact quantum-mechanical partition function,
Q = 1

For the harmonic oscillator, the exact expression of the canonical
rP/2

partition function Qp for finite P is Qp — IP_1, where
J/ = 1 + R2/2 + V4 + B?R/2 and R =

For all P, classical treatment under-estimates delocalization of
particle, as described by the second moment of the probability
distribution. This is reflected in the lower value of the internal

14



energy relative to the exact quantum result.

The generalized method increases the delocalization and is
expected, therefore, to result in faster convergence, as we show
next.

A good measure to quantify the delocalization of the quantum
particle is the root mean square deviation of the beads from the
center of mass XCM of the polymer, calculated as

a =
\

(12)

This delocalization, for different values of P, in the standard
algorithm and the generalized Tsallis algorithm, is shown in Fig. 2,
together with the quantum mechanical result of the standard
deviation of the average probability density,

<7 ^q m t<mh(/3hoj/2)'
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In Fig. 3 we show the convergence of the harmonic oscillator
internal energy to the exact quantum result, ^ coth(^r^), in two
cases: for a MC algorithm using the standard approach and for the
generalized algorithm.

Using the more delocalized Tsallis distributions, the internal energy
is shown to be closer to the full quantum-mechanical result.

In actual simulation, we performed 200, 000 Monte Carlo cycles
which are enough for convergence for all the plotted values of P.
One starts by constructing a string of P beads in one-dimension.
They have a periodicity such that the string is closed,
x(P + 1) = x(l). Each beads feels the harmonic potential V/P plus
the spring potential from the two neighbors. Each bead is moved
left or right, with the size of the move step randomly chosen from
an interval [—smax, smax], where smax is varied every 100 steps such
as to keep the acceptance of the moves to about 1/2.

Inset of Fig. 3a shows the convergence of the internal energy as a
function of 1/P and 1/P2.
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Figure 3: a. Internal energy per particle for harmonic oscillator. Gen-
eralized method (in diamonds) converge faster to the exact q.m. result
than standard one (in crosses). Injet compares the convergence of the
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For both generalized and standard methods, the 1/P dependence is
closer to a straight line on a larger interval of P values than the
1/P2 dependence. This is expected from the fact that both Eq. 8
and its standard counterpart are exact up to order (1/P). Similar
behavior is obtained for other convergence plots presented later in
the lecture.

There exists the possibility that delocahzation resulting from the
use of the Tsallis distribution overemphasizes the delocahzation of
the corresponding quantal system.

This is the case when P = l for a harmonic oscillator, V — x2. The
Tsallis probability density is the Cauchy-Lorentz distribution,
1/(1 + /3x2), whose second moment diverges. As a result the
internal energy can be higher than the exact result. This can be
seen in Fig. 3 and in the figures for the internal energy of the
systems discussed in the following two sections.

As P increases, there exists a critical value Pc with the property
that the quantum delocahzation is close to the one of the
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Boltzmann distribution for P > Pc and overestimated relative to
the Boltzmann distribution for P < Pc. One expects the Tsallis
algorithm to be accurate for P > Pc and most effective for a value
of P near Pc, for which the number of beads is the smallest
possible.

Since the parameter controlling the delocalization is q(P), one
should choose the decay schedule of q(P) optimally in practical
applications. This is analogous to simulated annealing, where one
chooses the optimum cooling schedule for the temperature decay.

We introduce the "cooling schedule" of q for the appropriate Tsallis
distribution by using

q(P) = 1 + 1/aP, (14)

rather than q(P) = 1 + 1/P. We show an example of the effect of
an optimal choice of the parameter a in Section 1.

In Fig. 3 we also plot the displacement correlation function,

2 - t ' ) = (\ri-ri,\
2), (15)
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where \i — i'\ — j^{t — t'). R2(t — £'), the mean-square distance

between two beads of the chain separated by an Euclidean time

increment 0 < t — t' < f3h, is useful for the calculation of absorption

spectra.

Compare the numerical MC results for the harmonic oscillator

using the generalized and standard algorithm with the analytical

formula for the harmonic oscillator

R2(t - t') = hmuj coth - — , '^ . . cosh ujlt - tf) . (16)

Results demonstrate that an accurate correlation function can be

obtained by the generalized algorithm with a significatly lower

number of beads than in the standard algorithm.
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Quantum systems in bistable potentials
Internal energy of a double oscillator system

A property of great interest in many reactions, particularly those
involving proton transfer, is the contribution of tunneling.

As a simple example we have considered a quantum particle in the
one-dimensional double-well potential

V2{x)=1-mw2{\x\-a)2, (17)

shown in Fig. 4.
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Bistable oscillator could model a diatomic molecule, (with positive
and negative values of x corresponding to quantal barrier
penetration of one particle through the other) or a symmetric
hydrogen bond.

The isomorphic classical system was simulated with the MC
algorithm to obtain U numerically, using the standard and the
generalized algorithm.

Initial positions of the particles in the polymer ring were randomly
chosen in the interval [—a, a]. Used 200,000 MC cycles and an
adaptative step size to keep the acceptance ratio around 1/2. Fig.
4 shows the internal energy U of the double oscillator in the
potential V^x) as a function of P.

Together with the MC results, the quantum mechanical internal
energy result calculated by solving the corresponding Schroedinger
equation is presented. We used as a basis set the first 15 harmonic
oscillator eigenfunctions to construct the Hamiltonian matrix of the
double-well system and diagonalized it to find its eigenvalues.
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To optimize the convergence, we have varied the parameter a in
Eq.(14). A value of a = 0.6 shows that a reduction by an order of
magnitude in the number of beads is feasible with the generalized
algorithm.

For the case of the simulation whose results are shown in Fig. 4,
the internal energy stays within 1% of the exact quantum result for
P > 70 in the case of the standard Monte Carlo scheme, while
values of P > 30 are needed for the same accuracy when we use the
generalized algorithm.

For a temperature T — 1 with /3hu = 20, only the lowest two
eigenvalues contribute significantly (see above) and the partition
function can be written:

Q = exp -pE™ - — + exp -pE™ + — . (18)

with E^ — hcj/2 and AE1, the energy splitting of the ground state
due to tunneling.
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The analytic expression for the internal energy (U = —dlnQ/dp) is

We also plot, in Fig. 5, the results of the calculation of the tunnel
splitting AE from Eq. 19 corresponding to the parameters in Fig.
4.
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Coupling to adiabatic solvent I

Fast convergence with P is not restricted to linear or
piecewise-linear differential equations (see Fig. 2 and Fig. 4),

Simulate the quartic bistable potential

1 TYl CJLJ

O LJu

illustrated in Fig. 6.

(20)
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It is a widely used test system for approximate quantum
calculations, although there is no exact analytic solution. We
calculate the internal energy U — —dlnQ/d(3 of the quantum
system using the standard primitive algorithm and the generalized
one for different values of P by Monte Carlo techniques.

The result for U shown in Fig. 6a converges to the exact quantum
mechanical result, U = 7.92, obtained by solving numerically the
corresponding Schroedinger equation. As in the case of the double
oscillator system, the convergence as a function of P is more rapid
with the Tsallis ensemble than the standard primitive method.

The quartic potential Vs(x) system was then coupled to a
fluctuating adiabatic bath that represents the solvent, i.e., the time
scale of the fluctuations of the bath is much longer than the
relaxation time of the double-well system.

This model has a coupling energy of the form —/if, where
\i — xj\x\ is the dipole moment of the system and £ is the electric
field due to the bath.
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For each value of P, values of the random field £ are taken from a
Gaussian distribution, and the internal energy is averaged over the
values of £. The variance of the Gaussian distribution is chosen to
be 2kTa, where a is the solvation energy of the unit dipole.

This spin-boson system has non-trivial quantum properties,
especially in the high tunnel-splitting regime, which are very
difficult to simulate with the standard primitive scheme, in the
sense that large values of P are needed.

Quantum-mechanical partition function relative to the bath can be
found analytically for the case of a two-level system (i.e., if

» kT) by mapping to an Ising model in a magnetic field

Z = ^YpK / d$e-$22cosh£>, (21)
— oo

where D = ^(fiAE/2)2 + 4/3cr$2, and $ =

30



The internal energy of solvation is thus

*2 sinh D((3(AE/2)2 + ) /
Usolv = -dinZ/d[3 = ^ ^ ; 2 ' '-!—. (22)

d<f>e~® coshiJ
J — oo

This result for C/soiv, together with the solution of the Schroedinger
equation for U are used to calculate a value of 7.386 for the
internal energy of the system plus solvent.

Convergence with the generalized Tsallis algorithm is much faster,
as shown in Fig. 6b; i.e., convergence to within 1% of the quantum
result is achieved by the algorithm at P — 20, while the standard
algorithm requires values of P > 50 to achieve a similar degree of
convergence.

In the simulation, to keep the argument of the logarithm in Eq. 9
positive, a potential energy shift was added to V and then removed
at end of the simulation from the averaged result.
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Concluding Summary j

We considered a number of quantum properties

- delocalization,

- zero-point vibration,

- quantum thermodynamical averages,

- tunneling effects,

- quantum solvation.

We have demonstrated that the generalized path integral treatment
based on using a Tsallis distribution with the primitive algorithm
converges more rapidly as a function of the number of beads than
the standard Boltzmann distribution.

This was a consequence of the delocalization properties of the
Tsallis probability density.

One expects that the faster convergence properties of the
generalized algorithm are conserved for more complex potentials so

32



that the method has general applicability.

Although the Tsallis distribution is non-Boltzmann, we do not
correct for this (i.e., we do not reweight the states such that
averages of the Boltzmann distribution are calculated), in contrast
to ordinary enhanced sampling algorithms based on
non-Boltzmann distributions (Torrie and Valleau).

Instead, we use the Tsallis distributions as an approximation to the
quantum-mechanical distribution, motivated by the fact that the
Boltzmann distribution always underestimates the
quantum-mechanical delocalization for the harmonic oscillator.

This result is the principal motivation for the use of quantum
effective potentials to enhance convergence in path integral
calculations.

For instance, for systems with strong repulsions, the use of a
quantum effective potential (Barker, Ceperley) is beneficial because
it is a smoother version of the original "bare" potential V.
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In other words, it is better if the potential term varies slowly (in
space) relative to the kinetic term. The Tsallis effective potential V
in Eq. (9), has this qualitative feature required, that is, it is a
smoother version of V because of the logarithm which reduces high
energy barriers.

For large systems one expects additional benefit from the use of the
generalized distribution: The centroids of the polymer rings move
in these cases on a more rugged potential surface so that the
sampling of the configurations should be enhanced in the
generalized algorithm because of the smoother shape of the Tsallis
effective potential; i.e., the corresponding classical distributions are
more delocalized thus favoring faster escape from energy basins
surrounded by large barriers.

This suggests that, in addition to a result closer to the quantum
mechanical case, the form of the propagator we have proposed
should lead also to enhanced sampling of chain conformations
relative to the standard primitive form. Moreover, for large P, the
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relaxation time of the polymer chain is large due to the stiffness of
the bonds (whose force constant increases with P), so that the
generalized algorithm with lower P is expected to reduce this
relaxation problem.
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