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I. Elementary principles of mathematical statistics

Let Pi denote the probability for the occurence of states of a system labelled
by the integers i = 1, 2...n. Then

tft = l, (1)
i

and the average or mean value / of any variable /, of the system is

/ =!>/«• (2)
i

A simple way to understand these two fundamental relations of statistics is
to suppose that we make A'" independent measurements of the variable fi7

and that the number of times that we obtain the value /j is n .̂ Then

(3)
1

and the observed average value / of /, is



Setting the probability Pi equal of the ratio rii/N in the limit that TV becomes
arbitrarily large, i.e.

Pi = ( — )limitN^oo, (5)

/—>•/, and we recover the fundamental equations of statistics, Eqs.l and 2.
In addition to these two equations , we will need the joint probability for

two systems a and b which are statistically independent of each other. This
probability is given by

P« = PH (6)
where p® and pb, are the probabilities for system a and b respectively.

II. Elementary principles of statistical mechanics

In quantum mechanics the stationary states of a system are characterized
by its energy eigenvalues E^. Hence, any equilibrium state of the system
can be characterized by probabilities pi determined by a function / which
depends only on Ei, and a parameter (3 with dimensions of inverse energy.
On dimensional grounds 1

where Z(j3) is determined by the normalization requirement, Eq.l,

(8)

Evidently, Z{0) depends on all the energy eigenvalues of the system, and
as we shall demonstrate, determines the thermodynamical functions of the
system. For systems in equilibrium, we now will give a mathematical proof
that the function. f(x) is a universal function which is independent of the
physical nature of the system under consideration.

Consider two systems a and b that are weakly coupled, i.e., the interaction
energy can be neglected. This is the case for short range force, but not, for
example, for gravitational force. Then their total energy Ef>- is additive,

Efd = Ef + E), (9)
1A mathematical function f(x) and its argument x must be dimensionless variables



and the probability p^ for the state of the coupled system is given by Eq.
6. When the systems a and b are subsystems of the same physical system
separated by a wall which allows the exchange of energy, and otherwise is
under the same physical conditions, e.g. equal pressure, etc., we have fa(x) =
fb(x) = fab(x) = f{x). Substituting Eq. 7 in Eq. 6 we obtain the relation

/(/«,') ( 1 0 )

Zab(Pab) Za{(3a) Zb(/3b)

where /3a, (3b, and f3ab are the respective parameters j3. This relation is a
nonlinear equation which must be solved for f(x). But this function, if it
exists, is independent of the physical nature of the system, which is described
here by the energy eigenvalues Ei. Hence f(x) must be a universal function,
and the same equation must hold when a and b are different weakly coupled
systems, i.e. provided that E®b satisfies the additivity condition Eq. 9.

To solve Eq.10, it turns out that it is sufficient to satisfy the equality of
the numerators on both sides of this equation, because then the equality of
the denominators is automatically satisfied, as can be easily verified. Hence,
we require that

' 0, (ii)
where x and y are independent variables. Setting y = 0 gives

fWabx) = f(Pax)f(0), (12)

which requires that /(0) = 1, and f3ab = f3a. Likewise, setting x = 0,

fWaby) = fWb)f(o) (13)

again requires that /(0) = 1, and f3ab = f3b. Hence, a solution of Eq. 11 is
possible provided that (3a = fjb = j3ab = j3.

Setting 13 = 1, we have

f(x + y) = f(x)f(y), (14)

and taking derivatives with respect to y on both sides of this equation, setting
afterwards y = 0, gives the first order differential equation

f(x) = f'(0)f(x), (15)



where f'(x) = df(x)/dx 2. The solution is an exponential function

f(x) = Cef'W* (16)

where C is a constant which is equal to unity by the condition /(0) = 1 The
value of /'(0), is arbitrary, but the finitness of the sum defining Z(j3), Eq. 8,
requires that /'(0) < 0. For convenience we set /'(0) = —1, and obtain for
the universal form of f(x) the exponential function

f(x) = e~\ (17)

Substituting this exponential form in Eq. 8 for Z{/3), we obtain 3

£e-^. (18)

Of course, Z(/3) depends on the system under consideration, because it is
determined by the energy eigenvalues Ei of this system. It can be readily
verified that the condition for equality of the denominators required to satisfy
Eq. 10,

Zab(P(Ea + Eh)) = Za(PEa)Zb(PEb), (19)

is now automatically satisfied. Q.E.D.
It is important to stress the uniqueness of the exponential form for the

probability Pi,
e-pEi

( 2 0 )

as a function of the energy eigenvalues Ei. 4 This exponential form is known
2 The same result would have been obtained by first taking derivates of both sides of

Eq. 11 with respect x, and afterwards setting x = 0.
3In statistical mechanics Z{j3) is called the partition function,
4In numerous papers on q-entropy, it has been claimed that a different form for the

function f(x) introduced by Tsallis,

/,(*) = (1 - (1 - g)*)1/ '1"'), (21)

also satisfies the additivity condition for the energy, Eq. 9, and the multiplicativiy condi-
tion for probabilities of statistical independent systems, Eq. 6. It can be readily verified,
however, as expected from the uniqueness of the solution of Eq.14, rigorously demonstrated
here, that this is not the case. In fact

fq(x + y)^fq(x)fq(y), (22)

unless we take the limit q —> 1 in Eq. 21, in which case f\{x) = e~x = f(x).



as the canonical distribution and in thermodynamics it applies to systems
in thermal equilibrium, i.e in contact with a thermal bath with which it
can exchange any required amount of energy in the form of heat. This will
be demonstrated below. It was first introduced in statistical mechanics by
Maxwell, by arguments similar to those presented here 5, to describe the dis-
tribution of velocities of a molecular gas in thermal equilibrium; subsequently
it was applied in greater generality by Boltzmann [1], and then for all weakly
coupled equilibrium systems by Gibbs [2] and by Einstein [3] 6.

III. The entropy in statistical mechanics

Both Gibbs [2] and Einstein [3] also demonstrated that the entropy 7 of a
thermodynamic system is uniquely determined by the exponential form of
the probability distribution, Eq. 20. For this purpose, assume that the
energy eigenvalues E^ depend also on an external variable which could be
the volume V, an external magnetic field, etc.. In this case, the mean energy
E 8 is given by

F
E =

where the partial derivatives are taken keeping the external variable V fixed.
Likewise, if the external variable is the volume V, we obtain the average
pressure P by the relation

[3 dV • [ >

Setting

(25)

5 Maxwell was inspired to his solution by the mathematics of gambling
6 The independent development of the canonical ensemble in statistical mechanics by

Einstein is not well known, as evidence by the fact that the canonical distribution is often
called the Boltzmann-Gibbs (BG) distribution

7The concept of entropy was introduced by Rudolf Clausius in 1856, on purely ther-
modynamic grounds: the principles of conservation of energy, and Carnot's maximum for
the work efficieny of reversible engines

8In this section we drop the bar to refer to mean quantities



We have
dJL = ^zL, (26)

which suggests defining a new function S by the relation

S = k(3(E - F) = k(-/3—^— + inZ) (27)

where A; is a constant. Then

— = k[5—, (28)
dp dp

and therefore we can identify

T = — (29)

with the thermodynamic absolute temperature 9, S with the entropy and F
with the free energy. Indeed, Eq. 28 implies that

dS 1 (30)
dE T '

and we also find that

f = Ws- (31)

Hence, changing from /3 to T as the independent variable, we obtain the
familiar thermodynamic relations

F = E-TS, (32)

and
dS - dP (35)
dV~ &T- { '

9The constant k is known as Boltzmann's constant. Originally, however, it was intro-
duced by Planck in his celebrated paper on black-body radiation. It is required because
the temperature is given in degree units, while the entropy is in energy units /degree units

6



According to Eq. 20

(36)

and it follows from the definition of the entropy function S given in Eq. 27
that

S = ki-^pilnipi). (37)

This relation for the entropy was first obtained by Boltzmann [1] who
obtained the maximum number of configurations W of a classical system of
n molecules having energies Ej = je, where e is a small energy unit which
he set equal to zero in the limit corresponding to classical mechanics10 . In
that case

n'
W = - j - ^ — (38)

n ! n !

where n, are the number of molecules having energy Ei, and

n = X> (39)
i

For large values of rij he applied the Stirling aproximation ln(n\) = n(ln(n) —
1) and obtained the relation

ln(W) = -nY,Piln(Pi) (40)

where Pi = rii/n. For the distribution that leads to the maximum value of
W subject to the condition of fixed total energy, he obtained the canonical
distribution, Eq. 20, and demonstrated his celebrated relation for the entropy
S of the molecules in terms of W,

S = kln{W). (41)

Boltzmann's variational method gives an alternative derivation for the canon-
ical probability distribution pi, and is presented in general form in the next
section.

10Later on, Planck took over Boltzmann's method for an ensemble of charge oscillators
in equilibrium with electromagnetic radiation in a cavity, but he kept the energy unit e
finite setting e = hv, where h is a constant now known as Planck's constant. In this way
he obtain his famous blackbody formula and ushered in quantum mechanics.



IV. Boltzmann's variational derivation for the canonical
probability distribution and entropy

Consider a system with energy levels £$, and suppose we have a very large
number TV of replicas such that n, have energy Et. Then

N = 52m (42)

and
E = YJnlEl (43)

is the total energy. In the limit that TV —>• oo, Pi = rii/N is the probability
that a system chosen at random has energy Ei, and

§ = E*Ei (44)
is the mean energy of the ensemble. The total number W of posible config-
urations of this ensemble is

TV'
W = — ^ (45)

ni!n2!...

We now evaluate the maximum value of W subject to the constraints that
TV and E are fixed n . For large TV we can approximate ln{W) by

ln(W) « N(ln(N) - 1) - £ n%{ln(m) - 1) = -TV ]TPiln{Pi) (47)

and determine p, by the variational equation

5W - P5E -ctN^, $Pi = 0, (48)

1:LWe like to stress the important point that the maximum of the entropy S = kln(W)
should not be subject to other constraints that have absolutely no physical meaning.
Unfortunately, this has been done in the vast literature on q-entropy. There the quantity
that is kept constant is an unphysical variable Uq defined by

where q is an undetermined constant. Moreover, to add to this error, Uq is claimed to
be the energy of the system, but if p» is the fundamental probability distribution, this
identification, according to the principles of statistics (see section I), is wrong unless q = 1



where a and f3 are Lagrange parameters, and

Sln(W) = -N^2Spiln(pi), (49)

and

8E = NY,SPiEi- (5°)

Hence, we obtain the canonical exponential form for pt,

Pi = e-(a+(iE<\ (51)

where the normalization condition for the probabilities Pi, Y,iPi = 15 Eq. 1,
determines a as a function of /3,

a = ln(Z(fJ)), (52)

and

(53)
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