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When does atheory apply?
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“Does this apply always, sometimes, or never?”’



beyond Boltzmann Gibbs statistical
mechanics

Why do we feel the need to go beyond

Boltzmann Gibbs standard statistical
mechanics, a very successful theory with

So many applications?



There are several reasons
« /7

e Many systems relax very fast to equilibrium ... but many
others do not ...and they live in long-standing quasi-
stationary states which cannot be explained bt BG statistics

Moreover BG statistical mechanics has also other limitations

In fact it is based on:

e Ergodicity and equal a priori probability for cells in phase space
e Short range interactions

e Thermodynamical limit

e Small Gaussian fluctuations



Boltzmann Gibbs statistics does not
work when one has

Long range interacting systems

Complex systems

Systems at the edge of chaos

Fractal phase space

Ergodicity breaking and vanishing Lyapunov exponents
Vanishing Lyapunov exponents

SOC systems

Turbulence

Biological,geophysical and economical systems

etc.



Tsallis generalized statistics:
a possible proposal

S, entropy

N
qui_l N 1
S, = o :Zpilnqu

Maximized by the generalized weight

e, (X) = [1+(1—q)x]%‘q




Is this the situation....?
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Or this...?

“This could be the discovery of the century. Depending,
of course, on how far down it goes.”



No a priori reasons to reject S, statistics

It preserves the Legendre structure of thermodynamics
Most important theorems have been generalized for S
It conserves simultaneously concavity,robustness,etc.
It is extensive for special global correlations

It reduces to BG formalism for ¢ —1

The index g characterizes the underlying dynamics and, in several
cases, it has already been calculated a priori

The point is then:

“To what extent is S, formalism supported by experiments (real
data or numerical ones) or is it useful for practical
applications™?



Where S, formalism has been successfully applied*

* just a few examples

Probability theory

Rigorous mathematical results on the generalization of
the Central limit theorem

(Umarov, Tsallis Gell-mann, Mojano)

- Maps at the edge of chaos

Rigorous mathematical results using renormalization
group techniques

(Robledo et al)

Cold atoms in a dissipative optical

Very good experimental confirmation of Lutz prediction
within Sq statistics

lattice (Renzoni et al Prl 2006)
Pdf of several turbulent fluids, solar wind reproduced
with a very good approximation. Very good description
Turbulence of defect turbulence

(Beck Cohen Swinney Daniels Bodenshatz et al)

Long-range Hamiltonians

Good reproduction of relaxation and anomalous
diffusion for QSS

(Rapisarda,Anteneodo,Mojano, Pluchino, Tamarit )

Biological systems

Very good description of anomalous diffusion and
decay of correlation for Hydra viridissima.

(Upadhyaya et al)

Econophysics

Very good description of the volatility smile
(Borland)

Computational physics

Important applications for Optimization algorithms
(Straub, Andriociaei)

Signal and image processing

Very performant techniques for image reconstruction
(de Albuquerque , Ben Hanza et al)




g-product
c

1

X®, Y= [xl‘q +ye —1]5
Properties:
1) X®, y=XY
i) In,(x®, y)=In_ x+In,y
[whereas In (xy)=In x+In, y+@-q)(In, x)(In, y)]

[L. Nivanen, A. Le Mehaute and Q.A. Wang, Rep. Math. Phys. 52, 437 (2003);
E.P. Borges, Physica A 340, 95 (2004)]



g- GENERALIZED CENTRAL LIMIT THEOREM: (mathematical proof)

S. Umarov, C.T. and S. Steinberg [cond-mat/0603593]

g-Fourier transform:
- - Ix&
. 1—
@ -1 = [el¢e, 100 dx= [ el ™I 1 () ax (nonlinear!)

g-correlation:
Two random variables X [with density f, (x)] and Y [with density f, (y)]
are said g-correlated if

F [X+Y](S) =F,[X](S) ®, F[YI(S),

ie., if
[ dzefc o, fy., (@) =[ [ dxef e, fy (x)} ®, [ [ dy e e, fY(y)} ,

with f, ., (2) =" dx[ dy h(x,y) S(x+y-2)=[" dxh(x,z=x) = dyh(z-y,y)

where h(X, y) is the joint density.

g -correlation means independence if g=1,1e, h(x,y)="f(x)f(y)
( global correlation if g=1, hence h(x,y)= f, (x)f,(y) ]



CENTRAL LIMIT THEOREMS: N"1*91_SCALED ATTRACTOR F(x) WHEN SUMMING N — o0
q-CORRELATED IDENTICAL RANDOM VARIABLES WITH SYMMETRIC DISTRIBUTION f (X)

g=1 [independent] g=1(ie, Q=29-1 #1) [globally correlated]
F(x) = G?)qq+ll(X) = % Gaussian,
IF(x) = Gaussian G(x), with same o, [E Jaoxf 010 /[ x [ (x)]Q] of f(x)
o < o0 with same o of f(x) = G () if [ x << x_(q,2)
(o =2) GS;‘L?(X) {~ £(X) = Co / [ x [TV g x5 % (q,2)

with lim__, x.(q,2) =00

F(x) = Levy distribution L., (x), F(x) = Lw,a stable distribution,

. a+1
beh 2a0-a +3 q,a
O —> 0 asymptotlc ehavior Taa
Q :G(X) or
O0<a<?2) Lo if | x|<<x. (L) F(x)=L,q.q.1 stable distribution,
X — &
T 0= Cot : e *) 2(a+q-1)/a (q-1)
if [xp>x@La) | W Lagiqr T PO~ C L TIX]
a+q-1"
with lim_, , X (L a)=wo




(weak chaos, i.e., zero Lyapunov exponent)

Logistic map at

the edge of chaos

Entropy growth is linear only for

q*=0.2425.....

1 Inag
1-g In2

Generalized Pesin-

like theorem
<q — ﬁ“q
ﬂ’q :i
1-q¢
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C.T., A.R. Plastino and W.-M. Zheng, Chaos, Solitons & Fractals 8, 885 (1997)

M.L. Lyra and C. T. , Phys. Rev. Lett. 80, 53 (1998)

V. Latora, M. Baranger, A. Rapisarda and C. T. , Phys. Lett. A 273, 97 (2000)

E.P. Borges, C. T., G.F.J. Ananos and P.M.C. Oliveira, Phys. Rev. Lett. 89, 254103 (2002)
F. Baldovin and A. Robledo, Phys. Rev. E 66, R045104 (2002) and 69, R045202 (2004)
G.F.J. Ananos and C. T., Phys. Rev. Lett. 93, 020601 (2004)

E. Mayoral and A. Robledo, Phys. Rev. E 72, 026209 (2005), and references therein

Feigenbaum constant has been measured
In many real experiments

a, = 2.5029078....



Cold atoms in a dissipative optical lattice

experimental verification by P. Douglas, S. Bergamini and F. Renzoni, Phys Rev Lett 96, 110601 (2006)

Theoretical prediction by

E.Lutz PRA 67 (2003) 051402(R)
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(Computational verification:
quantum Monte Carlo simulations)
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The solution of

0 p(x.t) _ 5 (’92[I0(X,2'[)]2_q [p(x,0)=5(0)] (q<3)
ot OX

IS given by
P(Xx,t) oc [1+ (1—q) x*/ ([‘t)Z/(3—CI)

hence

1/(1-q) 2 2/(3-q)
] EeqX/(m q (1" oc D)

X* scales liket” (e.g., (X*)oct”)
with

2

7/=a

C.Tsallis and D.J. Bukman, Phys Rev E 54, R2197 (1996)



[Defect Turbulence }

K.E. Daniels, C. Beck and E. Bodenschatz, Physica D 193, 208 (2004)

Y
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K.E. Daniels, C. Beck and E. Bodenschatz, Physica D 193, 208 (2004)



[Long-range Hamiltonian systems j

Anomalous diffusion vs g-exponential decay of correlation function

2/(3-q)

Rapisarda and Pluchino,
Europhysics News 36 (2005) 202
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Anomalous diffusion for Hydra viridissima
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A. Upadhyaya, J.-P. Rieu, J.A. Glazier and Y. Sawada
Physica A 293, 549 (2001)
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nophysics

g-GENERALIZED BLACK-SCHOLES EQUATION:

L Borland, Phys Rev Lett 89, 098701 (2002), and Quantitative Finance 2, 415 (2002)
L Borland and J-P Bouchaud, cond-mat/0403022 (2004)
L Borland, Europhys News 36, 228 (2005)
See also H Sakaguchi, J Phys Soc Jpn 70, 3247 (2001)
C Anteneodo and CT, J Math Phys 44, 5194 (2003)

Probability Density

Black-Scholes Implied Volatility
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A Fig.2: The empirical distribution of daily returns from the
stocks comprising the SP 100 (red) is fit very well by a g-
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of q—Gaussians when

A Fig.3: Theoretical implied Black-Scholes volatilities from
the g = 1.4 model (triangles) match empirical ones (circles)
very well, across all strikes and for different times to
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[REMARK : Student t—distributions are the particular case

with n integer]
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Statistical Probability
mechanics theory

Dynamics




A few concluding remarks

ﬁ S, Statistics Is a very useful and elegant theory.\
e It has also experimental and numerical support.

e There are still some open problems and
further work is certainly needed.

e Future investigations will clarify its limitations
and how fundamental it is.

o /




