

The Abdus Salam International Centre for Theoretical Physics

International Atomic Energy Agency

SMR.1763-25

SCHOOL and CONFERENCE on COMPLEX SYSTEMS and NONEXTENSIVE STATISTICAL MECHANICS

31 July - 8 August 2006

Globally Correlated Discrete Systems: Attractors in Probability Space and Entropic Extensivity

J. A. Marsh

SI International Rome, NY USA Globally Correlated Discrete Systems: Attractors in Probability Space and Entropic Extensivity

J. A. Marsh

Collaborators: M. Fuentes, L. Moyano, W. Thistleton, C. Tsallis

Outline

- Discrete Systems
 - Overview of "simple" and "complex" systems
 - Discrete (binary) Systems Composition
 - Various Models
 - Independent case
 - *q*-correlated model
 - Stretched exponential model
 - Cutoff model
 - Power-law models
 - Summary

"Simple" Systems

- Independent system composition yields:
 - Boltzmann-Gibbs entropy S_{BG} is extensive
 - i.e., $S_{BG}(N) \propto N$ as $N \to \infty$
 - Central Limit Theorem applies, yielding Gaussian distributions
 - e.g., Maxwellian distribution of molecular velocities, normal diffusion
- We consider a number of complex systems that illustrate various departures from this behavior

"Complex" Systems

- Global correlations among composing subsystems are known to yield complex behavior
- We consider two examples of complex (anomalous) behavior:
 - The generalized entropy S_q is extensive for $q \neq 1$, where

$$S_q \equiv \frac{1}{q-1} \left(1 - \sum_{i=1}^{W} p_i^q \right)$$
 $S_1 = S_{BG} = -\sum_{i=1}^{W} p_i \log p_i$

- In the thermodynamic limit, the attractor in probability space is non-Gaussian
 - The diffusion exponent γ (x scales like t^{γ}) will in general also deviate from the usual value $\gamma = 0.5$

Entropy Growth as a Characterization of Complexity

- Consider the composition of N discrete μ -state systems
 - Total number of possible states is μ^N ($\mu \ge 1$)
 - Let the effective number of states W_{eff} be the number of states with effectively nonzero occupancy
 - "Simple" system: Quasi-independent subsystems yield

$$W_{eff} \approx \mu^N$$

 "Complex" system: Correlations may cause phase space occupancy to be severely restricted, e.g.,

$$W_{eff} \approx N^{\rho} \ll \mu^{N}$$
 for some $\rho > 0$

Entropy Growth as a Characterization of Complexity

• "Simple" system:

• "Complex" system:

$$W_{eff} \sim N^{\rho} \ll \mu^{N}$$
 for some $\rho > 0$

$$S_q \sim \ln_q W^{eff} \equiv \frac{(W^{eff})^{1-q} - 1}{1-q} \sim N^{\rho(1-q)} \qquad q_{ent} = 1 - \frac{1}{\rho} \neq 1$$

• In summary, the entropy S_q is extensive for

 $q_{ent} \begin{cases} = 1 & \text{for "simple" systems} \\ \neq 1 & \text{for "complex" systems} \end{cases}$

N Identical Binary Subsystems

- Only *N*+1 probabilities are necessary to characterize the 2^{*N*} states
- $p_{N,k}$ is probability that k systems out of N+1 are in state "1"

$$\sum_{k=0}^{N} p_{N,k} = 1$$

• Reduced probabilities $r_{N,k}$ defined by

$$p_{N,k} \equiv \frac{N!}{\left(N-k\right)!k!} r_{N,k}$$

Leibnitz-Pascal Triangle

- Reduced probabilities $r_{N,k}$ can be arranged into a triangle
- Leibnitz rule: strict marginals reduction $r_{N,k} + r_{N,k+1} = r_{N-1,k}$
 - When Leibnitz rule applies, only one value in each row need be specified, typically $r_{N,0}$
 - Not all possible specifications of $r_{N,0}$ yield valid probability sets

Independent Subsystems

- *N* identical binary subsystems: state "1" occupied with probability *p* $r_{N,0} = p^{N}$ $r_{N,n} = p^{N-n} (1-p)^{n}$ $p_{N,n} = \frac{N!}{(N-n)!n!} p^{N-n} (1-p)^{n}$ N=1 $p_{N-n} (1-p)^{n}$ N=2 $p^{2} p(1-p) (1-p)^{2}$ N=3 $p^{3} p^{2}(1-p) p(1-p)^{2} (1-p)^{3}$
- The probabilities $p_{N,k}$ form a binomial distribution
- deMoivre-Laplace central limit theorem: binomial distribution, centered and scaled, approaches Gaussian as $N \rightarrow \infty$

Independent case (cont).

- Visualization of probabilities using grayscale images
- Case p = 0.5 shown

Independent case (cont).

• Case p = 0.5 shown

Independent Case (cont.)

• Rescaled and centered probability distributions demonstrate Gaussian attractor $p_N(n) \rightarrow p_N(n) N^{\gamma}$

Independent Case (cont.)

• Entropy growth for generalized entropy S_q is linear only for q = 1

q-Correlated Model*

• Generalizes the independent case

$$\frac{1}{r_{N,0}} = \left(\frac{1}{p}\right)^N$$

• By adding correlations induced by the *q*-product

$$x \otimes_{q} y \equiv (x^{1-q} + y^{1-q} - 1)^{\frac{1}{1-q}} \qquad (x \otimes_{1} y = xy)$$

• Using the value q_{corr} in the *q*-product yields the model

$$r_{N,0} = \left[\left(\frac{1}{p}\right) \otimes_{q_{corr}} \left(\frac{1}{p}\right) \otimes_{q_{corr}} \dots \left(\frac{1}{p}\right) \right]^{-1} = \left[Np^{q_{corr}-1} - \left(N-1\right) \right]^{\frac{1}{q_{corr}-1}}$$

where the remaining $r_{N,n}$ are found using Leibnitz rule

* L.G. Moyano, C. Tsallis and M. Gell-Mann, Europhys. Lett. 73, 813 (2006).

- Case $q_{corr} = 0.8$
- Attractor is found to be a *Q*-Gaussian with

$$Q = 2 - \frac{1}{q_{corr}}$$
$$= 2 - \frac{1}{0.8}$$

$$= 0.75$$

- Case $q_{corr} = 0.3$
- Attractor is found to be a *Q*-Gaussian with

$$Q = 2 - \frac{1}{q_{corr}}$$
$$= 2 - \frac{1}{0.3}$$
$$= -1.333$$

• *Q*-Gaussian fit illustrated for case $q_{corr} = 0.8$

- The entropy index for the *q*-Correlated model is not anomalous: $q_{ent} = 1$
- This model shows superdiffusive behavior $\gamma > 0.5$ for $q_{corr} < 1$

Stretched Exponential Model*

- Defined by reduced probabilities $r_{N,0} = r_{1,0}^{N^{\alpha}} = p^{N^{\alpha}}$ where $0 < \alpha < 1$
- Leibnitz rule used to construct other probabilities
- Case $\alpha = 1$ reduces to the independent case
- Case $\alpha = 0$ yields an extreme case of reduced occupancy: only two of the $r_{N,k}$ are non-zero

C. Tsallis, M. Gell-Mann and Y. Sato, Proc. Natl. Acad. Sc. USA 102, 15377 (2005).

Stretched Exponential Model

- Example shown has $\alpha = 0.9$
- Model is superdiffusive for α < 1, with diffusion exponent γ depending on α
- The entropy index for the stretched exponential model is not anomalous: $q_{ent} = 1$

Cutoff Model*

• A model with $W_{eff} \approx N^d$ can be constructed by allowing only a strip of *d* non-zero $r_{N,k}$ values

$$r_{N,n} = \begin{cases} \frac{1}{W^{eff}} = \left(\sum_{k=0}^{\min(d,N)} \frac{N!}{(N-k)!k!}\right)^{-1} & n \le d\\ 0 & \text{otherwise} \end{cases}$$

Note this model does *not* satisfy the Leibnitz rule

* C. Tsallis, M. Gell-Mann and Y. Sato, Proc. Natl. Acad. Sc. USA 102, 15377 (2005).

Cutoff Model (cont.)

- Attractor is a delta function (diffusion exponent $\gamma = 0$)
- We find $q_{ent} = 1 \frac{1}{d}$ as expected

Power-Law Model*

• A new model defined by

$$r_{N,n} = \frac{N^{\alpha n}}{\sum_{k=0}^{N} \frac{N!}{(N-k)!k!} N^{\alpha k}}$$

- Due to normalization, the model is symmetric in α , only depends on $|\alpha|$
- Phase space occupation is very restricted: as Ngrows, fewer and fewer of the $r_{N,k}$ are effectively nonzero

Power-Law Model

- The entropy index for the Power-Law model is anomalous: $q_{\it ent} < 1$

Power-Law Model

- The example shows the case $\alpha = -0.25$
- In the example shown $\gamma = 0.42$

Subdiffusion observed for all $\alpha \neq 0$

Symmetric Power-Law Model*

 A symmetrized version of the Power-Law model is defined as follows

$$r_{N,n} = \frac{N^{\alpha n}}{Z}$$

where

$$n' = \begin{cases} n & n \le \lfloor N/2 \rfloor \\ N-n & otherwise \end{cases} \quad n = 0, \dots, N$$

This definition adds symmetry to the probabilistic triangle, but breaks the symmetry in α observed in the Power-Law model

* J. Marsh, M. Fuentes, L. Moyano, and C. Tsallis, to appear in Physica A, 2006.

Symmetric Power-Law Model

- Example shown is at $\alpha = -0.25$
- For α < 0 we find the essentially same diffusion exponents as in the Power-Law model

Cutoff Power Law Model*

*

 Now we define a cutoff power law model as follows

$$r_{N,n} = \begin{cases} \frac{N^{\alpha n}}{Z} & n \le d\\ 0 & \text{otherwise} \end{cases}$$

where the normalization constant Z is dependent on N

• Fitted q_{ent} values show a rich behavior, reducing to

$$q_{ent} = 1 - \frac{1}{d}$$

when $\alpha = 0$, and showing power law decay as $\alpha \rightarrow \infty$

J. Marsh, M. Fuentes, L. Moyano, and C. Tsallis, to appear in Physica A, 2006.

Summary of Diffusion Coefficients

Summary (cont.)

	q_{ent}	ATTRACTOR	DIFFUSION γ	
INDEP	1	Gaussian	0.5	
q-Correlated	1	<i>Q</i> -Gaussian (<i>Q</i> ≤1)	$0.5 \le \gamma < 1$	
Stretched Exponential	1	non <i>Q</i> -Gaussian	$0.5 \le \gamma < 1$	
Cutoff	$q_{ent} = 1 - 1/d < 1$	δ – function	0	
ASF Cutoff	$q_{ent} = 1 - 1/d < 1$	δ – function	0	
Power Law	$0 < q_{ent} \leq 1$	non Q-Gaussian	$0 < \gamma \le 0.5$	
Symmetric Power Law	$0 < q_{ent} \leq 1$	non Q-Gaussian	$0 < \gamma \le 0.5$	
Cutoff Power Law	$0 < q_{ent} \le 1$	δ – function	0	

2

Summary (cont.)

