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• Examples: Boltzmann-Gibbs and Tsallis are special cases
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Motivation

Complex Systems: distribution functions are often of power-law type. Often
strong interactions among elements, c.s. violate ergodicity, they are often in
states at the ”edge of chaos” (weak sensitivity to initial conditions), Often
not seperable

In principle Gibbs entropies can take into account correlations in systems
because the Hamiltionian can have potential terms

Question: can one do thermodynamics with complex systems? Can one use
the maximum ignorance concept to understand the measured distributions?

Tsallis: take a modified entropy −→ understand distribution functions (⇒)

Here we want to c o n s t r u c t and deduce the correct∗ entropy starting
from a given experiment of an arbitrary statistical system, i.e.

take measured distribution functions −→ get entropy (⇐)

∗ Correct ? That one can do statistical physics in the way one is used to
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Thermodynamics of ’complex systems’ ?

Does there exist a generalized thermodynamics built upon other Boltzmann
factors then the exponential ?

Start with Gibbs entropy:

SG = −
∫

dΓ B (H(Γ)) log B (H(Γ))

Γ are phase space variables
B is the Boltzmann factor and usually reads B(H) ∼ exp(−βH) for the
canonical distribution
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What is a Boltzmann factor ?

The Boltzmann factor is a probability to find a particular state in the bath
system. It closely relates to experiment

Remember, density of states is (classically) given by

ρ(E1) = ω1(E1)ω2(E − E1)Z−1

ω1 is the subjective microcanonical density (multiplicity of states) in the
ensemble of observable properties; ω2 is the bath density

E is the energy of the total system (usually unknown)
Z is the partition function

Usually normalized ω2(E − E1)Z−1 is identified with Boltzmann factor
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Let’s cast the minimum requirements for a Boltzmann factor B into ’axioms’

• B is monotonous

• B can be normalized, i.e.
∫

dE ω1(E) B(E) = 1

• B must not explicitly depend on the total system energy. It must be
possible that the E term in the argument of ω2(E − E1) can be factored
out,

ω2(E − E1) = F (E − E∗) B(E1 − E∗) ,

where the normalized version of B we call a generalized Boltzmann factor

Boltzmann factor which fulfills all requirements

B(H) ≡ E(−β(H − U) − γ̃)

γ̃ is a normalization constant (generalized partition function), U is the
measured average energy, and β is the usual inverse temperature

Monotonicity implies the existence of an inverse function, the generalized
logarithms Λ = E−1
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We require the usual properties

Λ : R+ → R
Λ(1) = 0 , Λ′(1) = 1 , Λ′ > 0
Λ′′ < 0 (convexity)

Define the dual logarithm as

Λ∗(x) ≡ −Λ(x−1)

The occurrence of dual logarithms in the context of generalized entropies
has been noted recently

Philosophy: Who decides Which Boltzmann factor is right? Experiment
does ! One can recover the form of the logarithm from the measured tail
distribution of the Boltzmann factor
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Generalize Gibbs entropy to arbitrary Boltzmann factors

SG ≡ −
∫

dΓB (H(Γ)) Λ (B (H(Γ)))

SG = − ∫
dΓ E (−β(H − U) − γ̃) (−β(H − U) − γ̃)

= −∫
dε

∫
dΓ δ (ε − H) E (−β(ε − U) − γ̃) (−β(ε − U) − γ̃)

= − ∫
dε ω(ε) E (−β(ε − U) − γ̃) (−β(ε − U) − γ̃)

ω(E) ≡ ∫
dΓδ(E −H) is the multiplicity factor representing the observable

system. With writing 〈E〉 = U and the expectation value given by

〈f〉 ≡
∫

dε f(ε) ω(ε) E (−β(ε − U) − γ̃)

we get SG = γ̃. Special case: β = 0 implies B = Z−1 = (
∫

dε ω(ε))−1 and

SG = −
∫

dε ω(ε) Z−1Λ(Z−1) = −Λ(Z−1) = Λ∗(Z)
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The variational principle

standard variational principle: δG = 0, with the functional

G = SG[B] − β

∫
dε ω (ε) B (ε) (ε − U) − γ

(∫
dε ω (ε) B(ε) − 1

)

with the generalized Gibbs entropy

SG[B] = −
∫

dε ω (ε) B (ε) Λ (B (ε))

U ... measured average energy, ω(ε) ... multiplicity, β ... usual inverse
temperature, and γ ... Lagrange parameter for normalizability

Functional variation with respect to B yields the differential equation

d

dB
BΛ(B) = −γ − β(E − U)
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A problem

With the desired form of our Boltzmann factor B = E (−β(ε − U) − γ̃) the
only solution is Λ(B) = log(B).

Why?

Substitute B into d
dBBΛ(B) = −γ − β(E − U)

Λ(B) + BΛ(B)′ = −γ − β(E − U)

−γ̃ − β(E − U) + BΛ(B)′ = −γ − β(E − U)

BΛ(B)′ = const

−→Λ ≡ log

Thus E can only be the ordinary exponential Boltzmann factor

This is completely unsatisfactory !
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Solve the problem

Problem arises because for any generalized Λ other than the ordinary log
there exists a non-trivial extra term, BΛ′(B). To cancel this term we
suggest to further generalize the generalized logarithm Λ(B) to a functional

Λ(B) → Λ̄[B] ≡ Λ(B) − η[B]

Substitute Λ by Λ̄ into the generalized Gibbs entropy from before

S[B] ≡ −
∫

dε ω(ε)B(ε)Λ̄([B])

= −
∫

dε ω(ε)B(ε)(Λ(B(ε)) − η[B])

= SG[B] + η[B]

used normalization condition and that η is a constant w.r.t. ε-integration
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The Idea

After variation the additional term δ
δBη[B] cancels −ω(E)B(E) d

dBΛ(B(E))
The corresponding condition is

δ

δB
η[B] = ω(E)B(E)

d

dB
Λ(B(E))

which implies

η[B] =
∫

dε ω(ε)
∫ B(ε)

0

dx Λ′(x)x + c

c is a integration constant
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Yet another entropy ?

Let us substitute η

S[B] = η[B] −
∫

dε ω(ε) B(ε) Λ(B(ε))

=
∫

dε ω(ε)

[∫ B(ε)

0

dx Λ′(x)x − B(ε) Λ(B(ε))

]
+ c

= −
∫

dε ω(ε)
∫ B(ε)

0

dx Λ(x) + c̄

Note that classical entropy is a special case; Λ(x) = log(x), yields the Boltz-
mann entropy modulo a constant, S[B] = − ∫

dε ω(ε) B(ε) log B(ε)+c̄+1
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Thermodynamics of this entropy

∂

∂U
S[B] = − ∂

∂U

�
dε ω(ε)

� B(ε)

0

dx Λ(x)

= −
�

dε ω(ε)
∂B(ε)

∂U
Λ(B(ε))

= −
�

dε ω(ε)
∂B(ε)

∂U
(−γ − β(ε − U))

= − ∂

∂U

�
dε ω(ε)B(ε)(−γ − β(ε − U))

+

�
dε ω(ε)B(ε)

�
−∂γ

∂U
+ β − ∂β

∂U
(ε − U)

�

=
∂

∂U

�
dε ω(ε)B(ε)γ +

�
dε ω(ε)B(ε)

�
β − ∂γ

∂U

�

=
∂γ

∂U
+ β − ∂γ

∂U
= β
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Special forms of this entropy

S[B] = −
∫

dε ω(ε)
∫ B(ε)

0

dx Λ(x)

Example 1: Classical Boltzmann distributions

– You measure a distribution function, B(E) ∼ exp(−βE)
– Compute inverse Λ(B) ∼ log(B);

∫ B(ε)

0
dx log(x) = B(ε) log B(ε)−B(ε)

– Result is Boltzmann-Gibbs entropy: S[B] = − ∫
dε ω(ε) B(ε) log B(ε)+1

Example 2 : Classical Tsallis distributions

– You measure a q-exponential distribution, B(E) = [1 − (1 − q)E]
1

1−q

– The generalized logarithm is Λ(B) = logq(B) ≡ B1−q−1
1−q

– Integrate and get Tsallis entropy times a factor

S[B] = − 1
2 − q

∫
dε ω(ε) B(ε) logq(B(ε)) +

1
2 − q

, (q < 2)
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Note 1: Average of logs

Write

S[B] = −
∫

dε ω(ε)
∫ B(ε)

0

dx Λ(x)

= −
∫

dε ω(ε) B(ε)
1

B(ε)

∫ B(ε)

0

dx Λ(x)

≡ −
∫

dε ω(ε) B(ε) L(B(ε))

with L(a) ≡ 1
a

∫ a

0
dx Λ(x) being the mean of Λ. L is not inverse of B, i.g.
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Note 2: Relation to other solutions

Remember problematic term from variation:

d

dB
BΛ(B) = Λ(B) + BΛ′(B) = −γ − β(E − U)

• Jaynes: Λ ≡ log −→ BΛ′(B) = 1 −→ absorb into constant γ

• Tsallis: Λ ≡ logq −→ BΛ′(B) = 1 + (1 − q)Λ −→ absorb γ and Λ

• Kaniadakis: define logs s.t. whole expression is a scaled and shifted log:
Λ(B) + BΛ′(B) =

! aΛ(B/b) + c. Result are κ-logs; no restrictions on B

• We: modify entropy such that BΛ′(B) cancels out after variation
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Conclusion

• Observe non-exponential distribution function B from a statistical system
(of identical particles with maybe complicated interactions)

• Is it possible to do consistent thermodynamics for systems leading to
such distributions, where also the maximum entropy principle works –
with measurable constraints ?

• We construct such an entropy: S = − ∫
dε ω(ε)

∫ B(ε)

0
dx Λ(x). This is

a standard generalized Gibbs entropy (
∫

BΛB) with adding a constant
which is functionally dependent on the measured distribution B. The
additive term captures numbers of states of the system, which are
somehow captured by the distribution

• The functional form of measured distributions, which is ”knowledge”
about the system, is thus naturally fed into the definition of entropy

• Demonstrate that thermodynamic relations and MEP are fine
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• Demonstrate how Boltzmann-Gibbs and Tsallis entropies are special cases

• Effectively: p log p in the usual entropy is replaced by the integral
∫

Λ(p)

• Sidenote: generalized Boltzmann factors naturally imply dual logarithms
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Repeat: Canonical Ensemble I

Any thermodynamic system which can be measured in equilibrium must be
separable, i.e., thermodynamic quantities of the measured system must not
explicitly depend on the total system energy E

Sample: E1, ω1(E1), H1 (observed system)

Reservoir: E2, ω2(E2), H2

Total (isolated) system: E = E1 + E2, H = H1 + H2 i.e. thermal contact

Sample energy fluctuates around its equilibrium (extremal) value E∗

Partition function Z(E) is the convolution of microcanonical densities

Z(E) =

E∫
0

dE1ω1(E1)ω2(E − E1) with ωi(Ei) =
∫

dΓi δ(Hi − Ei)
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Repeat: Canonical Ensemble II

The canonical description ρ, is given by

ρ(E1) =
ω1(E1)ω2(E − E1)

Z(E)
(1)

Assuming the existence of a unique extremal configuration at E1 = E∗,
defined by δρ = 0, leads to

ω′
1

ω1

∣∣
E1=E∗ =

ω′
2

ω2

∣∣
E2=E−E∗ :=

1
kT

= β , (2)

which defines the temperature T of the system. The usual definition of
entropy Si = k ln(ωi) implies that the extremal configuration is found where
S = S1 + S2 is extremal with its associated temperature T
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Repeat: Canonical Ensemble III

Under which circumstances does the dependence of ρ on the total energy
E factorize? Look for classes of microcanonical distributions that allow for
such a separation of E into a multiplicative factor. The standard way to
motivate the appearance of the Boltzmann term in the canonical ensemble
is seen as a consequence of this E-separation

ω2(E − E1) = exp
(
ln(ω2(E − E1))

)
= exp

(
ln(ω2(E)) − ∂

∂E ln(ω2) E1 + · · ·)
≈ ω2(E) exp(−βE1)

(3)

Note, the approximation in Eq. (3) is exact for ω2(E − E1) being an
exponential in E

Up to this point we have summarized textbook knowledge

Question: Is this separation the most general way?
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No
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The General Separation

We generalize the log function before to a real function f , being strictly
monotonous and twice differentiable. The idea is to write

ω(E − E1) = f−1 ◦ f ◦ ω
(
(E − E∗) − (E1 − E∗)

)
(4)

and to expand f ◦ ω around E − E∗
What does energy separability mean? Suppose energy E is separable then
there exist two functions g and h such that

ω(E − E1) = g
(
ω(E − E∗)

)
h(β(E1 − E∗)) (5)

To simplify notation: x := β(E1 − E∗), and ω̄ := ω(E − E∗). Now, use f
to find the functions g and h by expanding f ◦ ω to first order

f
(
ω(E − E1)

)
= f

(
g(ω̄)h(x)

)
= f(ω̄) − ω̄ x f ′(ω̄) (6)

which is justified for small x, i.e., the system being near equilibrium
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Theorem: The most general solution to this separation Ansatz

f
(
g(ω̄)h(x)

)
= f(ω̄) − ω̄ x f ′(ω̄) (7)

is given by the family of equations (f, g, h)Q, parametrized by a separation
constant Q

f(ω) = C ω1−Q + C2

g(ω) = ω

h(x) =
[
1 − (1 − Q)x

] 1
1−Q

(8)

witch C and C2 being real constants

Proof: Set x = 0 and h0 = h(0), so that Eq. (7) yields f(g(ω̄)h0) = f(ω̄),
which means g(ω̄) = ω̄

h0
. W.l.g. set h0 = 1, and arrive at the equation:

f(ω̄h(x)) = f(ω̄) − ω̄xf ′(ω̄). Form partial derivatives of this expression
with respect to x and ω̄, and eliminate the f ′(ω̄h) term from the two
resulting equations

f ′(ω̄h)h′ = −f ′(ω̄)
f ′(ω̄h)h = (1 − x)f ′ − ω̄xf ′′ (9)
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to arrive at the separation equation

1 − 1
x

(
h

h′ + 1
)

= −ω̄
f ′′(ω̄)
f ′(ω̄)

= Q (10)

where Q is the separation constant. The differential equation 1− 1
x

(
h
h′+1

)
=

Q is straight forwardly solved to give h(x) =
[
1 − (1 − Q)x

] 1
1−Q, using

h(0) = 1 to fix the integration constant. The equation −ω̄f ′′(ω̄)
f ′(ω̄) = Q

means, f(ω̄) = C1
1

1−Qω̄1−Q + C2, with C1 and C2 integration constants.
f is strictly monotonous except for Q = 1, where it is constant q.e.d.
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The Most General Boltzmann Factor

The term of interest in the canonical distribution can now be written

ω2(E − E1) = ω2(E − E∗)
[
1 − (1 − Q)β(E1 − E∗)

] 1
1−Q (11)

• This is exactly the q exponential or Tsallis distribution

• The usual Boltzmann factor is the special case for the limit Q → 1

• The separation constant Q is not specified at this level, only the choice
of a particular physical system will determine Q

• For ω2 ∝ E1/1−Q, Eq. (11) is exact. To prove this write β = ω′
2

ω2
|E−E∗ =

1
(1−Q)(E−E∗) and to compute straight forwardly

ω2(E − E1) = (E − E∗)
1

1−Q
(
1 − E1−E∗

E−E∗
) 1

1−Q

= ω2(E − E∗)
[
1 − (1 − Q)β(E1 − E∗)

] 1
1−Q

(12)
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The Physical Meaning of the Separation Constant Q

Why does nature fix Q −→ 1 in so many cases, i.e. why is standard
thermodynamics the most predominantly realized situation?

We demonstrate how the separation constant Q is related to system size
and interaction parameters of real physical systems

This explains the ubiquity of Q = 1 in nature
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An Example

Examples of this kind have been given in a different context before (Tsallis
2001 and Almeida 2002)

Let us specify the N particle Hamiltonian for pair-potentials governing the
sample in D space dimensions. Use n = DN

H(x, p) =
N∑
i

p2
i

2m
+

N∑
i<j

|xi − xj|α (13)

The energy density is given by the phase space integral

ω(E) =
∫

dnp dnx δ
(∑

i
p2

i
2m +

∑
i<j |xi − xj|α − E

)
=

∫ E

0
dE1

∫
dnp dnx δ

(∑
i

p2
i

2m − E1

)
× δ

(∑
i<j |xi − xj|α − (E − E1)

) (14)
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We compute the kinetic term

∫
dnp δ

(∑N
i=1

|�p|2
2m − E

)
=

∫
�p2

2m=E
dOn

∣∣∣	� �p2

2m

∣∣∣−1

=
∫
|�p|=√

2mE
dOn

m
|�p| =

√
m
2E

∫
|�p|=√

2mE
dOn

= On

√
m
2E

(
2mE

)n−1
2 ∝ E

n
2−1

(15)

and the potential contribution

∫
dnx δ

(∑
i<j |xi − xj|α − E

)
=

∫
dnx δ

(∑N
j=2

∑j−1
i=1

∣∣∣∑D
k=1(x

k
i − xk

j )
2
∣∣∣a
2 − E

)
=

∫
dnx δ

(
E

⎡
⎣∑N

j=2

∑j−1
i=1

∣∣∣∣∣∑D
k=1

(
xk

i −xk
j

E
1
a

)2
∣∣∣∣∣

a
2

− 1

⎤
⎦)

= E
n
a
∫

dny δ
(
E

[∑N
j=2

∑j−1
i=1

∣∣∣∑D
k=1

(
yk

i − yk
j

)2
∣∣∣a
2 − 1

])
= E

n
a−1 · const.

(16)
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used substitution yi = xi/E
1
a and

∫
dx δ(λx) =

∫
dx λ−1δ(x)

We finally get

ω(E) ∝
∫ E

0

dE1 E
n
2−1
1

(
E − E1

)n
α−1 ∝ E

(α+2)n
2α −1 (17)

This allows us to compare exponents (and coefficients) in Eq. (17) with

the general Boltzmann factor ω2(E − E∗)
[
1 − (1 − Q)β(E1 − E∗)

] 1
1−Q to

arrive at the relation

1
1 − Q

=
(α + 2)n

2α
− 1 (18)

which fixes the separation constant in terms of physical variables
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Interpretation of Example

• This equation establishes the connection between the interaction term in
the Hamiltonian α, the dimensionality of the phase space n = DN , and the
separation constant Q

• From this equation it is immediately clear that for large systems the
separation constant is always Q → 1, i.e. the classical Boltzmann term is
recovered

• For very small systems with a fixed number of particles Q depends on the
interaction between the particles. For an ideal gas α → −∞ the separation
constant is Q = n−4

n−2

• Nontrivial Q = 1 should be expected for strongly interacting and/or small
systems, i.e., |α|/|α + 2| ∼ n
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