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Majorization Theory

n-dimensional quantum system

density matrix p -
eigenvalues p; : D Pi=1, p;€l0,1]

(decreasing order: p!) 1>pi >p2>...>2p, >0
“cumulants” : Si=p1+p2+...+p; (s, = 1)

p=<p & s;<s; Vj=1,...,n-1

p is more mixed than p’
P is majorized by p’

p can be written as a probabilistic (convex) combination of permutations of p’

In this sense: p is more disordered than p’ mixing

@)
pP1:1

Trivial examples

Tot.random state: pR=(1/n,1/n,...,1/n), st=j/n PR< p
Any state: PR~ p < PP
Pure state: p”=(1,0,...,0), sh=1 o= PP




Majorization and Entropy

general trace-form entropies :  S¢(p) = Trf(p) = >, f(pi)
with 7: [0,1] - R, 7(0)=7(1)=0, smooth, strictly concave

(f"<0 ide  flp:) < fi(p;) if pi>pj)

Examples
- von Neumann : f(x) = -x In(x)
- Tsallis (g > 0) : f(x) = (x-x9) / (9-1) = x In,(1/x)

where In (x)=(x'9-1)/(g-1)

p=p = Sz(p) = S¢(p’) for ANY f
but
S¢(p) > S¢(p') for a GIVEN f (#)p < o

however

Sg(p) = Sy(p') for ANY f = p<pf

Majorization gives stronger idea of disorder than a given entropy form.
Increasing mixedness is characterized by a universal entropy increase.




MiXIng parameter

Let o =p (A) where A is a continuous parameter

A = mixing parameter for p(A) < p(A) < p(N)if A >N

Iff s;(A\) <s;(N),i.e. s; is adecreasing function of A for all j. Then

A = mixing parameter for p(\) < Cils)f <0 Vji=1,....n—1

The system becomes more mixed as the parameter increases (in certain interval).

Consequences: N
a) ANY increasing function A (A) is a mixing parameter for p

b) 7he general entropy S; is a non-decreasing function of A for ANY concave f

f'(p;) < f'(pj+1) ifp; >pjs1 and f concave




Example: escort densities

given density matrix p associated escort densities p, (g real)
Il q

A=1/q

(as well as ANY decreasing function of q)
is a mixing parameter for p, if q>0:
1

A A . 1

As q decreases, escort densities of p describe more mixed states




Hamiltonian systems

hamiltonian H
eigenvalues ¢; : €1 <€y <...< ¢, (increasing order )

Assume N
lp, H] =0

1) p (M) : p; > pjifi <j (p = non-increasing with energy)
A € (A, Ay) is a mixing parameter for p()\)

w(e;) <wl(e;) if © < j (w = non-decreasing with energy)

ANAWE { w = A-independent

Then

ANY non-decreasing function w of H is a non-decreasing function of A

Examples:
- Average energy : <H>,=Tr p(A) H increases with A

- Generalized “specific heat” : ¢y= §(H) 5/0X > 0 (non-negative )




Thermal behaviour

Assume also

3)p(N): — f1 /n1  (ground state) it A — A\,
— I/n (totally random state)  if A — Ay

Then p (M) has a “thermal-like behaviour” : p(A) becomes more mixed monotonously
as A increases, evolving from the g.s. to the totally random state

Example:  BG canonical distribution ( o minimizes <H>,-T 5[p] )
—H/T

e
Z(T)
S [pg: (T)] is known to be an increasing function of T
%, ! = .
Moreover SJ Z Z pzpk: 6k> < O, p; = €_GI/T/Z(T)

1=1 k=741

pc(A=T) = Z(T) = Tre /T (kg =1)

A=T¢€(0,0) isa mixing

/ . /
then ppc(T) < ppc(T”) i T'2T">0 | parameter for Pse (T)

Also S.[pg:(T)] is an increasing function of T, for ANY concave £




Mixing for general densities

g(H, )
Z(A)
with g(g, A) smooth, positive and non-increasing for € in [e,, €] ; [0 (A), H] =

Os ! 8lng Olng g€, A)
Compute _J_§(§( _ L — i
P L £ ]+1p1pk¢ ( 62) O\ (Ek:)> ’ Di Z()\)

<0 Y IF <0 (i.e., 229 non-decreasing with e)

Assume pg(A) = Z(A\) =Trg(H,\)

Olng
oT

gr(e, N) = e~ =)/ A" o 5 0 gives % = & (=2 )T_l increasing with €, if A > 0

i 0 (Olng
Oe \ O\

Examples: g(e,T) = e~/T gives = ¢/T? increasing with e ;

Sufficient
condition :

) > 0, then A is a mixing parameter for g, (A)

ALSO for its associated escort distributions for positive values of q

Similar considerations apply for a set of A-parameters : %6X In g(e, X)




Power-law distributions

Consider the 2-parameters power-law distribution (in g-exponential form) :

[I ( q)ﬂ/T*]i/(l—Q) _ eq(—ﬁ/T*)
ACH ACH

plg, T") =

with [x], = (x+|x])/2 and H=H-¢g, I ( excitation spectrum or &,:=0)

Tsallis index g
p(a,T) 21, gy (T)

effective temperature T*

Forallgrealand T™* > 0, p(q,T*) satisfies :

- positivity

- commutativity with H

- non- mcreasmg eigenvalues p, as functions of (excitation) energy € — €,
 for q > 1:p, are strictly decreasing with &

Indeed <
for g < 1: p, are non-increasing with € due to Aigh-energy cutofr.

\ p=0if &-g =2T%/(1-q)




g and T* as mixing parameters for p (g, T™)

Let 9(8:0,T*) = [1 = (1 = @)&/T*/ ™7 = eg(—¢/T*)
Then (€ 20):

p(g, T*) < p(¢, T") if q¢>¢ p(q, T*) < p(g, T*") it T*>T"" >0

g-exponential states p (g, T*) have the fundamental property
of becoming more mixed as A\, =q OR A, = T*>0 increases
AND
ANY general trace-form entropy S;[p(q,T*)] (e.g. S ¢lp(q,T*)], c']V>0 )
is non-decreasing wrt q and wrt T*>0




100 equally spaced levels

for a system of n=
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function of both g and T*
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Scaled Tsallis entropies S [ (q,T*)] as (increasing) functions of T*

for different values of q , for a system of n=100 equally spaced levels




o
7))
S~~~
—
~
*
I_\
O
~—
Q
—
o
)]

Scaled Tsallis entropies S 5[ (q,T*)] as (increasing) functions of g

for different values ofa , for a system of n=100 equally spaced levels




Tsallis NExt thermal distributions

Tsallis g-entropy S, foragiven q >0
+
generalized free energy ( F,=<H>, —T S [p]) minimization

l

pD(T) = p(q,T) with T = [T* — (1 - q){H),,]/Z,

For g>1,andalsofor 0 <q <1 (taking absolute minimum of F;) ,
it is proven that T is a non-decreasing function of T*

Therefore T s also a mixing parameter for the g-MaxEnt state, with g>0 :

pl(T) < pl(T") if T>T (¢>0)




Conclusions

) Study of the disorder properties of generalized thermal states.

[ Application of majorization theory to identify rigorous sufficient mixing (disorder)
conditions, for general mixed states.

[ Analysis of mixing properties for power law distributions [in g-exp. form: p(q,T*)]:
g (real) and T (postive) are two fundamental mixing parameters.
— Universal entropy (S;) increase with both q and T* for any concave f.

O Tsallis non-extensive thermal distribution corresp. to a given fixed g>0 [0@(T)] :
becomes more mixed with increasing T (like for BG thermal state).
— Universal entropy (Sy) increase with temperature for any concave f
(particularly, generalized Tsallis entropies with any positive index q)

[ Extension to density matrices derived from two or more non-commuting
observables is feasible
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