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or:

Story of

fluctuations, correlations and the nonextensivity

in high energy multiparticle production processes

on examples of:

(*)  G.Wilk and Z.W odarczyk, Fluctuations, correlations and nonextensivity;

cond-mat/0603157

(*)  M.Biyajima, T.Mizoguchi, N.Nakamija, N.Suzuki and G.Wilk, Modified

Hagedorn formula including temperature fluctuations...; hep-ph/0602120;

(*)   T.Osada and G.Wilk, Nonextensive hydrodynamics for high energy heavy

ion collisions; in preparation

Our group: O.Utyuzh, G.Wilk, Z.W odarczyk (Poland); F.S.Navarra (Brazil)

M.Biyajima, M.Kaneyama, T.Mizoguchi, N.Nakamija, N.Suzuki,

T.Osada (Japan)



Content:  in the field of hadronic multiparticle production

processes, it will be shown that:

1.  Measured particle distributions are affected by internal fluctuations

and correlations presented in the hadronizing system (i.e., in

system converting initial energy into observed particles):

f(y) fq(y)

Poissonian P(N) Negative Binomial P(N)

flows…

2.  The best way to account for them in a model independent way is to

use some form of non Boltzmann-Gibbs ensembles, for example

Tsallis or EGE (or …(?) ).

3.  The more we know on the internal dynamics (for example in the

form of mass spectrum of resonances in Hagedorn model) the

near we are the BG approach. However, for a time being such

knowledge is not model independent, only q-statistics allows

for  model independent presentation of experimental results.



Hadronic production processes:

Total energy available is E= s (~ 100 10000 GeV)

2

s

AA BB

2

s

but :

(*) only fraction M=K- E of initial energy E is used for production

of secondaries ( K = inelasticity )

(*)  the remaining (1-K)•E is going into remnants of original colliding

particles (called leading particles)



Hadronic production processes: general view

0

0

K
K

0K

p

p

p

M=K·E

K
K

…large number <N> ~ 100 – 1000 secondaries is produced



0

0

K
K

0K

p

p

p

Quark-Gluon

Plasma?

K
K

The most important question is: what kind of matter is in this blob? One expects

to get answer from heavy ion coolisions and expects that they confirm our

expectations that a new kind of matter, the so called Quark-Gluon Plasma is

being produced there and hadronizes into observed secondaries.
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Hadronic production processes: large number secondaries is produced ...

M=K·E

+

T L3

d
= f p ,p

d p

... but usually only one of them is observed and single  particle distributions

are formed



h

Heat bath
characterized

by one parameter:

- temperature

T

N-particle system

N-1 unobserved particles

form ”heat bath” which

determines behaviour of

1 observed particle

L.Van Hove, Z.Phys. C21 (1985) 93,

Z.Phys. C27 (1985) 135.

T

this calls for statistical (thermodynamical) description of such processes....



+

Heat bath

T

+

2 2 2

T L

T L3

p +p +md E
= f p ,p = C exp - = C exp -

d p T T



BUT: in such ”thermodynamical” approach one has to

remember tacit assumptions of infinity and homogenity

made - only then behaviour of the observed particle will

be characterised by single parameter - the ”temperature” T

In reality: this is true only approximately and we are interested

in the examples when system is

not infinite or/and not  homogeneous

In both cases: fluctuations occur and new parameters in

addition to T are necessary



Heath bath is not  homogeneous ......

T6

T4

T2

T3T1

T5

T7

Tk

h

T   varies

fluctuations...

T0=<T>, q

q  - measure of fluctuations

of T q-statistics (Tsallis)

Heat bath

T0, q

T0=<T>



T6

T4

T2

T3T1

T5

T7

Tk

h Heat bath

T0, q

T0=<T>

+

q T L q3

1

1-q

d E
= f p ,p = C exp - =

d p T

E
=C 1-(1-q)

T



Hadronic production processes: ... only one of them ( here +)  is observed

M=K·E

.... but amount of energy used for production of particles, M=K•E, can fluctuate



TT,,

subsub--ssystemystem

Heath bath is ”small”......

N-particle system (N-k) –particles sub-system

k –particles sub-system

of energy M =K· s

Heat bath

T,

- measure of fluctuations of (inelasticity) K

in Extended Gaussian ensembleExtended Gaussian ensemble
T.Osada,O.Utyuzh, G.Wilk, Z.W odarczyk

Eur. Phys. J. B 50, 7 (2006)



M =K· s

T

(N-k) –particles sub-systemk –particles sub-system

of energy M =K· s

Heat bath

T,

2
f(M) = C exp - M- < M >



densely populated region

Phase space of

multiparticle production

process:

sparcely populated region
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Examples from hadronic production:



In multiparticle production processes one usually measures distributions of:

(*) either pL (and averages over pT) T=TL (”partition” temperature)

(*) or pT (for fixed, usually small, pL ) T=TT (”usual” temperature)

Data show that <pT>   <<   <pL> and analyzed by means of formula:

F(p) ~ exp[ - p/T ]

Lp

Tp

result in <TT>   <<   <TL>

( ~ 100 MeV vs ~ 10 GeV)

Fq(p) ~ expq[ - p/T ]

q=(qL,qT)



T

1
p(y) = exp - µ coshy

Z

(q = 1)

1

1-q
q q T

q

1
p = 1- (1-q) µ coshy

Z

examples of:

and



NUWW Physica A340 (2004) 467
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For meaning of qT see GW and ZW, PRL 84 (2000) 2770;     Physica A305 (2002) 227



GW and ZW, PRL 84 (2000) 2770;     Physica A305 (2002) 227 (and many others, like C.Beck ....):

q results from intrinsic fluctuations in the hadronizing system, here ( in pT distributions ) from

fluctuations of the temperature at which hadronization process takes place.

0

0

1

1 e( )1 xp(1 ) q dq E f E

1

0

0 0

1 1
( ) exp ; ;

1
f

q

22

2

-
q = 1 +

h

1
= q -1

C

Ch is the total heat capacity of the hadronizing system expectation:

because Ch ~V  therefore q should decrease vith volume V:

q(e+e-)>q(pp)>q(AA). Fits to the corresponding data confirm this.



Applications: AA

Example of use of MaxEnt method

applied  to some NA49 data for -

production in PbPb collisions

(centrality 0-7%):

0 1 2
0

50

100

150

200

3

8.8 GeV

12.3 GeV

17.3 GeV
NA49

0-7%

dN /dy

y

S1/2 q Kq

8.8 1.040 0.22

12.3 1.164 0.30

17.3 1.200 0.33

• (blue lines)

q=1, two sources of

mass M=6.34 GeV

located at |y|=0.83

• (orange line)

this is example of adding this is example of adding 

new dynamical assumptionnew dynamical assumption



M =K· s

T

(N-k) –particles sub-system

k –particles sub-system

of energy M =K· s

Heat bath

T,

Returning to small heat baths:

2
f(M) = C exp - M- < M >



For small heat baths we have results for inelasticity K:

(*) its energy dependence K( s) and

(*) its distribution (K)
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K
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   [GeV]

NUWW PRD67 (2003) 114002



Derivation of inelasticity distribution Derivation of inelasticity distribution ((KK) from EGE) from EGE

1E K s

(*)  The whole energy available for reaction,   , is divided into two parts:

one part equal to                 is going into system producing observed

secondaries

second part       , acts as a “heat bath” for first one

E s

2 1E E E

1 1 2 2
1 1

1 2

( ) ( )
( )

( )

E E
p E

E
where denotes the corresponding

number of states

(*)

Defining entropy as                      one gets( ) ln ( )i i i iS E E

1 1 1 1 2 2

1 2

1
( ) exp ( ) ( )

( )
p E S E S E

E



Derivation of inelasticity distribution Derivation of inelasticity distribution ((KK) from EGE () from EGE (cont.cont.))

(*)  Expanding entropy around               , 

keeping only linear and quadratic terms,

assuming that            and

are the same for both parts of the system 

one gets

1E U

1
0 1

1 ln

E U
T E

2

1 1 1

1
( ) exp ( )

G

p E E U
Z

1

2

2

1

ln

E U
E

2

0 2

1
( ) exp ( )

2
K K K

(see figure)



apparently better fit is obtained for Lorentzian

distribution which can be regarded

as q_gaussian with q=2….

Notice, however, that:

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

(K
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K

200 GeV

900 GeV
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3

4

(K
)

K

0.0 0.2 0.4 0.6 0.8 1.0
0

1

2

3

4

(K
)

K

... .. q-EGE ? ...

1<q<2(K) Student distribution

Gaussian distribution

Lorentzian distribution



Hadronic production processes: large number secondaries is produced ...

.M=K·E

2

3

.

.

...

.

.

.
.

.

N-1

.

k-1

k

k+1

.
.

N

1

... and this number is fluctuating P(N).

Observed P(N) is broader than Poissonian,

usually Negative Binomial type

These are the fluctuations leading to fq(y) rather than f(y)



Possible meaning of parameter q in rapidity

distributions

NUWW PRD67 (2003) 114002

(*) From fits to rapidity distribution data

one gets systematically q>1 with some

energy dependence

(*) What is now behind this q?

(*) y-distributions ‘partition temperature’

T K · s/N  (N=multiplicity)

(*) q fluctuating T fluctuating N

(*) Conjecture: q-1 should measure amount

of fluctuation in P(N)

(*) It does so, indeed, see Fig. where data

on q obtained from fits are superimposed

with fit to data on parameter k in

Negative Binomial Distribution!



Parameter q measures dynamical fluctuations in P(N)

(*) Experiment: P(N) is adequately described by NBD 

depending on <N> and k (k 1) affecting its width:

(*) If 1/k is understood as measure of fluctuations of <N> then

with

(*)               one expects: q=1+1/k    what indeed is observed

NN

N

k

1)(1
2

2

nk

k

kkn

kn

nk

k

nn

n

nn
ndNP

1)()1(

)(

)(

)exp(

!

)exp(
)(

1

0

n

k
1

)(
)(

1
2

2

q
n

n
nD

k

(P.Carruthers,C.C.Shih,

Int.J.Phys. A4 (1989)5587)



Another derivation of Negative Binomial multiplicity distribution P(N):

Boltzmann exp(- E/T) Poisson P(N)

Tsallis expq(- E/T) Negative Binomial P(N)

(*) If one has procees in which N particles with energies {E1,...,N} are produced

in the independent manner and in which energies are distributed

according to Boltzmann distribution

then, the corresponding multiplicity distribution has known Poissonian

form (with <N>=E/ ):

1
( ) exp ;i

i

E
f E E

N+1 N

N

G (E) - G (E)
N

P(N) = = exp - N
N!

where distribuant GN(E) is given by

11

1

1
( ) 1 exp

( 1)!

iN

N

i

E E
G E

i

G.Wilk and Z.W odarczyk, Fluctuations, correlations and nonextensivity;cond-mat/0603157



(*) If one has procees with N indpendent particles with energies {E1,...,N} but this

time distributed according to Tsallis distribution:

then,  the corresponding multiplicity distribution has form of Negative Binomial

distribution (NBD) widely encountered in all analyzes of high energy multiparticle

production of all kinds

1
+ 1 - N

N 1 - q

i

i = 1
1 , . . . , N N

E

h ( { E } ) = C 1 - ( 1 - q )

N+1 N

N

N+k

< N >

(N + k) k
P(N) = = ;

(N +1) (k)
H (E) -

< N
H (E)

1
k =

>
1+

k

q -1

where:  <N>=E/ ,   Var(N)=<N>+(q-1)<N>2 and distribuant HN(E) is given by

1 1
11 1

1

1

( 1) ( 3)

( ) 1 1 (1 )
( 1)!

j
i

jN q
i

N j
j

E i q i
E

H E q
j



Notice that: NBD becomes
Poisson distribution

1

2

11

( )
( ) exp - N

( 1) ( ) !
1

1

N

N

q

N k k

N
q

Nk

N

NN k k
P N

N k NN

k

N

N

Geometrical distribution

and that parameter k in NBD can be expressed by the correlation

coefficient for the two-particle energy correlations:

1
k

1 2

2

( , ) 1

2( ) ( )

Cov E E q

qVar E Var E



Some remarks concerning distribution:

1
+ 1 - N

N 1 - q

i

i = 1
1 , . . . , N N

E

h ( { E } ) = C 1 - ( 1 - q )

Negative Binomial form of multiparticle distributions P(N)



= = =
1 x

f(x) = exp - parameterFluctuating in

1
-2+

q-11
g( ) = exp -

q -1 q -11
q -1 -1

q -1

where:

one gets Tsallis distribution:

0

( ) exp xd g

1

1-q

1

x
h(x) = C 1- 1- q

( ; / )f x

2

1 2

2 1
where ; =2  and 1

2

q q
C q

q



Tsallis distributions: fluctuations vs correlations :

One needs at least two particles to discuss correlations

(*) Consider two independent random variables (x,y) each following its

own independent distribution and let

2

x + y1
f(x,y) = f(x) f(y) = exp -

There are two ways to obtain from it two-particle Tsallis distribution:

- fluctuating for each variable separately

joint Tsallis distribution for uncorrelated random variables

- fluctuating for both variables

joint Tsallis distribution for correlated random variables



Uncorrelated random variables

(*) Fluctuating for each variable separately leads to joint Tsallis distribution for

uncorrelated random variables:

1

1-q
2 2

2

(x + y) xy
h(x, y) = h(x) h(y) = C 1- (1- q) + (1- q)

(*)  However: The same h(x,y) results starting from exponential distribution of

correlated variables (x,y):

' '

exp[1/(1-Q)]
( , ) exp - (1 )

(Q-1) (0,1/(q-1)

x y xy
f x y Q

and fluctuating ’ using the same prescription as before when getting h(x)

with q=Q. The resulting positive corelations cancel the negative correlations

introduced above and one gets joint distribution of uncorrelated variables.

This example shows that effects of correlations and fluctuations can

cancel each other.



Correlated random variables

Proceeding in the same way as for single variable case, i.e., fluctuating ’= / ,

one gets:

2

2 2

0

( ) 2 -
exp - ( )

x y q
d g C

q

1-q

2

(x + y)
h(x,y) = = C 1- (1- q) ;

The corresponding marginal probability has Tsallis form (notice: 1/(1-q)=q/(1-q)+1):

1

1

1( ) ( , ) 1 1
qx

h x dyh x y C q

2

2

2

2

(2 )
; ( ) ( ) ;

3 2 (3 2 ) (4 3 )

( 1) ( , ) 1 1
( , ) ; 1

(3 2 ) (4 3 ) 2 2( ) ( )

q
x y Var x Var y

q q q

q Cov x y q
Cov x y

q q q qVar x Var y

It means that correlation coefficient is entirely given by the parameter q or q=1+ /(1+ )



Finally, in general:

10

exp ( )

N
N

i

i

d x g

1
+1-N

N 1-q

i

i=1
1,...,N N

x

h({x }) C 1 - (1 - q)

NN

N N N
i =1

2 - q
N +

q - 11 (q - 1)
C = [(i - 2)q - (i - 3)] =

2 - q

q - 1

where:

1

1

1
1 , . . . ,

1
( { } ) 1

1 ( 1 ) (1 )

N
N q

i

N i
N N

N

x
q

h x C
N q

1

1 1

11 1
1   or 1 1

1 1 1 ( 1)( 1)

N

N

N

q
N q

q q q N

Effective

qN



Notice that:

(i)   Fluctuations lead always to Tsallis distribution, irrespectively of the

presence or absence of correlations.

(ii) For simple prescription:

the marginal probabilities are not reproduced:

1

1

1( ) ( , ) 1 1
qx

h x dyh x y C q

qyx
qyxhyxf

1

1

)(
)1(1),(),(



To summarize this part let us repeat again that:

Measured particle distributions are affected by internal fluctuations

and correlations presented in the hadronizing system (i.e., in system

converting initial energy into observed particles):

f(y) fq(y)  and Poissonian P(N) Negative Binomial P(N)



Let us now proceede to the problem of description of

transverse momentum spectra, which are important

because they provide us with information on thermal

properties of the hadronizing system

pT TT = T

M.Biyajima, T.Mizoguchi, N.Nakamija, N.Suzuki and G.Wilk, Modified Hagedorn formula including temperature fluctuation;

hep-ph/0602120



Experiments on Au+Au + X collisions at energy 200 GeV per nucleon

(in CMS system) performed at RHIC accelerator in Brookhaven NL (USA) 

show nonexponential, power-like tail for large transverse momenta.  These

experiments are important because from such distributions one expects to

deduce the temperature T of the hadronizing system and to learn about

possible phase transition from the hypothetical Quark-Gluon Plasma to

hadronic matter.



M.Biyajima, T.Mizoguchi, N.Nakamija, N.Suzuki and G.Wilk, Modified Hagedorn formula including temperature fluctuation;

hep-ph/0602120

There are many attempts to explain these results using some kind of

nonequilibrium approach like, for example, flow of prehadronic and

hadronic matter and/or decay of hadronic resonances produced in such

collisions. Rather than excluding them we have investigated the possibility

that observed nonexponential spectra could result from some kind of

equilibrium characteristic of nonextensive thermodynamics.One can then

successfully account for the whole range of the observed transverse

momenta.



Hagedorn bootstrap model: gas of noninteracting resonances which

consist of resonances etc. with charecteristic exponential mass spectrum

(m)

(*) limiting temperature: hadronic phase can live only at T<TH =1/ H

(*) energy distributions are governed by temperature T0=1/ 0

3
2 2 2

T 03

0

( ) exp - p L

d
dm m p m

dp

0

2

1 0

2 2

5/ 4
2 2

0

( ) ( )
2

exp
( ) ;

T T T

T L m

H

T T

d
f p C dm m m K m

p dp

m
m m p m

m m

However: the above formula can describe data only in limited range

of transverse momenta (cf. previous Fig.) ....



First attempts to fit the whole range of pT are from 1977 (C.Michael):

”soft”

(nonperturbative)

physicsT T-n
0

T
T n

0
0

T

T

n
exp - p for p 0

pp
f p = C 1+

p p
for p .

p

”hard”

(perturbative)

physics

Insted these two separate mechanisms we have investigated the possibility that

observed nonexponential spectra could result from some kind of equilibrium

characteristic of nonextensive thermodynamics. Two formulas were considered:

0

1

1-q2

L T

T L

0

p + m
f p = C dp 1- (1- q)

T

(T) Simple nonextensive

formula

1

1-q
T

T T

o

m coshy
f p = C dy coshy dm (m)m 1- (1- q)

T
(H) Modified Hagedorn

formula



most central 

events

most peripheral

events

large volume

of interaction V
small volume

of interaction V



Notice: fitting data by using some form of Tsallis distribution must be

supplemented by attempt to understand what is the possible meaning of

The parameter q in given circumstances.

What is observed here:

(*)  Parameter q is increasing when going from most central to most peripheral

events.

This observation fits nicely the idea that q when representing fluctuations in

the system depends (via heat capacity C) inversely on the volume of the

hadronizing system, which decreases from central to peripheral collisions.

(*)  Both T an q estimated by using simple nonextensive formula (T) are

systematically higher than those estimated by using modified Hagedorn

model (H).

This observation fits nicely the idea that q represents a joint action of intrinsic

fluctuations in the system. The difference between model (T) and model (H) lies

in the additional fluctuations present in (H) due to the assumed spectrum mass

of resonances (described by Hagedorn temperature TH). Therefore part

of fluctuations described in model (T) by parameter q is in model (H)

accounted by parameter TH .



(*) This is best seen below. The centrality cut 0-5% region of STAR data was fitted

(point by point, separately) using model (H) with q=1 (left panel) and with q=1.00014

(right panel). Fit was performed by fixing all parameters except of 0. It is assumed

then the reciprocal of the each error bar calculated by fitting program MINUIT is

proportional to the corresponding probability of this value of . In this way a whole

probability distribution for is obtained in form of histogram – see Figure. The

histogram in each panel is fitted to gamma distribution (colid curves).

NOTICE: good fit can be obtained only with q>1 – in this case distribution of

temperature is very narrow.



To summarize this part let us repeat again what we have shown here

is:

(*) The more we know on the internal dynamics (for example in the form of

mass spectrum of resonances in the Hagedorn model) the near we are the

true BG approach. However, for a time being such knowledge is not model 

free. One is therefore using q-statistics to allow for the better model

independent presentation of experimental results.

(*) As long as in fits to data one gets |q-1| 1,  it means that some dynamics

is still there to be uncovered

(dynamics = everything outside the true BG  approach).



Nonextensive hydrodynamics for high energy heavy ion collisions?
(T.Osada and G.Wilk, preliminary)

Reasoning:

(*) high energy collisions producing many particles

non-equilibrium problem

(*) tools for it linear response theory (LRT)

hydrodynamics (H)

kinetic theory (KT)

(*) only LTR and H do not rely on perturbation approach used in KT

(*) H with transport coefficients from LTR – all we need is assumption

on near-equlibrium state (or local equilibrium)

(*) the q-versions of KT are already known, the q-H was so far not yet

investigated



(*) Following q-KT (A.Lavagno, PL A301 (2002) 13) with nonextensive

Boltzmann equation (f(x,p) is phase space distribution function and Cq(x,p)

is q-collision term):

(*) one gets that:

where

In this way we obtain f(x,p)

(*) However, we are interested rather in dN/[d2pTdpL] resulting from eqs.

supplemented by:

- some choice of initial conditions

- some choice of relation between pressure and energy density

(equation of state).

So far only first preliminary results available....
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Summary:

(*)  Even single particle distributions are affected by internal fluctuations

and correlations presented in the hadronizing system:

f(y) fq(y)

Poissonian P(N) Negative Binomial P(N)

flows ……………………….

(*)  The best way to account for them in a model independent way is to

use some form of non Boltzmann-Gibbs ensembles, for example

Tsallis or EGE (or …(?) ).

(*)  The more we know on the internal dynamics (for example in the

form of mass spectrum of resonances in the Hagedorn model) the

near we are the true BG approach. However, for a time being such

knowledge is not model free. One is therefore using q-statistics

to allow for the better model independent presentation of

experimental results.

(*)  As long as in fits to data one gets |q-1| 1,  it means that some

dynamics is still there to be uncovered (dynamics = everything

outside the true BG approach).



Other posible interpretation of q-parameter: a measure of incomplete

occupation of the phase space (limitation or the fractal-like structure of

heath bath correlations)

(*) Proposition of yet another dynamical origin of power-laws (Kodama et al.., Europ.Lett. 70 

(2005) 439):

supercorrelated systems q-clusters

(*) Motivated by observation (Berges et al.., PRL 93 (2001)142002) that dynamics of quantum

scalar fields exhibits a prethermalization behaviour : thermodynamical relations become valid long

before the real thermal equilibrium is attained.

(*) Possible realisation: strong correlations among some variables (leading to clustration):

Example: system composed of N particles with strong

correlation among any q of them and with dynamical

evolution such that, for a given number of q-

clusters, the configuration of the system tries to

minimize the energy of the correlated subsystem

(i.e., the system first generates correlations among

particles minimizing the energy in the clusters)

power law  distribution discussed before with the

same   q-parameter .



Kodama et al.., Europ.Lett. 70 (2005) 439):

Example how the existence of dynamical correlations leads to a preequilibrium state

of the system:

(a) (b)

Energy spectrum after a given number of collisions per particle, starting

from a distribution peaked at E=125 GeV:

(a) correlated system non-Boltzmann distribution fitted by Tsallis

distribution with =0.39 GeV –1 and q=1.42

(b) uncorrelated system Boltzmann distribution (equilibration needs

10 times more steps now!)


